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Dipartimento di Matematica ‘F. Casorati’, Università di Pavia and Istituto di Analisi Numerica
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We study the Γ -convergence of a family of vectorial integral functionals, which are the sum of
a vanishing anisotropic quadratic form in the gradients and a penalizing double-well potential
depending only on a linear combination of the components of their argument. This particular feature
arises from the study of the so-called ‘bidomain model’ for the cardiac electric field; one of its
consequences is that the L1-norm of a minimizing sequence can be unbounded and therefore a lack
of coercivity occurs. We characterize the Γ -limit as a surface integral functional, whose integrand is
a convex function of the normal and can be computed by solving a localized minimization problem.

1. Introduction

The aim of this paper is to investigate, in the framework of Γ -convergence theory, the asymptotic
behaviour, as ε ↓ 0, of the family of vectorial integral functionals

Fε(u) := ε

∫
Ω

q(x,∇u(x)) dx + 1

ε

∫
Ω

W (�(u)) dx (1.1)

which are the sum of a vanishing term, associated to the anisotropic quadratic form q in the gradients
∇u := (∇u1,∇u2, . . . ,∇um)T , and a penalizing double-well potential W depending only on a
linear combination �(u) of the components of their argument.

The particular structure of these functionals arises from the study of the so-called ‘bidomain
model’ for the cardiac electric field. Before entering into the details of the mathematical formulation
of the problem (which we postpone to the second part of this introduction), let us briefly recall the
main features of the physical model; the reader interested only in the mathematical aspects of the
theory can skip this section.
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1.1 The bidomain model of the bioelectric cardiac activity

This relevant mathematical model concerns the description of the cardiac bioelectric activity during
a heartbeat; here we give only a brief description of this fairly complex phenomenon in order to
motivate the crucial properties of the bidomain model.

The cardiac tissue is composed of an arrangement of elongated cells connected end-to-end
and/or side-to-side by junctions of low resistivity; a string of the elongated cells constitutes a
fibre. At a cellular level the tissue can be viewed as composed of two volumes, the intra- and
the extracellular spaces, separated by the cellular membrane. The potential jump u through the
membrane is called the transmembrane potential.

Starting from the sino-atrial node, which acts as a pacemaker, a front-like variation of the
transmembrane potential u spreads first in the atria and subsequently through the myocardium,
with a very fast transition from the resting value s− to the plateau value s+. This phase constitutes
the excitation or depolarization phase; it is followed by an interval of almost constant potential
(refractory period) and a subsequent less rapid return to the initial state (repolarization). The time
profile of the transmembrane potential u is called the action potential.

The fibre structure of the myocardium is the main factor in the anisotropic conductivity in the
cardiac tissue.

The whole process is quite complicated and is essentially due to current flows of sodium,
potassium, and calcium ions through the cellular membrane separating the intra- (i) and extracellular
(e) media, and to their diffusion in these two conducting media.

At a macroscopic level, in spite of the discrete cellular structure, the cardiac tissue can be
represented by a continuous model, called the bidomain model (see e.g. [12, 21, 29] and also [25]),
which attempts to describe the averaged electric potentials and current flows inside (intra) and
outside (extracellular space) the cardiac cells. In this representation,

Ω ⊂ R
3 is the physical region occupied by the heart (B1)

and it coincides with the i and e domains, which are two interpenetrating and superimposed continua
connected at each point by the cardiac cellular membrane; ui , ue are the corresponding intra- and
extracellular electric potentials, respectively,whose difference u = ui −ue is just the transmembrane
potential.

The anisotropy of the (i)–(e) media depends on the fibre structure of the myocardium. At the
macroscopic level the fibres are regular curves, whose unit tangent vector at the point x is denoted
by a = a(x). Denoting by σ

i,e
l (x), σ

i,e
t (x) the conductivity coefficients along and across the fibre

direction at a point x and always assuming axial simmetry for σ
i,e
t , the conductivity tensors Ai,e in

the media (i), (e), can be expressed by

Ai,e(x) = σ
i,e
t I + (σ

i,e
l − σ

i,e
t )aaT ,

and they are

symmetric, positive definite, continuous

conductivity tensors Ai,e : Ω → M
3×3.

(B2)

To the potentials ui , ue are associated the current densities

Ji = −Mi∇ui , Je = −Me∇ue.
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Since induction effects are negligible, the current field can be considered quasi-static; therefore we
have

div (Ji + Je) = 0 in Ω .

The currents Ji , Je are related to the membrane current per unit volume im by the conservation law
im = div Je = −div Ji ; for an insulated myocardial volume (i.e. condition nT Je = nT Ji = 0 is
satisfied on the heart surface ∂Ω ), applying the nonlinear cable theory for the membrane current
(see [22]) we have, in terms of potentials, the following reaction–diffusion (R–D) system:




im = cm ∂t u + iion, with u := ui − ue,

div Mi∇ui = im, div Me∇ue = −im in Ω ,

nT Mi∇ui = 0, nT Me∇ue = 0 on ∂Ω ,

(1.2)

where cm is the membrane capacitance per unit volume and iion results from the combination of
various membrane currents related to ionic fluxes. The initial condition u(x, 0) = u0(x) must be
supplied to close the differential problem (1.2).

The coupling of the two equations is featured by a degenerate temporal structure: we refer to [14]
for the mathematical treatment of this kind of degenerate R–D system.

The bidomain model (1.2) represents a macroscopic description of the entire electric
behaviour of the cardiac tissue, i.e. depolarization and repolarization phases. In problem (1.2)
the transmembrane potential u exhibits a steep propagating layer, having a thickness of about
0.5 mm, spreading throughout the myocardium with an upstroke phase lasting about 1 ms during
the depolarization process.

The FitzHugh–Nagumo approximation For qualitative studies or macroscopic simulations we
can disregard the fine details associated to the ionic fluxes through the cellular membrane,
considering instead a simplified model of the membrane current called the FitzHugh–Nagumo
approximation [12, 18]. In this model the ionic current is represented by

{
iion = iion(u, w) := F(u) + δw,

∂tw = βu − γw in Ω ,
(1.3)

where δ, γ, β are positive constants, w is a recovery variable, and F is a continuous cubic-like
function. The function F(u) describes an instantaneous current–voltage membrane relationship,
which mimics the ionic membrane activation mechanism; F(u) results in a cubic-like function
having s− < sc < s+ as zeros, with s± stable zeros, and

∫ s+
s− F(u) dv < 0.

Although this simplified ionic model is not suitable for a quantitative detailed study at a fine
scale of the upstroke of the action potential u through the excitation wavefront, it is nevertheless
appropriate for gaining general insight into wave propagation in the cardiac excitable medium,
especially if we are interested in the large-scale behaviour of the front-like solution. Then during
the excitation phase in a fully recovered tissue, we can neglect the recovery variable w, hence in its
simplest form the model governing the excitation bioelectric activity of the cardiac tissue Ω is given
by the R–D problem (1.2) with iion = F(v).

Proceeding with a suitable re-scaling, as in [12, 13], the non-dimensional form of the
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macroscopic bidomain model can be written as the following singularly perturbed R–D system:




∂t

(
ui

ε − ue
ε

)
− ε div Mi∇ui

ε +
1

ε
F(ui

ε − ue
ε) = 0

∂t

(
ue

ε − ui
ε

)
− ε div Me∇ue

ε −
1

ε
F(ui

ε − ue
ε) = 0

(1.4)

where the order of magnitude of the dimensionless parameter ε is 10−3–10−2.

Variational structure and Lyapunov functional If we introduce the couple

u := (ui
ε,−ue

ε) (B3)

of the intra- and (the opposite of) the extracellular potentials, and a potential W : R → R such
that W ′ = F , then the degenerate reaction–diffusion system associated to (1.2) in the couple of
unknowns u := (ui ,−ue) can be obtained by taking the gradient flow of the Lyapunov functional

Fε(u) := ε

∫
Ω

(〈Ai∇ui ,∇ui 〉 + 〈Ae∇ue,∇ue〉) dx

+ 1

ε

∫
Ω

W (ui
ε − ue

ε) dx,

(B4)

with respect to the positive but degenerate bilinear form in L2(Ω;R
2)

b(v, w) :=
∫
Ω

(vi − ve) (wi − we) dx, v = (vi ,−ve), w = (wi ,−we).

This yields the following system of variational evolution equations:

b(∂t u, v) + δFε(u, v) = 0 ∀v ∈ H1(Ω;R
2), (1.5)

where δFε(u, ·) is the Euler–Lagrange first variation of the functional Fε [19: pp. 9–10], which is
the variational formulation of (1.4).

If we call � the linear form

�(u) := ui
ε − ue

ε = u, (B5)

which defines the transmembrane potential, and qi,e, q the quadratic forms associated to Ai,e,

qi,e(x, ξ) := 〈Ai,e(x)ξ, ξ〉, ∀ ξ ∈ R
3,

q(x, a) := qi (x, ai ) + qe(x, ae), a = (ai , ae)T ∈ M
2×3,

(B6)

then the Lyapunov functional (B4) has exactly the same structure as (1.1).

Formal asymptotics and anisotropic evolution of the interface In the bidomain model (1.4) the
reactive term F is bistable and depends, instantaneously, only on the transmembrane potential. Thus
the nonlinear potential energy W depends only on u = ui −ue, which is a fundamental feature of the
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model and reflects the degeneracy of the system; moreover W exhibits two minima with different
depths.

This singular perturbation structure implies that ui
ε, ue

ε diffuse quite slowly while the reaction
takes place much faster, and from the layer analysis the development of an interface associated with
a travelling wavefront solution is expected. Exploiting the singular perturbation approach we derive
anisotropic geometric evolution laws capturing the asymptotic behaviour of travelling wavefront
solutions of the R–D system (1.2) (see [5, 12, 13, 23–25]); for isotropic media and full Fitzhugh–
Nagumo dynamics (1.3) see [30].

The excitation wavefront Sε(t) is represented by the level surface of the transmembrane potential
vε = ui

ε − ue
ε of value (s− + s+)/2, i.e.

Sε(t) = {x ∈ Ω , vε(x, t) = (s− + s+)/2}. (1.6)

We already introduced (B6) the quadratic forms qi,e(x, ξ) which, if ξ is a unit vector, represent
the conductivity coefficient at a point x in the intra- and extracellular medium measured along the
direction ξ . We call q̄ the harmonic mean of the quadratic forms associated to the conductivity
tensors Mi,e, i.e.

q̄(x, ξ) := (qi (x, ξ)−1 + qe(x, ξ)−1)−1, (1.7)

and we introduce the surface energy density

φ̄(x, ξ) := √
q̄(x, ξ). (1.8)

Let (c,a) be the unique bounded solution of the eigenvalue problem{
−a′′ + c a′ + f (a) = 0

a(±∞) = s+ or s−, a(0) = (s− + s+)/2,
(1.9)

and let ν(x) be the Euclidean unit vector normal to the wavefront Sε(t) oriented toward the resting
region. In [5] the vector nφ̄ = Dξ φ̄(x, ν(x)) and the moving reference (s(t), y) defined by stretching
the space coordinate along the nφ̄ direction were introduced, i.e.

y = η

ε
, x = s(t) + η nφ̄(s(t)), for s(t) ∈ Sε(t). (1.10)

Using this moving frame, in [5: Appendix B] formal asymptotic expansions of ui
ε, ue

ε, and of vε,
in power of ε, were developed showing that the front associated to (1.6) moves along the relative
normal vector nφ̄ with velocity Vε(nφ̄) given at any s(t) ∈ Sε(t) by

Vε(nφ̄) = c − ε div nφ̄ +O(ε2), (1.11)

where c is related to the travelling wave solution a of (1.9). Moreover the velocity Vε(ν) measured
along the Euclidean normal direction ν of Sε(t) is given by

Vε(ν) = φ̄(s, ν)(c − ε div Dξ φ̄(s, ν)) +O(ε2). (1.12)

Therefore dropping O(ε2) terms, the front behaves as an hypersurface S(t), propagating with the
anisotropic geometric law with normal velocity V (ν) given by

V (ν) = φ̄(s, ν)(c − ε div Dξ φ̄(s, ν)). (1.13)

Equations of this type are also called eikonal-curvature models since, with respect to a suitable
Finsler metric, Kφ̄ := divS(t) nφ̄ is the anisotropic mean curvature of Sε(t) (see [5–7]).
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Anisotropic surface energy in the stationary case Since Kφ̄ corresponds to the first variation of

the anisotropic surface energy associated to φ̄, in order to characterize the form of the anisotropic
curvature term we study the asymptotic limit, as ε ↓ 0, of the stationary problem associated to a
singular R–D system (1.2) for a function F = W ′, where now W is a potential having wells of
equal depth; more precisely, we try to characterize the this limit behaviour by carefully studying the
Γ -convergence of the underlying potentials (B4).

Therefore, our contribution is intended as a first step towards a rigorous mathematical theory
describing and justifying the right asymptotic motion law of the cardiac excitation wavefronts. We
believe that understanding the limit of Lyapunov functionals associated to the family (B4) gives
insights about the correct choice of the anisotropic surface energy driving the propagation of the
fronts.

1.2 Mathematical formulation of the problem and main results

In a Lipschitz and bounded open set Ω of R
n , let us consider a continuous family of quadratic forms

q : Ω × M
m×n → R, (1.14a)

M
m×n being the vector space of the m×n matrices satisfying the usual uniform ellipticity condition

∃ λ,Λ > 0 : λ|a|2 � q(x, a) � Λ|a|2 ∀ x ∈ Ω , ∀ a ∈ M
m×n . (1.14b)

Let W : R → [0,+∞] be a continuous double-well potential, such that

W (s) = 0 ⇔ s ∈ T := {s−, s+} ⊂ R, (1.15a)

0 < lim inf|s|↑+∞
W (s)

|s|p0
� lim sup

|s|↑+∞
W (s)

|s|p0
< +∞ for some p0 � 2, (1.15b)

and let us consider the family of integrands

f ε(x, s, a) := εq(x, a) + 1

ε
W̃ (s), (x, s, a) ∈ Ω × R

m × M
m×n, (1.16a)

W̃ (s) := W (�(s)), �(s) := 〈�, s〉, � := (�1, . . . , �m) �= 0. (1.16b)

As we quoted at the beginning of this introduction, we want to study the Γ -convergence, as ε ↓ 0,
of the family of vectorial integral functionals in L2(Ω;R

m)

Fε(u) := ε

∫
Ω

q(x,∇u(x)) dx + 1

ε

∫
Ω

W (�(u)) dx

=
∫
Ω

f ε(x, u,∇u) dx, ∇u := (∇u1,∇u2, . . . ,∇um)T , (1.17)

where, as usual, we set Fε(u) := +∞ if u �∈ H1(Ω;R
m) ∩ L p0(Ω;R

m). We point out that
problem (1.17) is vectorial and anisotropic, with the penalizing potential only dependent on a linear
combination of the components of u.

After a brief overview of the available results in the literature for singular perturbation problems
of anisotropic, vectorial and coercive type, in the remaining part of this introduction we will present
the statements of the main theorems of the paper, highlighting the difficulties and the differences
in dealing with our class of problems, which do not fit into the standard theory due to the lack of
coercivity.
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Anisotropic singular perturbations: the coercive case The Γ -convergence of the integral
functionals (1.17), where f ε has a structure like (1.16a), has been deeply studied under various
assumptions on f ε, starting from the papers [26, 27] in the isotropic scalar case. These results were
generalized to anisotropic (and not necessarily of quadratic type) functions in [8, 28] (cf. also [7]
for a different approach in the context of Finsler metrics), and to a very general anisotropic vectorial
framework in [4].

In all these cases it is assumed that the potential W̃ , which could also depend on the x-variable,
has only two distinct minimum points w.r.t. s say

s−, s+ ∈ R
m . (1.18)

(cf. [1, 3] for the generalization to the case of a finite or compact minimum set).
It is then possible to show that:

• there exists the Γ -limit F of Fε as ε goes to 0, with respect to the strong topology of L p(Ω;R
m),

1 � p � p0;

• F(u) is finite if and only if u is a function of bounded variation in Ω assuming only the values
s−, s+ a.e.;

• on these functions F can be represented as an integral functional on the discontinuity surface of
u as

F(u) =
∫

S∗u
ϕ(x, νu(x)) dHn−1(x), (1.19)

where
†

S∗
u is the common reduced boundary, in the sense of De Giorgi, of the two level sets of

u, νu is the approximate unit normal, and {ϕ(x, ·)}x∈Ω is a suitable family of norms on R
n .

The precise calculation of these surface energy densities is not easy in the anisotropic vectorial
case: they can be characterized by considering the ‘minimal cost’ of a transition from s− to s+ in a
cylinder across a unitary planar surface perpendicular to a direction ν.

More precisely, let us first describe what we mean by the term cylinder: we fix

an hyperplane π ⊂ R
n , a section Σ ⊂ π ,

a vector η �∈ π , and an open interval (possibly unbounded) (a, b) ⊂ R.
(1.20a)

A general cylinder with section Σ and direction η is Σ (a, b; η) ⊂ R
n defined by

Σ (a, b; η) = {x + tη : x ∈ Σ , t ∈ (a, b)}. (1.20b)

We say that a set Q := Σ (a, b; η) ⊂ R
n is an admissible cylinder for ν ∈ S

n−1 if

π is orthogonal to ν, a < 0 < b, (1.20c)

Σ =
{n−1∑

i=1

riηi :
∣∣ri

∣∣ < 1/2

}
for a basis {η1, η2, . . . ηn−1} of π (1.20d)

Σ has unitary (n − 1)-Hausdorff measure. (1.20e)

†
The precise definitions of these and other concepts are given in the next section.



220 L. AMBROSIO ET AL.

We denote the upper and lower bases of Q by

Σ+ := {
x + bη : x ∈ Σ

}
, Σ− := {

x + aη : x ∈ Σ
}

and we introduce the closed subspace of H1(Q;R
2)

A(Q;R
m) := {u ∈ H1(Q;R

m) : u|∂ Q
depends only on 〈x, ν〉,

u(x) = s± on Σ±}. (1.21)

Then φ admits the following expression (cf. [4])

ϕ(x0, ν) = inf

{∫
Q

f ε(x0, u,∇u) : u ∈ A(Q;R
m), ε > 0

}
.

In the scalar case m = 1, this expression can be further simplified, since it is possible to put the
minimization w.r.t. ε inside the integral and therefore to replace f ε with

f (x, s, a) := inf
ε>0

f ε(x, s, a).

If f ε has the structure (1.16a), where now a is a vector of R
n , q(x, ·) is a quadratic form in R

n and
s is a scalar, then

f (x, s, a) = 2
√

W̃ (s)q(x, a) (1.22)

and the calculus of φ can be reduced to a one-dimensional problem which can be solved explicitly,
giving the formula

φ(x0, ν) = 2
√

q(x0, ν)

∫ s+

s−

√
W̃ (s) ds. (1.23)

The non-coercive case The fundamental difference between the families of functionals considered
in all these contributions and the one considered in our paper lies in the structure of the set of
minimum points of the potential

w ∈ R
m "→ W̃ (w) = W (�(w))

i.e.

the set arg min W̃ := {
w ∈ R

m : �(w) = s±
}
,

which is the union of two parallel hyperplanes. This fact reflects that a general minimizing sequence
uε for Fε can be unbounded in L2(Ω;R

m), and a priori only some compactness properties
for the sum �(uε) could be expected: therefore, we are dealing with an anisotropic singular
perturbation problem with a lack of coercivity. One of the main consequences is that the study
of the Γ -convergence is strongly influenced by the choice of the topology, among the L p ones for
1 � p � p0, which in a certain sense has to supply the lack of the control on all the components of
u. Our first result concerns the Γ -convergence w.r.t. the strong topology of L2(Ω;R

m).
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THEOREM 1.1 There exists the Γ (L2(Ω;R
m))-limit F of Fε (defined in (1.17)) as ε goes to 0;

F(u) depends only on u := �(u), it is finite if and only if u is a function of bounded variation in Ω
assuming only the values s−, s+ a.e., and on this kind of function F can be represented as in (1.19),
i.e.

F(u) =
∫

S∗u
φ(x, νu(x)) dHn−1(x). (1.24)

In this case {φ(x, ·)}x∈Ω is the continuous family of norms on R
n characterized by

φ(x0, ν) = inf

{∫
Q

f ε(x0, u,∇u) : u ∈ B(Q;R
m), ε > 0

}
, (1.25)

where f ε is defined as in (1.16), Q is an admissible set for ν as in (1.20), and

B(Q;R
m) := {u ∈ H1(Q;R

m) : u|∂ Q
depends only on 〈x, ν〉,

�(u)(x) = s± on Σ±}. (1.26)

It is well known that a Γ -convergence result as given above is equivalent to two different properties:
on one hand, for every element u ∈ L2(Ω;R

m) we have to be able to exhibit a family uε ∈
L2(Ω;R

m) such that, as ε ↓ 0,

uε → u and Fε(uε) → F(u); (1.27a)

on the other hand, a kind of ‘lower semicontinuity’ property should also be proved, i.e.

uε → u in L2(Ω;R
m) ⇒ lim inf

ε↓0
Fε(uε) � F(u). (1.27b)

The stronger the topology in (1.27a), the better it is; on the contrary, from the point of view of the
convergence of minimizers, in (1.27b) it is important to replace the strong topology of L2(Ω;R

m)

with the weak one, whenever we know that a family uε (arising, e.g., from a suitable minimization
problem) is only bounded in L2(Ω;R

m) and not totally bounded.
Of course, a result of this type is related to the Γ -convergence w.r.t. the weak topology of

L2(Ω;R
m); since this topology does not satisfy the first axiom of countability, in order to avoid

technical difficulties we limit ourselves to consider the Γ -convergence of Fε on bounded sets of
L2(Ω;R

m), which is sufficient for proving (1.27b) in the weak convergence case.

THEOREM 1.2 For every family uε ∈ L2(Ω;R
m), ε > 0, we have

uε ⇀ u in L2(Ω;R
m) as ε ↓ 0 ⇒ lim inf

ε↓0
Fε(uε) � F(u). (1.28)

Lower and upper bounds for φ It is natural to ask if it is possible to provide a more direct formula
for φ. We will show now two explicit lower and upper bounds for φ, and we will analyse them more
deeply in the case of the bidomain model.

A first simple strategy to get an explicit lower bound is to minimize the integrand in (1.17)
among all the possible decompositions of ∇u into a linear combination of arbitrary R

n-valued
functions, instead of gradient vector fields.
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Since

�(u) = 〈�, u〉 = u ⇒ ∇uT · � = ∇u, (1.29)

we introduce the coercive quadratic form on R
n

q(x, ξ) := min{q(x, a) : aT · � = ξ}, (1.30)

which obviously satisfies

q(x, ξ) � λ

|�|2 |ξ |
2 ∀ ξ ∈ R

m . (1.31)

By (1.29) it is easy to see that

�(u) = u ⇒ Fε(u) �
∫
Ω

(
εq(x,∇u(x)) + 1

ε
W (u(x))

)
dx . (1.32)

By applying the already quoted results on the Γ -convergence of singularly perturbed problems in
the scalar case, we obtain the following.

PROPOSITION 1.3 For every x ∈ Ω and ξ ∈ R
n ,

φ(x, ξ) � φ(x, ξ) := γ0

√
q(x, ξ), (1.33)

where γ0 is defined by

γ0 := 2
∫ s+

s−

√
W (s) ds. (1.34)

On the other hand, an explicit upper bound for φ can be obtained if we limit the admissible functions
to be globally dependent only on 〈x, ν〉 in the evaluation of the infimum (1.25). This constraint
reduces (1.25) to a one-dimensional problem.

When a function u : Q → R
m depends only on 〈x, ν〉 and it satisfies �(u) = u, it is not difficult

to see that
†

∇u = η ⊗∇u for some η with �(η) = 1.

Thus we introduce the function

q̄(x, ξ) := min{q(x, η ⊗ ξ) : η ∈ R
m, �(η) = 1}, (1.35)

which satisfies the estimate from above

q̄(x, ξ) � Λ
|�|2 |ξ |

2 ∀ ξ ∈ R
m, (1.36)

and we obtain the proposition 1.4

PROPOSITION 1.4 For every x ∈ Ω and ξ ∈ R
n ,

φ(x, ξ) � φ̄(x, ξ) := γ0
√

q̄(x, ξ), (1.37)

where γ0 is defined by (1.34).

†
We use the notation η ⊗ ξ := η · ξT , so that, for every ν ∈ R

n

(η ⊗ ξ)ν = η〈ξ, ν〉.
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Non-local functionals and the behaviour of the potentials in the ‘bidomain model’. Now we come
back to the settings (B1–B6), and we try to give a more detailed description of the behaviour of the
potentials

u := (u1, u2) = (ui ,−ue)

in terms of the transmembrane potential u := ui − ue. From the physical point of view, the
dependence of F only on u given by (1.24) corresponds to the fact that only the evolution of the
transmembrane potential u behaves like a propagating front, whereas the properties of the potentials
ui , ue are much more complicated, since they are related to u by a non-local dependence.

This non-local character can also be better understood, if we associate to Fε the functionals Gε

depending only on u, which are obtained by minimizing Fε among all the possible decompositions
of u as the sum of two functions in H1(Ω). First of all we define the quadratic functional Q on
H1(Ω)

Q(u) := min

{∫
Ω

q(x,∇u(x)) dx : u ∈ H1(Ω;R
2), ui − ue = u in Ω

}
(1.38)

and we set

Gε(u) := εQ(u) + 1

ε

∫
Ω

W (u(x)) dx ∀ u ∈ H1(Ω), (1.39)

with the usual convention to extend Gε to L2(Ω). If we denote by U(u) the set of all u ∈ H1(Ω;R
2)

which achieve the minimum in (1.38), we obviously have

ui − ue = u ⇒ Fε(u) � Gε(u), the equality holds iff u ∈ U(u). (1.40)

In a certain sense, substituting a generic couple u with ū ∈ U(ui − ue) provides a natural
renormalization of Fε(u). In this way, of course, we obtain coercive functionals, and it is easy
to see that their Γ -convergence is not influenced by the choice of an L p(Ω)-topology (both strong
and weak) if 1 � p � p0,

†
since they satisfy

sup
ε>0

Gε(uε) < +∞ ⇒ {uε}ε>0 is precompact in L p0(Ω). (1.41)

However new difficulties arise since Gε are non-local. We shall see that good a priori L2-estimates
for ū in terms of u entail a strict relationship between the Γ -limits of both families and allow a
slightly better refinement of Theorems 1.1 and 1.2.
Let us observe that u ∈ U(u) iff ui − ue = u and ui , ue solve (the natural variational formulation
of) the following elliptic equations

Lui = Leu, in Ω , ∂n̄ui = ∂n̄e u on ∂Ω ,

Lue = −Li u, in Ω , ∂n̄ue = −∂n̄i u on ∂Ω ,
(1.42)

where L,Li,e are the elliptic operators

Li,e : ζ ∈ H1(Ω) "→ − div
(

Ai,e(x)∇ζ(x)
)
, L := Li + Le, (1.43)

†
For simplicity, in the following we will keep fixed p = 2 as before.
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n is the outer unit normal to ∂Ω and n̄, n̄i,e are the associated conormal vectors on ∂Ω

n̄i,e := Ai,en, n̄ := n̄i + n̄e.

It is interesting to know whether (1.40)–(1.42) hold also in the limit as ε ↓ 0. An answer to this
question is given in the following result, where, according to the previous convention, q and A
denote the sum of qi,e and Ai,e respectively.

THEOREM 1.5 There exists the Γ (L2(Ω))-limit G of Gε, as ε goes to 0. G(u) is finite if and only
if u is a function of bounded variation in Ω assuming only the two values s−, s+ a.e., and on this
kind of function G can be represented as in (1.24), i.e.

G(u) =
∫

S∗u
φ(x, νu(x)) dHn−1(x), (1.44)

where φ is defined by (1.25). Finally, if

Ω is convex or of class C1,1, Ai,e are Lipschitz continuous (1.45)

and

uε → u ∈ L2(Ω), lim sup
ε↓0

Gε(uε) � G(u), (1.46)

then there exists uε ∈ U(uε) such that uε → u in L2(Ω;R
2), and u solves the following ‘very

weak’ formulation of the elliptic problem (1.42)∫
Ω

ui L(ζ ) dx =
∫
Ω

u Le(ζ ) dx +
∫

∂Ω
u ∂n̄eζ dHn−1(x), (1.47a)∫

Ω
ue L(ζ ) dx = −

∫
Ω

u Li (ζ ) dx −
∫

∂Ω
u ∂n̄i ζ dHn−1(x), (1.47b)

for every test function ζ ∈ H2(Ω) with ∂n̄ζ = 0 on ∂Ω .

COROLLARY 1.6 Let uε ∈ L2(Ω;R
2) such that

�(uε) ⇀ u in D′(Ω) as ε ↓ 0.

Then

lim inf
ε↓0

Fε(uε) � G(u).

REMARK 1.7 Let us make a few comments about these results:

•The trace on ∂Ω of u in the last integrals of (1.47a, b) is well defined in the BV -sense and it
belongs to L∞(∂Ω).

•The solution u = (ui ,−ue) of (1.47a, b), which is defined up to an additive constant c =
(c,−c), does not belong to H1(Ω;R

2) in general; but if u ∈ H1(Ω;R
2) then it is also the usual

variational solution of the system (cf. (4.4) below).
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•Corollary 1.6 follows Theorem 1.5 and the equicoercivity of Gε.

•We assumed that the spatial dimension n is equal to 3 for obvious physical reasons, but this
hypothesis is not relevant for the validity of the mathematical results; on the contrary, the
particular dimension m = 2, which is related to the vectorial structure of the problem, plays
an essential role in some proofs.

�
Thanks to the last items in the list on the Γ -limit of Fε and Gε, we can show that, in general,

the inequality (1.33) is strict. First of all we observe that the quadratic form q defined by (1.30)

is associated to the harmonic mean A of Ai , Ae by the formulae (where we omit the explicit
dependence on x)

A := Ai (Ai + Ae)−1 Ae, (1.48)

q(·, ξ) = 〈Aξ, ξ〉. (1.49)

Analogously, q̄ defined by (1.35) can be easily calculated by the ‘harmonic mean’ of the quadratic
forms

q̄(x, ξ) = qi (x, ξ)qe(x, ξ)

qi (x, ξ) + qe(x, ξ)
. (1.50)

It is obvious by the definition that φ � φ̄, and it is not difficult to show that

φ(x, ξ) = φ̄(x, ξ) ⇔ Ai (x)ξ, Ae(x)ξ have the same direction. (1.51)

If this is the case, of course, we have also

φ(x, ξ) = φ(x, ξ) = φ̄(x, ξ). (1.52)

As we said before, in all the other cases we have a strict inequality.

THEOREM 1.8 If Ai (x0)ξ and Ae(x0)ξ have different directions, then

φ(x0, ξ) < φ(x0, ξ). (1.53)

Remarks and open problems. Formal asymptotics in the bidomain case [5, 12, 13], suggest that

φ(x, ν) = φ̄(x, ν) = γ0
√

q̄(x, ν) (1.54)

where γ0 and q̄ are defined in (1.34) and (1.50) respectively; if this would be the case, (1.50) should
provide an explicit and manageable formula to deal with the study, both theoretic and numeric, of
the anisotropic curvature flow governed by the energy surface density φ (cf. [5]).

On the other hand, in some pathophysiological setting, such as regional ischaemia and heals
infarction, the corresponding conductivity tensors Ai , Ae do not yield a convex φ̄: since φ is always
convex (cf. Theorem 1.1), in this case (1.54) does not hold. It would be interesting to check if the
convex envelope of φ̄ is a good substitute for (1.54) in this case. As we already said at the beginning
of this introduction, we considered only the stationary problem; the rigorous justification of the
evolution law still remains, to the best of our knowledge, an open problem.
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Plan of the paper We will collate in Section 2 some preliminary notation and results which
will be useful in the remainder of this paper: some of them are well-known parts of deep and
widely developed theories, which we recall here for the reader’s convenience, without claiming any
completeness. We will refer to the quoted books and papers for a systematic presentation of these
subjects and for more detailed references.

Section 3, devoted to the proof of Theorems 1.1 and 1.2, has been divided into some subsections
in order to make the logical connection of the arguments and the crucial technical points of the proof
clearer.

In the last sections we will consider in more detail the case of the ‘bidomain model’:
Theorem 1.5 is considered in Section 4 and the proof of the strict inequality of Theorem 1.8 is
given in Section 5.

We remark that the intrinsic length of some of the proofs is justified by the attempt to develop
a sufficiently abstract scheme, which could be directly applied to different applications. Moreover,
many technical difficulties, related to the lack of coercivity, have often precluded a more direct
appeal to already known results.

Finally, we notice that the continuity assumption on q(x, ·) (and therefore on the conductivity
tensors Ai,e) can probably be relaxed, but we have kept it in order to avoid additional technical
difficulties and complications in the representation formula for φ.

2. Notation and definitions

2.1 Preliminary notation

From now on we fix a bounded, Lipschitz, and connected open set Ω ⊂ R
n . By A(Ω) we denote

the collection of the open subsets of Ω . If O1,O2 ∈ A(Ω), we say that O1 � O2 if O1 ⊂ O2. For
a given set U ⊂ R

n , we denote by Hn−1(U ) its n − 1-dimensional Hausdorff measure and by |U |
its Lebesgue measure.

S
n−1 is the set of unit vectors in R

n . If O ⊂ R
n is an open set, w ∈ L1

loc(O), and η is a non-
vanishing vector, we denote by Dηw the distributional derivative of w along η, which coincides with
the classical one ∂ηw = 〈∇w, η〉 if w ∈ C1(O); we also use the symbol ∂ηw if Dηw ∈ L1

loc(O).
∂1, . . . , ∂n and D1, . . . , Dn denote the derivatives along the directions of the canonical basis of R

n .
We will deal with functionals depending on the continuous paramenter ε > 0 or on the discrete

values of a suitable decreasing infinitesimal sequence {εn}n∈N; for notational convenience, we will
treat both the cases in the same way, by considering a general not empty set E of real numbers such
that

E ⊂ (0,+∞), inf E = 0. (2.1)

Expressions like lim
ε↓0,ε∈E

, lim inf
ε↓0,ε∈E

, etc . . . have an obvious meaning as limits for ε going to 0 in E .

Of course, when E contains an open interval (0, δ), δ > 0, we will use the usual notation lim
ε↓0

.
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2.2 Localization of functionals

It will be useful to deal with the localized version of Fε, Gε (and their Γ -limits). Therefore, for
every O ∈ A(Ω), u ∈ L2(Ω), and u ∈ L2(Ω;R

m) we introduce

Fε(u,O) :=
{∫

O f ε(x, u,∇u) dx if u ∈ H1(O;R
m),

+∞ otherwise,
(2.2)

Q(u,O) := min

{∫
O

q(x,∇u(x)) dx : u ∈ H1(O;R
m), �(u) = u in O

}
, (2.3)

Gε(u,O) := εQ(u,O) + 1

ε

∫
O

W (u(x)) dx, (2.4)

where, as usual,

H1(O;R
m) := {u ∈ L2(O;R

m) : ∂i u = Di u ∈ L2(O;R
m), i = 1, 2, . . . , n}.

We observe that these functionals are local, lower semicontinuous, and increasing, in the sense
of [16: Definition 1.1, 1.2; 15: Definition 15.1]: we collate here these and some other related
definitions, which will be useful in the following section.

Let X be a topological space included in L1
loc(Ω;R

d) and let J be a functional defined on
X × A(Ω) taking its values in the extended half line [0,+∞]; we say that J is

local if for every O ∈ A(Ω) and u, w ∈ X

u|O = w|O ⇒ J (u,O) = J (w,O),

lower semicontinuous if for every O ∈ A(Ω),

the map u "→ J (u,O) is lower semicontinuous in X,

increasing if for every u ∈ X and O1,O2 ∈ A(Ω)

O1 ⊂ O2 ⇒ J (u,O1) � J (u,O2),

superadditive if for every u ∈ X and O1,O2 ∈ A(Ω)

O1 ∩O2 �= ∅ ⇒ J (u,O1 ∪O2) � J (u,O1) + J (u,O2),

weakly subadditive if for every u ∈ X and O1,O′
1,O2 ∈ A(Ω)

O1 � O′
1 ⇒ J (u,O1 ∪O2) � J (u,O′

1) + J (u,O2),

inner regular if for every u ∈ X and O ∈ A(Ω)

J (u,O) = sup
O1�O

J (u,O1),
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a measure if for every u ∈ X the map O "→ J (u,O) is the restriction to A(Ω) of a regular Borel
measure: in this case, the value of this measure on an arbitrary Borel set B can be recovered
by

J (u, B) := inf{J (u,O) : O ∈ A(Ω), B ⊂ O}.
An important result of [17: Proposition 5.5 and Theorem 5.6] (cf. also [15: Theorem 14.23]), ensures
that J is a measure iff J is increasing, superadditive, weakly subadditive and inner regular.

Finally, we recall that to every increasing functional J can be associated its inner regular
envelope J ∗, which is defined, for every u ∈ X and O ∈ A(Ω), by

J ∗(u,O) := sup{J (u,O1) : O1 ∈ A(Ω), O1 � O}.

2.3 Γ -convergence

(cf. [15: Definition 4.1, Proposition 8.1]) Let us fix a set E as in (2.1), a topological space X
satisfying the first axiom of countability and a family

{
J ε}ε∈E of functionals defined on X with

values in the extended real line [−∞,+∞]. The Γ -lower limit and the Γ -upper limit of J ε, as ε

vanishes in E , are the (extended) real function on X defined by

Γ (X)- lim inf
ε↓0,ε∈E

J ε(u) = inf
{

lim inf
ε↓0,ε∈E

J ε(uε) : lim
ε↓0,ε∈E

uε = u in X
}

(2.5a)

Γ (X)- lim sup
ε↓0,ε∈E

J ε(u) = inf

{
lim sup
ε↓0,ε∈E

J ε(uε) : lim
ε↓0,ε∈E

uε = u in X

}
(2.5b)

Γ (X)- lim inf
ε↓0,ε∈E

J ε(u) = Γ (X)- lim sup
ε↓0,ε∈E

J ε(u), ∀ u ∈ X .

We say that J ε Γ (X)-converge as ε ↓ 0, ε ∈ E, to the common value of both functionals, denoted
by Γ (X)- lim

ε↓0,ε∈E
J ε. When no misunderstanding is possible, we will omit the indication of X and

E and we will use the symbols J ′, J ′′, and J to denote the above Γ -limits. Since X satisfies the first
axiom of countability, when

E is the image of a decreasing infinitesimal sequence n "→ εn > 0, (2.6)

the above definitions coincide with the general ones of [15: Definition 4.1]. Let us observe
that (2.5a,b) imply

uε → u in X ⇒ lim inf
ε↓0,ε∈E

J ε(uε) � J ′(u) (2.7)

and, for every u ∈ X ,

∃{uε}ε∈E ⊂ X : lim
ε↓0,ε∈E

uε = u in X, lim sup
ε↓0,ε∈E

J ε(uε) � J ′′(u). (2.8)

Moreover, it follows immediately that if D is a subset of E with inf D = 0 (in particular, if D =
{εn}n∈N corresponds to a suitable subsequence in E) then

Γ (X)- lim inf
ε↓0,ε∈E

J ε � Γ (X)- lim inf
ε↓0,ε∈D

J ε

� Γ (X)- lim sup
ε↓0,ε∈D

J ε � Γ (X)- lim sup
ε↓0,ε∈E

J ε.
(2.9)
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2.4 Γ -convergence

If X is a topological space satisfying the first axiom of countability and J ε : X ×A(Ω) → [0,+∞],
ε ∈ E , is a family of local increasing functionals (as considered in paragraph 2.2), for every open
set O the functionals

J ′(·,O) := Γ (X)- lim inf
ε↓0,ε∈E

J ε(·,O),

J ′′(·,O) := Γ (X)- lim sup
ε↓0,ε∈E

J ε(·,O)

can be defined accordingly to (2.5a, b) and are increasing and lower semicontinuous. If the inner
regular envelopes of J ′ and J ′′ coincide, i.e. there exists an increasing, lower semicontinuous and
inner regular functional J : X × A(Ω) such that, for every u ∈ X , O1,O2 ∈ A(Ω)

O1 � O2 ⇒ J (u,O1) � J ′(u,O1) � J ′′(u,O1) � J (u,O2),

then we say that J ε Γ (X)-converge to J as ε goes to 0 in E [15: Definition 16.3, Proposition 16.4].
This notion of convergence for an increasing set functional has an important property, which

holds if X has a countable base of open sets [15: Proposition 16.8, Theorem 16.9]: a family {J ε}ε>0
Γ (X) converges to J as ε ↓ 0 iff for every infinitesimal decreasing sequence E = {εn}n∈N

∃ JE = Γ (X)- lim
ε↓0,ε∈E

J ε ⇒ JE ≡ J ; (2.10)

in other words, in order to prove that {J ε}ε>0 Γ (X) converges to J as ε ↓ 0 it is sufficient to show
that the Γ -limit JE on a subsequence E , whenever it exists, is independent of E .

2.5 Functions of bounded variation

BV (Ω) denotes the spaces of the functions w ∈ L1(Ω) of bounded variation, whose distributional
derivatives D1w, . . . , Dnw are finite Borel (signed) measures, i.e.∫

Ω
w(x) ∂iζ(x) dx = −

∫
Ω

ζ(x) d Diw(x), ∀ ζ ∈ C1
0(Ω), i = 1, . . . , n.

We will denote by |Diw| their total variations in the sense of measures on Ω : if O ∈ A(Ω) we have

|Diw|(O) = sup
{ ∫

O
w(x) ∂iζ(x) dx : ζ ∈ C1

0(O), |ζ | � 1
}

.

The distributional gradient Dw := (D1w, . . . , Dnw) is therefore a Borel vector measure on Ω with

|Dw|(O) = sup
{ ∫

O
w(x) div ζ(x) dx : ζ ∈ C1

0(O;Rm), |ζ | � 1
}

< +∞.

We recall that

w ∈ W 1,1(Ω) ⇒ w ∈ BV (Ω), |Dw|(O) =
∫
O
|∇w(x)| dx .



230 L. AMBROSIO ET AL.

We define the space BV (Ω; T ) as

BV (Ω; T ) := {u ∈ BV (Ω) : u(x) ∈ {s−, s+} for a.e. x ∈ Ω}.
If w ∈ BV (Ω; T ), its level sets {x ∈ Ω : w(x) = s−}, {x ∈ Ω : w(x) = s+} are both of finite
perimeter; their common reduced boundary S∗

w is the set of point x0 belonging to the support of
|Dw|, such that

∃ lim
ρ→0+

Dw(B(x0, ρ))

|Dw|(B(x0, ρ))
= νw(x0), and |νw(x0)| = 1. (2.11)

The Borel map x ∈ S∗
w "→ νw(x) is called generalized inner normal to {x ∈ Ω : w(x) = s+}, and

we know that the measure |Dw| is concentrated on S∗
w, i.e.

|Dw|(Ω \ S∗
w) = 0,

and, for every ζ ∈ C0
0(Ω;R

n),

∫
Ω
〈ζ(x), Dw〉 :=

n∑
i=1

∫
Ω

ζi (x) d Di (x) =
∫

S∗w
〈ζ(x), νw(x)〉 dHn−1(x).

Slicing Let Q be an open cylinder as in (1.20a, b) where π = πν , and w is a real function defined
on Q; we consider the family of one-dimensional sections

wx : t ∈ (a, b) "→ wx (t) := w(x + tη) ∈ R.

It is well known that

w ∈ L1(Q) ⇒ wx ∈ L1(a, b) for a.e. x ∈ Q0

with ∫
Q

w(x) dx = |〈η, ν〉|
∫
Σ

(∫ b

a
wx (t) dt

)
dx . (2.12)

If w ∈ W 1,1
loc (Q) an analogous property holds for the integral of the partial derivative of w along η:

w ∈ W 1,1
loc (Q) ⇒ wx ∈ W 1,1

loc (a, b), for a.e. x ∈ Σ ,

with ∫
Q

∣∣∂ηw(x)
∣∣ dx = |〈η, ν〉|

∫
Σ

(∫ b

a

∣∣w′
x (t)

∣∣ dt

)
dx .

If w ∈ L1
loc(Q) and Dηw is a finite Borel measure on Q, then the previous formula can be rewritten

as

wx ∈ BVloc(a, b), for a.e. x ∈ Σ ,∣∣Dηw
∣∣(Q) = |〈η, ν〉|

∫
Σ
|Dtwx |(a, b) dx .

(2.13)
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Traces The standard trace operator w ∈ W 1,1(Ω) "→ w|∂Ω ∈ L1(∂Ω) can also be extended to a

linear bounded operator from BV (Ω) to L1(∂Ω). The following related estimation will turn out to
be useful (the proof is an easy adaptation of [10: Claim 4.5, Theorem 1, Section 5.3]).

LEMMA 2.1 Let wn ∈ W 1,1(Ω) be a sequence such that

wn → w in L1(Ω), lim
ρ↓0

lim sup
n↑∞

∫
Ωρ

|∇wn(x)| dx = 0, (2.14)

where

Ωρ := {
x ∈ Ω : d(x, ∂Ω) < ρ

}
. (2.15)

Then wn|∂Ω converges in L1(∂Ω) to the trace of w on ∂Ω .

If Q has the cylindrical structure of (1.20a, b), then we can combine traces and slicing: if w ∈
L1

loc(Q) and Dηw is a bounded Borel measure, then

wx (b) = w|Σ+
(x), wx (a) = w|Σ−

(x) a.e. in Σ

|〈η, ν〉|
∫
Σ

∣∣wx (b) − wx (a)
∣∣ dx � |Dηw|(Q).

(2.16)

2.6 Integral representation of local functionals defined on BV (Ω; T )

Let J : L2(Ω) × A(Ω) → [0,+∞] be a local, lower semicontinuous functional which is a
measure in the sense of paragraph 2.2 and which is finite on BV (Ω; T ). It is interesting to know
whether J admits an integral representation like (1.19) for a suitable function φ. The following
result, which is a particular case of [9: Theorem 3.2; 2: Theorem 3.1], gives a very satisfactory
answer to this problem. More precisely, if there exist positive constants λ0,Λ0 > 0 such that,
∀ u ∈ BV (Ω; T ), ∀O ∈ A(Ω),

λ0 Hn−1(S∗
u ∩O) � J (u,O) � Λ0 Hn−1(S∗

u ∩O), (2.17)

then it is possible to find a uniquely determined (Borel) family of norms φ : Ω × R
n → [0,+∞[

such that

J (u,O) =
∫

S∗u∩O
φ(x, νu(x)) dHn−1(x), ∀ u ∈ BV (Ω; T ), ∀O ∈ A(Ω).

Moreover, if there exists a continuous modulus of continuity ω : [0,+∞[→ [0,+∞[ such that
ω(0) = 0 and ∣∣∣J (u,O) − J (v,O + z)

∣∣∣ � ω(|z|)Hn−1(O ∩ S∗
u ), (2.18)

whenever O ⊂ Ω , z ∈ R
n , |z| < 1

2 d(O, ∂Ω) and v(x + z) = u(x) in O, then the seminorms φ(x, ·)
are also continuous w.r.t. x ∈ Ω .
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2.7 A variant of the dominated convergence theorem

[10: p. 22] Let v, w, {vn, wn}+∞
n=1 be measurable real functions defined in O ⊂ R

n such that

|vn(x)|p � wn(x) for a.e. x ∈ O, ∀ n ∈ N, 1 � p < +∞,

and

lim
n→+∞ vn(x) = v(x), lim

n→+∞wn(x) = w(x) a.e. in O,

lim
n→+∞

∫
O

wn(x) dx =
∫
O

w(x) dx < +∞.

Then

lim
n→+∞

∫
O
|vn(x) − v(x)|p dx = 0. (2.19)

A simple application of this theorem shows the following.

LEMMA 2.2 Let W : R → [0,+∞[, p0 � 2, as in (1.15b). Then the map

v ∈ L p0(O) "→ W (v) ∈ L1(O) is continuous. (2.20)

Moreover, if v, {vn}+∞
n=1 are measurable functions such that vn → v in L1(O), then

vn → v in L p0(O) ⇔ lim
n→+∞

∫
O

W (vn(x)) dx =
∫
O

W (v(x)) dx . (2.21)

�

3. Proof of Theorems 1.1 and 1.2

Let us briefly explain the sketch of the proof, which we tried to divide into several steps, in order to
follow a possible general strategy to deal with this kind of singular perturbation problem.

First of all, we ‘embed’ the original Γ -convergence problem stated in Ω into a family of similar
problems depending also on the open sets O ∈ A(Ω): it is the standard localization technique
introduced in Section 2.2. For this set-dependent approach we study the Γ -limits F ′, F ′′ defined by

F ′(·,O) := Γ (X)- lim inf
ε↓0,ε∈E

Fε(·,O), F ′′(·,O) := Γ (X)- lim sup
ε↓0,ε∈E

Fε(·,O)

and the weaker notion of Γ -convergence as defined in Section 2.4. We already observed that
showing this kind of convergence is equivalent to showing that the Γ -limit of subsequences,
whenever it exists, is uniquely determined and does not depend on the particular choice of
subsequence.

So, we shall deal with such a limit F ′, F ′′, and F(u,O), and we will prove that

1. F ′(u, ·), F ′′(u, ·) are finite iff u belongs to BV (O; T ): this step requires suitable lower and
upper bounds for Fε;
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2. F(u, ·) is a measure, in the sense of Section 2.2; this property is the heart of our procedure
and follows by a careful subadditivity estimate, which also plays a fundamental role in the
steps 5 and 6 below.

3. F ′(·;O), F ′′(·,O) depend only on u = �(u): here we employ a simple approximation lemma.
4. F(u, ·) coincides with F ′(u, ·) and F ′′(u, ·) on Lipschitz subsets and, in particular, on Ω .
5. F can be represented by an anisotropic integral functional on the discontinuity set of u, by

the general results detailed in Section 2.6.
6. The surface integrand φ can be identified in a simple parallelepipedal geometry as the cost of

a transition through a planar surface with suitable boundary conditions, and, in particular, it
is independent of E .

In Section 3.7 we will (quickly) repeat the same procedure to deal with the weak topology of L2

and we will give the sketch of the proof of Theorem 1.2.
We fix once and for all a not empty subset

E ⊂ (0,+∞), with inf E = 0

as in (2.1) and we tacitly assume that the parameter ε varies in E . We will denote by X the Hilbert
space L2(Ω;R

m) endowed with its strong topology.

3.1 Lower and upper bounds for F ′, F ′′; compactness

The following results are strictly related to Propositions 1.3 and 1.4.

LEMMA 3.1 Let u ∈ X satisfy F ′(u,O) < +∞, with O ∈ A(Ω). Then the restriction to O of
u := �(u) belongs to BV (O; T ), and

F ′(u,O) �
∫

S∗u∩O
φ(x, νu(x)) dHn−1(x) � λ0 Hn−1(S∗

u ∩O), (3.1)

where φ is defined by (1.33) and λ0 := γ0|�|−1
√

λ.

Proof. From (1.30), if �(u) = u we get easily

Fε(u,O) � Gε(u,O) :=
∫
O

(
εq(x,∇u(x)) + 1

ε
W (u(x))

)
dx; (3.2)

then we can apply [8: Theorem 3.5, Remark 3.6(a) and (b) p. 299] to get

Γ (L2(Ω))- lim
ε↓0

Gε(u,O) =
{∫

S∗u∩O φ(x, νu(x)) dHn−1(x) if u ∈ BV (O; T )

+∞ otherwise.
(3.3)

By the obvious monotonicity property of the Γ -limits and (1.31), we conclude. �

The following well-known compactness result underlies the previous lower bound and
justifies (1.41). Here the function

Z(s) := 2
∫ s

0

√
W (τ ) dτ (3.4)
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plays a fundamental role. Let us remark that

Z is strictly monotone, continuous, with its inverse Z−1; (3.5)

moreover, there exist constants c0, c1 > 0 such that

c0
(|s|p0/2+1 − 1

)
� |Z(s)| � c1

(|s|p0/2+1 + 1
)
, with 2 � p0/2 + 1 � p0. (3.6)

LEMMA 3.2 Let O be an open subset of Ω and {uε}ε∈E be a family in X such that

M := lim inf
ε↓0,ε∈E

Fε(uε,O) < +∞; (3.7)

then there exist an infinitesimal decreasing sequence D ⊂ E and a function u ∈ BV (O; T ) such
that, setting uε := �(uε)

lim
ε↓0,ε∈D

Fε(uε;O) = M, lim
ε↓0,ε∈D

uε = u in L p0(O), (3.8)

where p0 is the growth exponent of W defined in (1.15b). In particular, if uε → u in X then
uε → �(u) in L p0(O).

Proof. Let us first observe that, by (3.2), we get

Fε(uε,O) �
∫
O

2
√

W (uε(x))q(x,∇uε(x)) dx �
∫
O

√
q(x,∇zε(x)) dx, (3.9)

where zε(x) := Z(uε(x)). Let D′ ⊂ E be an infinitesimal decreasing sequence satisfying the first
equation of (3.8); (1.31) entails

√
q(x,∇z(x)) �

√
λ

|�| |∇z(x)|,

and by (3.6) we deduce that

zε = Z(uε), ε ∈ D′ (3.10)

is bounded in BV (O). By a well-known argument [27], we can find another infinitesimal decreasing
subsequence D ⊂ D′ such that

lim
ε↓0,ε∈D

uε = u, lim
ε↓0,ε∈D

zε = z a.e. and in L1(O).

Since

Fε(uε,O) � 1

ε

∫
O

W (uε(x)) dx,

we also deduce

lim
ε↓0,ε∈D

∫
O

W (uε(x)) dx =
∫
O

W (u(x)) dx = 0.

Applying Lemma 2.2 we also get the strong convergence in L p0(O). �
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COROLLARY 3.3 Let O ∈ A(Ω) and let uε ∈ X with Fε(uε,O) < +∞, ε ∈ E satisfy

uε := �(uε) → u ∈ L2(O), lim inf
ε↓0,ε∈E

Fε(uε,O) < +∞.

Then uε, u ∈ L p0(O) and

lim
ε↓0

‖uε − u‖L p0 (O)

1 + Fε(uε;O)
= 0. (3.11)

LEMMA 3.4 Let u ∈ L2(Ω) satisfy u|O ∈ BV (O; T ) for a Lipschitz open subset O ⊂ Ω . Then
there exists u ∈ X such that �(u) = u and F ′′(u,O) < +∞ with

F ′′(u,O) �
∫

S∗u∩O
φ̄(x, νu(x)) dHn−1(x) � Λ0 Hn−1(S∗

u ∩O), (3.12)

where φ̄ is defined by (1.37) and Λ0 := γ0|�|−1
√

Λ.

Proof. Let us fix a Lipschitz function

α = (α1, . . . , αm) : Ω → R
m, such that �(α) ≡ 1,

and for every function v ∈ L2(Ω) let us define

vα(x) := v(x)α(x);
of course, v|O ∈ H1(O) ⇒ vα|O ∈ H1(O;R

m)

∇vα = α ⊗∇v + v∇α ∈ M
m×n cf. the footnote in Proposition 1.1.

Cauchy–Schwarz inequality (3.34) yields, for every δ > 0,

Fε(vα,O) =
∫
O

(
εq(x,∇vα(x)) + 1

ε
W (v(x))

)
dx

=
∫
O

(
εq

(
x, α(x) ⊗∇v(x) + v(x)∇α(x)

) + 1

ε
W (v(x))

)
dx

� (1 + δ)Gε
α(v,O) + (1 + δ−1)εΛ‖∇α‖2

L∞(Ω;Mm×n)
‖v‖2

L2(O)
, (3.13)

where we defined

Gε
α(v,O) :=

∫
O

(
εq

(
x, α(x) ⊗∇v(x)

) + 1

ε
W (v(x))

)
dx .

Now we choose u ∈ L2(Ω;R
m) such that the restriction of u := �(u) to O belongs to BV (O; T );

by [8: Theorem 3.5, Remark 3.6(a) and (b) p. 299] we can find uε ∈ L2(Ω) such that, as ε ↓ 0,

uε → u in L2(Ω), Gε
α(uε,O) →

∫
S∗u∩O

φα(x, νu(x)) dHn−1(x)
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where

φα(x, ξ) := γ0(q(x, α(x) ⊗ ξ))1/2.

We observe that

lim
ε↓0

uε
α = u α in L2(Ω;R

m) and �(u α) = u = �(u) a.e. in O

so that, since ‖uε‖L2(Ω) are uniformly bounded, by (3.13) we get

F ′′(u α,O) � lim sup
ε↓0

Gε
α(uε,O) � (1 + δ)

∫
S∗u∩O

φα(x, νu(x)) dHn−1(x),

and finally

F ′′(u α,O) �
∫

S∗u∩O
φα(x, νu(x)) dHn−1(x).

In this formula, we are free to choose α among the R
m-valued Lipschitz real functions of Ω , with

the constraint �(α) = 1. The uniform estimate∣∣φα1(x, ξ) − φα2(x, ξ)
∣∣ �

√
q(x, (α1(x) − α2(x)) ⊗ ξ)

�
√

Λ
∣∣α1(x) − α2(x)

∣∣, ∀ x ∈ Ω , ξ ∈ S
n−1,

the X -lower semicontinuity of F ′′, and a standard approximation argument ensure that we can also
choose every α ∈ C0(Ω;R

m). Finally, an application of Lusin’s Theorem to Ω endowed with the
bounded Borel measure

µ(B) := Hn−1(B ∩ S∗
u ∩O) + |B|

allows the choice of an arbitrary bounded Borel function α : Ω → R
m . We choose u := u α and α

such that

q(x, α ⊗ νu(x)) = q̄(x, νu(x)) ∀ x ∈ S∗
u ∩O.

�

3.2 Additivity properties

In this section we want to study some natural properties of the functionals O ∈ A(Ω) "→
F ′(u,O), F ′′(u,O), as defined in (3.13) for a fixed u ∈ X . The first one is very simple, and follows
by the general theory of [15: Proposition 16.12].

LEMMA 3.5 For every u ∈ X the map O "→ F ′(u,O) is superadditve, i.e. ∀O1,O2 ∈ A(Ω)

O1 ∩O2 = ∅ ⇒ F ′(u,O1 ∪O2) � F ′(u,O1) + F ′(u,O2). (3.14)
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The subadditivity of F ′′ is much more delicate to prove, even in the weak form introduced in
paragraph 2.2. The main calculations, which are a careful modification of the techniques introduced
by [16: Appendix] and [4: Lemma 3.2, Step 2], are collated in the following lemma.

LEMMA 3.6 Let O1,O′
1,O2 be open subsets of Ω with O1 � O′

1, and suppose we are given two
families uε, vε ∈ L2(Ω;R

m), ε ∈ E , such that∫
O′

1

|uε(x)|2 dx +
∫
O2

|vε(x)|2 dx � C (3.15)

uε := �(uε) → u in L2(O′
1),

vε := �(vε) → v in L2(O2)
u ≡ v in O′

1 ∩O2. (3.16)

Then there exist wε ∈ L2(Ω;R
m) which are a pointwise convex combination of uε and vε such that

wε ≡ uε in O1,

wε ≡ vε in O2 \O′
1,

lim
ε↓0,ε∈E

�(wε) = u in L2(O′
1 ∩O2), (3.17)

and

lim sup
ε↓0,ε∈E

Fε(wε,O1 ∪O2) � lim sup
ε↓0,ε∈E

(Fε(uε,O′
1) + Fε(vε,O2)) (3.18)

lim inf
ε↓0,ε∈E

Fε(wε,O1 ∪O2) � lim inf
ε↓0,ε∈E

(Fε(uε,O′
1) + Fε(vε,O2)). (3.19)

Moreover, if

uε ⇀ u in L2(O′
1;R

m),

vε ⇀ v in L2(O2;R
m),

u ≡ v in O′
1 ∩O2, (3.20)

then we can also ask that

wε ⇀ w ∈ L2(Ω;R
m), w = u in O′

1, w = v in O2. (3.21)

REMARK 3.7 If the convergences in (3.20) are strong, i.e.

uε → u in L2(O′
1;R

m),

vε → v in L2(O2;R
m),

u ≡ v in O′
1 ∩O2, (3.22)

then it is easy to see that (3.21) also holds in the stronger form

wε → w ∈ L2(Ω;R
m), w = u in O′

1, w = v in O2, (3.23)

since, by construction, wε is a pointwise convex combination of uε and vε. �

Proof. First of all, we observe that the interesting case is O1 ∩ O2 �= ∅; we denote by gε, hε the
sums

gε := Fε(uε,O′
1) + Fε(vε,O2),

hε := ‖uε − u‖L p0 (O′
1)
+ ‖vε − v‖L p0 (O2)
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and we know by Corollary 3.3 that

σε := hε

1 + gε
vanishes as ε ↓ 0. (3.24)

Moreover, it is not restrictive to assume that lim infε↓0,ε∈E gε < +∞ and gε < +∞ for every diff in .pdf

ε ∈ E ;
†

in particular, we can suppose that uε ∈ H1(O′
1;R

m) and vε ∈ H1(O2;R
m). We know that∫

O′
1∪O2

W (w(x)) dx = 0, where w ≡ u in O′
1, w ≡ v in O2;

so that, introducing the modulus of continuity

ρ(s) := sup

{∫
O′

1∩O2

W (z(x)) dx : ‖z − w‖L p0 (O′
1∩O2)

� s

}
,

By the result quoted in paragraph 2.5, we know that lims↓0 ρ(s) = 0.

Let Q be a fixed Lipschitz open set, such that

O1 ⊂ Q � O′
1,

and let us fix ε ∈ E and a positive integer k. As in [16: p. 216], let

d := 1
2 d(Q, ∂O′

1) > 0

be the half-distance between Q and the boundary of O′
1, let us choose other k open sets

Q = Q0 � Q1 � · · · � Qk � O′
1

separated from each other by a distance of width r := d/k, and k Lipschitz real functions

α1, . . . , αk : Ω → [0, 1],
in the following way:

Q j := {x ∈ Ω : d(x, ∂Q) < jr},
α j |Q j−1

≡ 1, α j |Ω\Q j
≡ 0, α j |Q j\Q j−1

(x) = j − d(x,Q)/r .

In particular

‖∇α j‖L∞(Ω) � r−1 = k/d,

∫
Ω
|∇α j (x)| dx � r−1|Q j+1 \Q j | � CO1 (3.25)

where CO1 is a constant depending on the Lipschitz character of O1. We define

w j (x) := α j (x)uε(x) + (1 − α j (x))vε(x), j = 1, . . . , k,

†
Otherwise we set

wε ≡ uε in O1, wε ≡ vε in Ω \O1, if gε = +∞
and we restrict our attention to E ′ := {ε ∈ E : gε < +∞}.
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and we want to estimate Fε(w j ,O1 ∪O2). We consider the partition covering O1 ∪O2 given by

Q j , O2 ∩ (Q j+1 \Q j ), O2 \Q j+1

and we observe that w j ∈ H1(O′
1 ∩O2),

w j ≡ uε on Q j ⊃ O1, w j ≡ vε on O2 \Q j+1 = O2 \Q j+1

and

∇w j = α j∇uε + (1 − α j )∇vε + ∇α j (uε − vε), in O2 ∩ (Q j+1 \Q j ).

By the convexity of q and the Cauchy inequality (3.34), for every δ > 0 and a.e. x ∈ O′
1 ∩ O2 we

get

q(x,∇w j ) � (1 + δ)[α j q(x,∇uε) + (1 − α j )q(x,∇vε)]

+ Λ(1 + δ−1)
k2

d2
|uε − vε|2

and therefore

∫
O1∪O2

q(x,∇w j ) dx � (1 + δ)

(∫
O′

1

q(x,∇uε) dx +
∫
O2

q(x,∇vε) dx

)
(3.26)

+ Λ (1+δ−1)

d2 k2
∫

O2∩(Q j+1\Q j )

|uε − vε|2 dx .

On the other hand, we easily obtain

∫
O1∪O2

W̃ (w j ) dx �
∫
O′

1

W̃ (uε) dx +
∫
O2

W̃ (vε) dx +
∫

O2∩(Q j+1\Q j )

W̃ (w j ) dx .

Summing up these contributions and calling c0 := Λ(1+δ−1)

d2 , we obtain

Fε(w j ,O1 ∪O2) � (1 + δ)(Fε(uε,O′
1) + Fε(vε,O2))

+
∫

O2∩(Q j+1\Q j )

(
c0 εk2|uε − vε|2 + 1

ε
W̃ (w j )

)
dx .

Since j can be arbitrarily chosen between 1 and k, we deduce that there exists j∗ ∈ {1, . . . , k} such
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that

Fε(w j∗ ,O1 ∪O2) � (1 + δ)(Fε(uε,O′
1) + Fε(vε,O2))

+ 1

k

k∑
j=1

∫
O2∩(Q j+1\Q j )

(
c0 εk2|uε − vε|2 + 1

ε
W̃ (w j )

)
dx

� (1 + δ)gε +
∫

O2∩O′
1

(
c0 εk|uε − vε|2 + 1

εk
W̃ (w∗)

)
dx

� (1 + δ)gε + c1 εk + 1

εk

∫
O2∩O′

1

W̃ (w∗) dx

� (1 + δ)gε + c1 εk + 1

εk
ρ
(‖w∗ − u‖L p(O2∩O′

1)

)
,

where we defined c1 := 2c0C and w∗ as

w∗ ≡ w j on Q j+1 \Q, w∗ = �(w∗).

We observe that w∗(x) is always a convex combination of uε and vε, therefore

‖w∗ − w‖L p(O2∩O′
1)

� hε.

Choosing k as the integer part of ε−1√ρ(ωε) + ε and wε := w j∗ , we obtain (cf. (3.24))

Fε(wε,O1 ∪O2) � (1 + δ)gε + 2c1
√

ρ(hε) + ε

� (1 + δ)gε + 2c1
√

ρ(σ εgε) + ε.

Since σε → 0 as ε ↓ 0, we deduce that

lim sup
ε↓0,ε∈E

Fε(wε,O1 ∪O2) � (1 + δ) lim sup
ε↓0,ε∈E

gε

lim inf
ε↓0,ε∈E

Fε(wε,O1 ∪O2) � (1 + δ) lim inf
ε↓0,ε∈E

gε.

As δ > 0 is arbitrary, we obtain (3.18).
It remains to show that (3.20) entails (3.21). By the first two properties of (3.17), it is sufficient

to prove the weak convergence of wε in L2(O′
1 ∩ O2;R

m). We will apply the result of the next
lemma, where we define αε as the function α j∗ corresponding to the index j∗ introduced in the
previous calculations. �
LEMMA 3.8 Let uε, vε, ε ∈ E , be two families weakly converging to the same limit u = v in
L2(O;R

m), and let αε : O → [0, 1] be a family of Lipschitz functions such that∫
O
|∇αε(x)| dx � A ∀ ε ∈ E . (3.27)

Then, setting

wε = αεuε + (1 − αε)vε, (3.28)

wε weakly converges to w = u = v in L2(O;R
m).
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Proof. From (3.28) we get

wε − w = αε(uε − u) + (1 − αε)(vε − v).

Since uε − u ⇀ 0 and vε − v ⇀ 0 in L2(O;R
m), our thesis follows if we show that for every test

function ζ ∈ L2(O) the family

{αζ : α : O → [0, 1], |∇α|(O) � A} is compact in L2(O).

But this property is an easy consequence of the fact that every sequence of functions with values in
[0, 1] and uniformly bounded total variation possesses an a.e. convergent subsequence. �

Let us write some important consequences of Lemma 3.6 (cf. Section 2.2).

COROLLARY 3.9 The local functional F ′′ is weakly subadditive.

Proof. For a fixed u ∈ X , choose uε, vε ∈ X converging to u in X . Applying Lemma 3.6 we can
find wε ∈ X converging to u such that

lim sup
ε↓0,ε∈E

Fε(wε,O1 ∪O2) � lim sup
ε↓0,ε∈E

(Fε(uε,O′
1) + Fε(vε,O2)) (3.29)

� lim sup
ε↓0,ε∈E

Fε(uε,O′
1) + lim sup

ε↓0,ε∈E
Fε(vε,O2). (3.30)

It follows immediately that

F ′′(u,O1 ∪O2) � F ′′(u,O′
1) + F ′′(u,O2).

�

Combining Corollary 3.9 and Lemma 3.5 we prove the third step described at the beginning of this
section.

COROLLARY 3.10 Let us assume that there exists the Γ (X)-limit (as defined in Section 2.4)

F = Γ (X)- lim
ε↓0,ε∈E

Fε.

Then F is a measure in the sense of Section (2.2).

3.3 The Γ -limits depend only on u = �(u)

Now we want to show that the Γ -limits F ′, F ′′ (and therefore F) depend only on �(u). This fact
follows by the following simple approximation lemma.

LEMMA 3.11 Let w ∈ X be satisfying �(w) = 0 a.e. in the open set O ⊂ Ω ; then there exists a
family wε ∈ X , ε ∈ E , such that

�(wε) = 0 in O, lim
ε↓0

(
ε

∫
O

q(x,∇wε(x)) dx +
∫
Ω
|wε − w |2 dx

)
= 0. (3.31)
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Proof. Of course, we simply have to define wε in O, since we can set wε ≡ w in Ω \ O. Then
we can invoke the density of H1(O;R

m) in L2(O;R
m) to find w̃ε ∈ H1(O;R

m) satisfying (3.31).
Taking wε := P(w̃ε), P : R

m → R
m being the orthogonal projection on the kernel of �, we

conclude. �

PROPOSITION 3.12 Let O ∈ A(Ω) and u, v be two functions in X satisfying

u = �(u) = �(v) = v a.e. in O.

Then we have

F ′(u,O) = F ′(v,O), F ′′(u,O) = F ′′(v,O). (3.32)

Proof. Let {uε}ε∈E be a family such that

lim
ε↓0

uε = u in X . (3.33)

By applying the previous lemma to the function w := v − u we find wε ∈ X ∩ H1(O;R
m), ε ∈ E ,

such that �(wε) = 0 in O and (3.31) holds.
Setting vε := uε + wε, we obtain �(vε) = �(uε), limε∈E vε = v in X . In order to bound

q(x,∇wε), let us recall that Cauchy–Schwarz inequality yields for every x ∈ Ω

q(x, a + b) � (1 + δ)q(x, a) + (1 + δ−1)q(x, b), ∀ a, b ∈ M
m×n, ∀δ > 0. (3.34)

In particular, we have (the inequality is trivial if uε|O �∈ H1(O;R
m))

Fε(vε;O) � (1 + δ)Fε(uε;O) + (1 + δ−1)ε

∫
O

q(x,∇wε) dx,

which implies, by passing to the limit as ε ↓ 0 and taking δ arbitrarily small,

lim inf
ε↓0

Fε(vε) � lim inf
ε↓0

Fε(uε), lim sup
ε↓0

Fε(vε) � lim sup
ε↓0

Fε(uε).

Recalling definitions (2.5a) and (2.5b), we get

F ′(v;O) � F ′(u;O), F ′′(v;O) � F ′′(u;O).

Changing the role of u and v , we conclude. �

By this result, the following definition is well posed.

DEFINITION 3.13 For every u ∈ L2(Ω), O ∈ A(Ω), we set

G ′(u,O) := F ′(u,O), G ′′(u,O) := F ′′(u,O)

whenever u = �(u) a.e. in O. Moreover, if Fε Γ (X)-converges to F as ε ↓ 0, then we set

G(u,O) := F(u,O), ∀ u ∈ L2(Ω), O ∈ A(Ω). (3.35)
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We summarize some of the properties of G ′, G ′′ which have just been proved, in the following
lemma (cf. paragraph 2.2).

LEMMA 3.14 The functionals G ′, G ′′ : L2(Ω) × A(Ω) → [0,+∞] are local, increasing, and
lower semicontinuous; G ′ is superadditive, G ′′ is weakly subadditive, and G (when it exists) is a
measure. Moreover, they satisfy for every Lipschitz open set O ∈ A(Ω)

G ′(u,O) < +∞ ⇔ G ′′(u,O) < +∞ ⇔ u|O ∈ BV (O; T ) (3.36)

and, for the same constants λ0,Λ0 defined above,

λ0 Hn−1(S∗
u ∩O) � G ′(u,O) � G ′′(u,O) � Λ0 Hn−1(S∗

u ∩O). (3.37)

Finally, (3.36) and (3.37) hold also for G and every open set.

3.4 Lipschitz subsets

Let us start with a simple modification of Corollary 3.9.

COROLLARY 3.15 Let u ∈ X and O1,O′
1,O2 ∈ A(Ω) with O1 � O′

1. Then

F ′(u,O1 ∪O2) � F ′(u,O′
1) + F ′′(u,O2) (3.38a)

and

F ′(u,O1 ∪O2) � F ′′(u,O′
1) + F ′(u,O2). (3.38b)

Proof. Equation (3.38a) follows as for the previous corollary, by substituting (3.29) with

lim inf
ε↓0,ε∈E

Fε(wε,O1 ∪O2) � lim inf
ε↓0,ε∈E

(Fε(uε,O′
1) + Fε(vε,O2)) (3.39)

� lim inf
ε↓0,ε∈E

Fε(uε,O′
1) + lim sup

ε↓0,ε∈E
Fε(vε,O2). (3.40)

Analogously, (3.38b) follows by the other estimate

lim inf
ε↓0,ε∈E

Fε(wε,O1 ∪O2) � lim inf
ε↓0,ε∈E

(Fε(uε,O′
1) + Fε(vε,O2)) (3.41)

� lim sup
ε↓0,ε∈E

Fε(uε,O′
1) + lim inf

ε↓0,ε∈E
Fε(vε,O2). (3.42)

�
COROLLARY 3.16 If O ∈ A(Ω) is Lipschitz then F ′(·,O) and F ′′(·,O) coincide with their
inner regular envelopes (cf. Section 2.3); in particular, if there exists the Γ (X)-limit of Fε, then
F ′(·,O) = F ′′(·,O).

Proof. Let us first consider the case of the superior Γ -limit F ′′: we fix O ∈ A(Ω) and we choose
O1 � O2 � O, O1 Lipschitz. By the weak subadditivity and Lemma 3.4, we get, for every u ∈ X ,
with u|O ∈ BV (O; T ) for u := �(u)

F ′′(u,O) � F ′′(u,O2) + F ′′(u,O \ Ō1)

� F ′′(u,O2) + Λ0 Hn−1(S∗
u ∩ (O \O1)).
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Therefore,

F ′′(u,O) � sup
O2�O

F ′′(u,O2) + c′′Hn−1(S∗
u ∩ (O \O1)).

As O1 � O an arbitrary Lipschitz open set, we conclude. The proof of the corresponding result for
F ′ follows by the same argument and applying (3.38a). �

3.5 Representation results

In this section we apply the additivity result of Corollary 3.10 and the representation results of [2]
quoted in Section 2.6 to obtain formula (1.24) of Theorem 1.1, assuming the existence of the Γ (X)-
limit F . As before, we set X := L2(Ω;R

m).
First of all we prove a continuous dependence result under small perturbations of the open set

which is related to (2.18). Let us first recall that, by the continuity assumptions on q, there exists a
continuous function ωq : [0,+∞[→ [0,+∞[ such that ωq(0) = 0 and

|q(x, a) − q(y, a)| � ωq(|x − y|)q(x, a), ∀ x, y ∈ Ω , a ∈ M
m×n .

LEMMA 3.17 For every O � Ω there exists a continuous function ω : [0,+∞[→ [0,+∞[ such
that ω(0) = 0 and

|G ′(u,O1) − G ′(v,O1 + z)| � ω(|z|)Hn−1(O1 ∩ S∗
u ),

whenever O1 ⊂ O, z ∈ R
n , |z| < 1

2 d(O, ∂Ω) and v(x + z) = u(x) in O1. The same property holds
also for G ′′.

Proof. Let us observe that for every w ∈ H1(O;R
m) ∩ L p0(O;R

m), w z(x) := w(x − z), we have

|Fε(w,O) − Fε(w z,O + z)| = ε

∣∣∣ ∫
O

(
q(x,∇w(x)) − q(x + z,∇w(x))

)
dx

∣∣∣
� ω(|z|)

∫
O

εq(x,∇w(x)) dx � ω(|z|)Fε(w,O).

Now we choose u ∈ BV (Ω; T ), δ > 0, and uε ∈ X , ε ∈ E , such that

uε → u, in X, �(u) = u, lim inf
ε∈D

Fε(uε,O) � G ′(u,O) + δ.

Choosing z ∈ R
n with |z| < 1

2 d(O, ∂Ω), vε(x) = uε(x − z), we deduce

G ′(v,O + z) − G ′(u,O) � ω(|z|) lim inf
ε∈D

Fε(uε,O) + δ

� ω(|z|)(G ′(u,O) + δ) + δ

� δ + ω(|z|)(δ + Λ0 Hn−1(S∗
u ∩O)).

As δ > 0 is arbitrary, and changing the role of u and v, we complete the proof for the lower Γ -limits;
an analogous argument covers the case of G ′′. �



ANISOTROPIC ENERGIES ARISING IN THE CARDIAC BIDOMAIN MODEL 245

COROLLARY 3.18 Let assume that there exists the Γ (X)-limit F of Fε as ε ↓ 0 in E , and let us
set, as usual, G(u, ·) = F(u, ·) whenever u = �(u). Then there exists a continuous family of norms
φ(x, ·), x ∈ Ω , such that for every u ∈ BV (Ω; T ) and O ∈ A(Ω)

G(u,O) =
∫

S∗u∩O
φ(x, νu(x)) dHn−1(x). (3.43)

Proof. We have simply to apply the result quoted in Section 2.6 to G : L2(Ω) × A(Ω), which
is local, lower semicontinuous, a measure in the sense of Section 2.2, and satisfies (2.17) by
Lemma 3.14; in order to check also (2.18), we simply observe that

G(u,O) = sup
O1�O

G ′(u,O1)

and we apply Corollary 3.17. �

3.6 Characterization of φ

The last step in the proof of Theorem 1.1 is to show that φ is independent of E : if this is the case,
we will obtain the Γ -convergence of the whole family Fε, ε > 0. We will prove this uniqueness by
showing 1.25.

Admissible boundary conditions First of all, we address the questions posed by the following
definition.

DEFINITION 3.19 Let us fix O ∈ A(Ω) and u ∈ L2(Ω) ∩ BV (O; T ), and let us consider a subset
H of H1(O;R

m) such that

H + H1
0 (O;R

m) ⊂ H . (3.44)

We say that H is X -admissible for u if for every family uε, ε ∈ E , converging to u in X , �(u) = u
in O, it is possible to find wε ∈ X converging to w such that �(w) = u in O and

wε|O ∈ H, lim sup
ε↓0,ε∈E

Fε(wε,O) � lim sup
ε↓0,ε∈E

Fε(uε,O).

REMARK 3.20 The previous property can also be reformulated in terms of the indicator function
IH of H , which is defined by

IH (u) =
{

0 if u ∈ H,

+∞ otherwise.

Then H is admissible for u if the Γ (X)-limits as ε ↓ 0 in E of Fε(·,O) and Fε(·,O)+IH coincide
at every u ∈ X with �(u) = u in O. �

The next result, which is an abstract formulation of some ideas hidden in [4: Lemma 3.2], provides
a useful tool when we want to ‘change the boundary conditions’ of a local minimizing sequence.
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PROPOSITION 3.21 Let O be an open subset of Ω , let u ∈ X be a function such that the restriction
of u = �(u) to O belongs to BV (O; T ), and let H ⊂ H1(O;R

m) satisfy (3.44). If there exists a
family vε ∈ H , ε ∈ E , converging to v in L2(Ω;R

m) such that

�(v) = u in O, inf
Q�O

{
lim sup

ε↓0
Fε(vε,O \Q)

}
= 0, (3.45)

then H is admissible for u.

Proof. Let us fix δ > 0, an open set Qδ,Q′
δ such that Qδ � Q′

δ � O, and a family vε as in the
statement of the proposition satisfying

lim sup
ε↓0

Fε(vε,O \Q) � δ, sup
x∈Qδ

d(x, ∂O) � δ.

We consider a family uε, ε ∈ E , as in Definition 3.19 (we first consider the case of the strong
convergence) and we apply Lemma 3.6 with

O1 := Qδ, O′
1 := Q′

δ, O2 := O \Qδ .

We find a family wε,δ such that

lim
ε↓0,ε∈E

wε,δ = u in X, uniformly w.r.t. δ,

wε,δ − vε ∈ H1
0 (O;R

m) so that wε,δ|O ∈ H, and

lim sup
ε↓0,ε∈E

Fε(wε,δ,O) � lim sup
ε↓0,ε∈E

Fε(uε,Q′
δ) + lim sup

ε↓0,ε∈E
Fε(vε,O \Qδ)

� lim sup
ε↓0,ε∈E

Fε(uε,O) + δ.

Defining now wε := wε,ε we conclude the proof. �

Characterization of φ when q is independent of x As we shall see at the end of this section, it
is not difficult to reduce the problem to the case of a single quadratic form q, independent of x ;
therefore, for the time being we assume that

q(x, a) ≡ q(a), constant w.r.t. x ∈ Ω . (3.46)

LEMMA 3.22 Let φ be the function defined in Corollary 3.18, ν ∈ S
n−1, and Q be an admissible

set for ν as in (1.20). Then

φ(ν) � inf

{∫
Q

f ε(u,∇u) : u ∈ B(Q;R
m), ε > 0

}
. (3.47)

Proof. It is not restrictive to assume Q ⊂ Ω ; we introduce the functions

jε(t) :=



−1 if t < −ε

t/ε if − ε � t � ε

1 if t > ε,

j0(t) := sign(t), (3.48)
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and we define

u(x) := 1
2 (s− + s+) + 1

2 (s+ − s−) j (〈x, ν〉). (3.49)

By (3.43) we easily have

G(u, Q) = G ′(u, Q) = G ′′(u, Q) = φ(ν). (3.50)

The thesis follows if we show that B(Q;R
m) is admissible for u, as Definition 3.19 and

Corollary 3.16 yield

inf

{
lim sup

ε↓0
Fε(uε, Q) : uε → u in X, uε ∈ B(Q;R

m)

}
= G ′′(u, Q) = φ(ν).

This relation obviously implies (3.47).
In order to prove the admissibility of B(Q;R

m), we apply Proposition 3.21: we choose two
points s± ∈ R

m such that �(s±) = s± and we set

vε(x) := 1
2 (s− + s+) + 1

2 (s+ − s−) jε(〈x, ν〉)
which obviously belong to B(Q;R

m). Choosing, e.g., Qρ := ρQ, ρ < 1, a simple calculation
shows that

Fε(vε, Q \ Qρ) � Hn−1(Q \ Qρ)(Λ|s+ − s−|2 + max(W (s−), W (s+))).

Letting ρ ↑ 1, we get (3.45). �

Now we prove the opposite inequality: this concludes the proof of Theorem 1.1 in the constant
coefficient case.

LEMMA 3.23 Let φ, ν, Q be as in the previous lemma, let u ∈ L2(Ω;R
m) be a function of

B(Q;R
m), and ε0 > 0. Then

φ(ν) �
∫

Q
f ε0(u(x),∇u(x)) dx . (3.51)

Proof. Let s−, s+ be the (constant) traces of u on the basis Q±, which by definition of B(Q;R
n)

satisfy �(s±) = s±, and for every r ∈ R let us denote by r∗ the unique element of [−1/2, 1/2[ such
that r − r∗ is an integer.

Denoting a point x ∈ R
n with its coordinates r1, . . . , rn with respect to the basis

η1, . . . , ηn−1, η of R
n introduced in (1.20), we extend u to the whole R

n by setting

u(r1, . . . , rn) :=




s− if rn � a,

u(r∗1 , r∗2 , . . . , r∗n−1, rn) if a < rn < b,

ss+ if rn > b.

Therefore, u is the unique H1
loc(R

n;R
m) extension which is periodic along the directions

η1, . . . , ηn−1 and constant outside the strip a < rn < b.
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We fix an odd integer k = 2h + 1, h ∈ N, and we define

uk := u(kx) which belongs to B(Q;R
m), too.

It is easy to see that ∫
Q

q(∇uk(x)) dx =
∫

Q
k2q(∇u(kx)) dx

=
∫

k Q
k2q(∇u(y))k−n dy

= kn−1
∫

Q
k2−nq(∇u(y)) dy

= k
∫

Q
q(∇u(x)) dx

and ∫
Q

W (uk(x)) dx =
∫

Q
W (u(kx)) dx

=
∫

k Q
W (u(y))k−n dy

= kn−1
∫

Q
W (u(y))k−n dy

= k−1
∫

Q
W (u(y)) dy.

Therefore,

Fε(uk, Q) = Fεk(u, Q).

Choosing now k := k(ε) as the (odd) integer part of ε0/ε, ε ∈ E , it is obvious that

Fε(uk(ε), Q) = Fεk(ε)(u, Q) → Fε0(u, Q),

uk(ε) → u := 1
2 (s− + s+) + 1

2 (s+ − s−) j (〈x, ν〉) (3.52)

in L2(Q;R
m) as ε ↓ 0, j being defined in (3.48). On the other hand, we have as in (3.50),

φ(ν) = F ′(u, Q) � lim inf
ε↓0,ε∈E

Fε(ukε , Q).

�
COROLLARY 3.24 Let us suppose that q(·, a) ≡ q(a) is constant; then the family Fε(u, ·), ε > 0,
Γ (X) converges to the functional G(�(u), ·), where

G(u,O) :=
∫

S∗u∩O
φ(νu(x)) dHn−1(x),

where φ is defined as in Theorem 1.1. Moreover, if O is Lipschitz, we have

F ′(u,O) = F ′′(u,O) = G(�(u),O).
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Characterization of φ in the general case We conclude now the proof of an analogous result in
the non-constant coefficient case, by adapting the same arguments of Lemma 3.17.

LEMMA 3.25 For every x0 ∈ Ω , let us denote by Fε
x0

Fε
x0

(u,O) :=
∫
O

f ε(x0, u(x),∇u(x)) dx,

and by Fx0 its Γ -limit. For every Lipschitz open set O and w ∈ L2(Ω;R
m) we have

|F ′(w,O) − Fx0(w,O)| � ϑ(O)Hn−1(S∗
w ∩O), (3.53)

where ϑ(O) := Λ0 supx∈O ω(|x − x0|). The same bound holds also for the superior Γ -limit F ′′.

Proof. As in Lemma 3.17 we get for every w ∈ H1(O;R
m) ∩ L p0(O;R

m)

|Fε(w,O) − Fε
x0

(w,O)| = ε

∣∣∣ ∫
O

(
q(x,∇w(x)) − q(x0,∇w(x))

)
dx

∣∣∣
� ϑ(O)

∫
O

εq(x0,∇w(x)) dx � ϑ(O)Fε
x0

(w,O).

The proof then follows as in Lemma 3.17 �

COROLLARY 3.26 The family Fε(u, ·) Γ (X) converges to the functional G(�(u), ·), where

G(u,O) :=
∫

S∗u∩O
φ(x, νu(x)) dHn−1(x),

where φ is defined as in Theorem 1.1. Moreover, if O is Lipschitz, we have

F ′(u,O) = F ′′(u,O) = G(�(u),O).

Proof. Let us assume that there exists the Γ -limit as ε ↓ 0 in E ; by the representation result of
Corollary 3.18, choosing

u := 1
2 (s− + s+) + 1

2 (s+ − s−) j (〈x − x0, ν〉)
we easily have

φ(x0, ν) = lim
ρ↓0

F(u, ρQ)

ρn−1
.

Combining this asymptotic behaviour with the estimates of the previous lemma, we conclude. �

3.7 Γ -convergence in the weak topology

The aim of this section is to prove Theorem 1.2, by adapting the arguments of the previous
paragraphs. Therefore, we fix a constant C > 0, and we consider the topological space

Xw :=
{

u ∈ L2(Ω;R
m) : ‖u‖L2(Ω;Rm ) � C

}
(3.54a)
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endowed with the coarsest topology which makes continuous the map

u ∈ Xw → �(u) ∈ L2(Ω) with its weak topology. (3.54b)

In other words, as ε ↓ 0, ε ∈ E

uε → u in Xw ⇔ uε := �(uε) ⇀ �(u) = u in L2(Ω).

It is not difficult to see that Xw is not an Hausdorff space but nevertheless it satisfies the second
countability axiom, i.e. it has a countable base of open sets. In fact, a set Y ⊂ Xw is open iff �(Y )

is open in the weak topology of the ball of radius. C |�| of L2(Ω). Therefore, the definitions and the
properties presented in Section 2.2–2.4 make sense also for this choice of Xw, and we can consider
the family of local functionals F, Fε : Xw × A(Ω) → [0,+∞], ε > 0, in this different setting.

Let us observe that a function u ∈ L2(Ω) whose norm is bounded by C mini=1,... ,m |�i |−1

surely belongs to the image of Xw through �; in particular, we are dealing in the limit with functions
u ∈ BV (Ω; T ) which satisfy

‖u‖L∞(Ω) � smax := max
(|s−|, |s+|), ‖u‖L2(Ω) � smax |Ω |1/2,

so that BV (Ω; T ) ⊂ �(Xw) whenever C is sufficiently large.

Proof. In order to prove Theorem 1.2 we have simply to check that the various statements of
Section 3 also hold with X replaced by Xw. We limit ourselves to notice the relevant differences.

•Section 3.1: all these results do not deal with convergence, so they hold also in the new setting;
in Lemma 3.4 we have only to specify that

‖u‖L∞(Ω) � C |Ω |−1/2 min
i=1,... ,m

|�i |−1.

•Lemma 3.6 is already in the form we need; observe that if uε, vε ∈ Xw then also wε belongs to
Xw.

•Corollary 3.9 also holds, since if uε, vε → u in Xw then (3.15) is obviously satisfied and (3.16)
can be deduced by the convergence in Xw and the compactness provided by Lemma 3.2.

•Section 3.3 is not necessary in this context, since the topology on Xw forces F ′ and F ′′ to depend
only on �(u), since they have to be lower semicontinuous in Xw.

•Section 3.4 and 3.5 hold without any change.

•Definition 3.19 makes sense also for Xw and Proposition 3.21 is still true: we only have to
observe that if we know only the weak convergence of �(uε) to �(u) then the family wε defined
in the proof of 3.21 converges to u in Xw. In fact it is uniformly bounded by the constant C in
L2(O;R

m) and, by construction,

wε ≡ uε on every set Q such that inf
x∈Q

d(x,O) > ε.

Choosing test functions compactly supported in O, we easily deduce the weak convergence of
�(wε) to �(u).

•Lemma 3.22, 3.23, and their x-dependent version hold without any change.

This concludes the proof in the weak convergence case. �
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4. Γ -convergence of the non-local functionals Gε for the ‘bidomain’ formulation.

From now on we will assume that Fε have the particular ‘bidomain structure’ outlined in (B1–B6),
which we recall here for case of reference. Moreover we slightly modify our original notation in
order to conform it to the previous section:

u1 := ui , A1 := Ai , q1 := qi , . . . ;
u2 := −ue, A2 := Ae, q2 := qe, . . . .

Therefore,

Ω ⊂ R
3 is the physical region occupied by the heart (B1)

A1, A2 : Ω → M
3×3are

symmetric, positive definite, continuous conductivity tensors,
(B2)

u := (u1, u2) represents the couple

of the intra- and (the opposite of) the extracellular potentials,
(B3)

Fε(u) := ε

∫
Ω

(〈A1∇u1,∇u1〉 + 〈A2∇u2,∇u2〉) dx

+ 1

ε

∫
Ω

W (u1 + u2) dx,

(B4)

�(u) := u1 + u2 = u, defines the transmembrane potential, (B5)

and

q1,2(x, ξ) := 〈A1,2(x)ξ, ξ〉, ∀ ξ ∈ R
3,

q(x, a) := q1(x, a1) + q2(x, a2), a = (a1, a2)
T ∈ M

2×3.
(B6)

4.1 Dual a priori estimates for smooth coefficients

We first consider the case of two matrices A1, A2 with Lipschitz coefficients, i.e.

∃ L � 0 : |Ai (x) − Ai (y)| � L|x − y| ∀ x, y ∈ Ω , i = 1, 2. (4.1)

At the end of this section we will show how the results can be extended to continuous coefficients.
Let us first consider the minimum problem (1.38) defining the functional Q(·,O), O being at

least a Lipschitz and connected open subset of Ω ; we want to define a canonical choice among its
minimizing solutions.

LEMMA 4.1 For every u ∈ H1(O) there exists a unique element ū := ū(u,O) ∈ H1(O;R
2) such

that

ū1 + ū2 = u, Q(u,O) =
∫
O

q(x,∇ū(x)) dx, and (4.2)∫
O

ū1 dx =
∫
O

ū2 dx . (4.3)
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It satisfies the equations (here i ′ := 2, 1 if respectively i = 1, 2)∫
O
〈A∇ūi ,∇w〉 dx =

∫
O
〈Ai ′∇u,∇w〉 dx ∀w ∈ H1(O). (4.4)

Moreover, if

O is convex or of class C1,1 (4.5)

there exists a constant C > 0 (depending only on O, λ,Λ, L) such that

‖ū‖L2(O;R2) � C(‖u‖L2(O) + ‖u|∂O‖∗), (4.6)

where, for every g ∈ L2(∂O)

‖g‖∗ := sup

{∫
∂O

g ∂n̄ζ dHn−1 : ζ ∈ H2(O), ‖ζ‖H2(O) � 1

}
. (4.7)

Proof. The existence of ū(u)
†

is a straightforward application in H1(O;R
2) of the Poincaré

inequality and of the Lions–Stampacchia Theorem on the closed affine subspace Ku defined by

Ku :=
{

w ∈ H1(O;R
2) : w1 + w2 = u,

∫
O

w1 dx =
∫
O

w2 dx

}
;

in fact, ū(u) is characterized by

ū ∈ Ku,
∑

i=1,2

∫
O
〈Ai∇ūi ,∇wi 〉 dx = 0 ∀w ∈ K0.

Since w ∈ K0 ⇔ w1 = −w2,
∫
Ok

w1 dx = 0, we get∫
O
〈A1∇ū1,∇w〉 dx =

∫
O
〈A2∇ū2,∇w〉 dx, ∀w ∈ H1(O).

Finally, by adding
∫
O〈A2∇ū1,∇w〉 dx to both the members, we obtain (4.4) for i = 1; the other

equation can be derived analogously.
In order to prove the L2(O)-estimate when O satisfies (4.5), we use a standard duality argument.

We set

ū∗
i := ūi − 1

|O|
∫
O

ūi (x) dx

and we observe that the L2-estimate of ū follows from (4.2),(4.3) if we are able to control the
L2-norms of ū∗

i .
So, let us consider the unique variational solution w̄ ∈ H1(O), with

∫
O w(x) dx = 0 (we

assumed that O is connected), of the problem∫
O

A(x)∇w̄(x)∇ζ(x) dx =
∫
O

ū∗
i (x)ζ(x) dx, ∀ ζ ∈ H1(Ω). (4.8)

†
This does not require (4.1) but only (1.14ab).
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Since O is convex or C1,1 and (4.1) holds, then it is well known that w̄ ∈ H2(O) and (see e.g. [20],
Theorems 2.2.2.3 and 3.2.1.2)

‖w‖H2(O) � C‖ū∗
i ‖L2(Ω). (4.9)

Inserting (4.8) into (4.4) and choosing ζ := ūi , we get after an integration by part∫
O
|ū∗

i |2 dx =
∫
O
〈A∇w̄∇ūi 〉 dx =

∫
O
〈Ai ′∇u,∇w̄〉 dx =

−
∫
O

uLi ′w̄ dx +
∫

∂O
u ∂n̄i ′ w̄ dHn−1 � C(‖u‖L2(O) + ‖u|∂O‖∗)‖w̄‖H2(Ω).

By (4.9) we conclude. �

4.2 Γ -limit of Gε

The previous estimates in the case (4.1) are useful to derive compactness properties for Gε, defined
by (1.39).

LEMMA 4.2 Let O ∈ A(Ω) be Lipschitz, let {uε}ε>0 be a family in L2(Ω) such that

M := lim inf
ε→0+

Gε(uε,O) < +∞, (4.10)

and let ūε := ū(uε,O). Then there exists an infinitesimal decreasing sequence D ⊂ E and a
function u ∈ BV (O; T ) such that

lim
ε↓0,ε∈D

Gε(uε,O) = M, lim
ε↓0,ε∈D

uε = u in L p0(O), (4.11)

where p0 is the growth exponent of W defined in (1.15b). Moreover, if (4.5) holds, we can choose
D in such a way that

lim
ε↓0,ε∈D

uε|∂O = g weakly in L2(∂O) and lim
ε↓0,ε∈D

ūε = ū in L2(O;R
2) (4.12)

where ū solves (i = 1, 2, i ′ := 2, 1 respectively)∫
O

ūi L(ζ ) dx =
∫
O

u Li ′(ζ ) dx +
∫

∂O
g ∂n̄i ′ ζ dHn−1(x), (4.13)

for every test function ζ ∈ H2(O) with ∂n̄ζ = 0 on ∂O.

Proof. The first part of the lemma follows directly by Lemma 3.2 since Gε(uε) = Fε(ūε). In
order to show (4.12), we recall that, by the trace estimates for W 1,1-functions, the trace of zε =
Z(uε), ε ∈ D, (cf. (3.4),(3.6)) on ∂O are bounded in L1(∂O); therefore,

uε|∂O are bounded in L2(∂O) if ε ∈ D.

Up to a possible extraction of another subsequence, we deduce also the first relation of (4.12). It
remains to show the second one, as (4.13) follows from (4.4) by a simple integration by parts.

Since uε strongly converges to u in L2(O) as ε ↓ 0, ε ∈ E , the a priori estimate (4.6) and the
next lemma yield the strong convergence of ūε. �
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LEMMA 4.3 Let us assume that gε ⇀ g in L2(∂O) as ε ↓ 0, ε ∈ D; then

lim
ε↓0,ε∈D

‖gε − g‖∗ = 0. (4.14)

Proof. Here the only difficulty arises when O is not C1,1, so we can suppose it is a convex set. Now
we fix δ ∈ (0, 1/2) and we observe that, by the standard trace results, the map

g ∈ L2(∂O) "→ Lg ∈ (H2−δ(O))′, 〈Lg, ζ 〉 :=
∫

∂O
g ∂n̄i ζ dHn−1

is bounded and satisfies

‖g‖∗ = ‖Lg‖(H2(O))′ . (4.15)

On the other hand, H2(Ω) is densely and compactly embedded into H2−δ(O), so that the dual of
H2−δ(O) is compactly imbedded into the dual of H2(O). Since Lgε weakly converge to Lg in the
first space, they also strongly converge in the second one; by (4.15), they converge w.r.t. the norm
‖ · ‖∗. �
COROLLARY 4.4 If O ∈ A(Ω) is Lipschitz, then

uε → u in D′(O) ⇒ lim inf
ε↓0

Gε(uε,O) � G(u,O).

Proof. We can assume G(u,O) < +∞. By the previous compactness result, we can assume that
uε → u in L2(O) and, if O is also of class C1,1, we can find ūε ∈ L2(O;R

2) such that

Gε(uε,O) = Fε(ūε,O), ūε → ū in L2(Ω;R
2), �(ū) = u.

Applying Theorem 1.1, we get

lim inf
ε↓0

Fε(ūε,O) � F(ū,O) = G(u,O).

If O is only Lipschitz, we apply the previous result to all the open subsets O1 � O of class C1,1,
and we find

lim inf
ε↓0

Gε(uε,O) � lim inf
ε↓0

Gε(uε,O1) � G(u,O1).

Taking the supremum w.r.t. O1, we conclude. �
The proof of the first part of Theorem 1.5 and its corollary quickly follows: by the previous

corollary, we know that for every Lipschitz open set O

G ′(u,O) � G(u,O) = F(u,O) ∀u : �(u) = u;
on the other hand, as

Gε(u,O) � Fε(u,O) whenever u = �(u),

it is easy to see that

G ′′(u,O) � inf{F ′′(u,O) : �(u) = u} = F(u,O) = G ′(u,O).
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4.3 Strong convergence of the traces and the potentials for optimal sequences

In order to conclude the proof of the second part of Theorem 1.5 we need the following two
Lemmata.

LEMMA 4.5 Let uε be a bounded family in L2(Ω;R
2) satisfying

�(uε) → u in L2(Ω), lim sup
ε↓0

Fε(uε,Ω) � G(u,Ω).

Then for every Lipschitz open set O � Ω we have

lim sup
ε↓0

Fε(uε,O) � inf{G(u,O′) : O � O′}, (4.16a)

lim sup
ε↓0

Fε(uε,Ω \O) � inf{G(u,Ω \O′′) : O′′ � O}. (4.16b)

In particular, recalling the definition of Ωρ given by (2.15), we have

lim
ρ↓0

lim sup
ε↓0

Fε(uε,Ωρ) = 0. (4.17)

Proof. Let us only check (4.16b), since the first formula follows by the same arguments.
Let us choose O1,O2 ∈ A(Ω) such that

O1 � O2 � O.

We easily have

lim sup
ε↓0

Fε(uε,Ω \O) + G(u,O1) � lim sup
ε↓0

Fε(uε,Ω \O) + lim inf
ε↓0

Fε(uε,O1)

� lim sup
ε↓0

Fε(uε, (Ω \O) ∪O1)

� lim sup
ε↓0

Fε(uε,Ω)

� G(u,Ω).

From these inequalities we get

lim sup
ε↓0

Fε(uε,Ω \O) � G(u,Ω) − G(u,O1) � G(u,Ω \O2).

As O2 � O is arbitrary, we obtain (4.16b).
In order to prove (4.17), we call

Ω ′
ρ := {x ∈ Ω : d(x, ∂Ω) > ρ}, Ωρ = Ω \ Ω

′
ρ

and we observe that if ρ, σ are sufficiently small,

ρ < σ ⇒ Ω ′
σ � Ω ′

ρ;
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by the previous formula

lim sup
ε↓0

Fε(uε,Ωρ) � G(u,Ωσ ), ∀ σ > ρ > 0

and finally

lim
ρ↓0

lim sup
ε↓0

Fε(uε,Ωρ) � lim
σ↓0

G(u,Ωσ ) = 0.

�

LEMMA 4.6 Let Ω be of class C1,1 (or convex) and let uε be a family in L2(Ω) satisfying (1.46).
Then the traces of uε on ∂Ω strongly converge to the trace of u in L2(∂Ω).

Proof. We already know that the traces of uε are uniformly bounded in L2(∂Ω). We introduce the
auxiliary functions zε := Z(uε) (cf. (3.4) and we observe that, for every ρ > 0

∫
Ωρ

|∇zε| dx � |�|√
λ

Fε(ūε,Ωρ),

where ūε := ūε(uε,Ω) are defined from uε as in Lemma 4.1. By applying the previous lemma, we
get

lim
ρ↓0

lim sup
ε↓0

∫
Ωρ

|∇zε| dx � |�|√
λ

lim
ρ↓0

lim sup
ε↓0

Fε(ūε,Ωρ) = 0.

Lemma 2.1 therefore entails

zε|∂Ω → z|∂Ω in L1(∂Ω).

By (3.5) and (3.6), we deduce that the inverse function Z−1 of Z can be bounded by

|Z−1(s)| � c2
√

1 + |s|, for some constant c2 > 0.

Therefore

uε|∂Ω = Z−1(zε)|∂Ω → Z−1(z)|∂Ω in L2(∂Ω)

and it is obvious that

Z−1(z)|∂Ω = u|∂Ω .

�

The final part of Theorem 1.5 follows now by another application of Lemma 4.2.
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4.4 Γ -convergence of Gε in the case of continuous coefficients

When the matrix-valued functions A1, A2 : Ω → M
3×3 are only continuous, the dual a priori

estimate (4.6) is no longer true, in general, and the weak formulation (1.47a, b) does not make
sense. However, we can prove the Γ -convergence of Gε to G by a simple approximation result.

First of all, we define the distance between two continuous and positive definite quadratic forms
q1, q2 satisfying (1.14a, b) by

d(q1, q2) := sup
x∈Ω ,a∈Mm×n\{0}

∣∣q1(x, a) − q2(x, a)
∣∣

|a|2 .

The basic fact is contained in the following lemma.

LEMMA 4.7 For i = 1, 2 let q i be satisfying (1.14a, b) and let Fε
i , Fi be the corresponding

functionals defined by (1.17) and Theorem 1.1. Then for every v ∈ L2(Ω;R
2) we have

|Fε
1 (v) − Fε

2 (v)| � d(q1, q2)

λ
min{Fε

1 (v), Fε
2 (v)}, (4.18)

|F1(v) − F2(v)| � d(q1, q2)

λ
max{F1(v), F2(v)}. (4.19)

Proof. The first inequality follows easily by

|Fε
1 (v) − Fε

2 (v)| � ε

∣∣∣ ∫
Ω

(
q1(x,∇v(x)) − q2(x,∇v(x))

)
dx

∣∣∣
� εd(q1, q2)

∫
Ω
|∇v(x)|2 dx

� d(q1, q2)

λ
min{Fε

1 (v), Fε
2 (v)}.

In order to check the other one, we take a family vε ∈ L2(Ω;R
2) such that

vε → v in L2(Ω;R
2), lim

ε↓0
Fε

1 (vε) = F1(v).

We obtain

F2(v) − F1(v) � lim inf
ε↓0

(Fε
2 (vε) − Fε

1 (vε))

� d(q1, q2)

λ
lim inf

ε↓0
min{Fε

1 (vε), Fε
2 (vε)}

� d(q1, q2)

λ
F1(v).

Changing the role of F1 and F2 we conclude. �

We can now complete the last step of the proof of Theorem 1.5 for a continuous family of
quadratic forms.
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LEMMA 4.8 Let q satisfy (1.14a, b) and let Gε be defined as in (1.39); if

uε ⇀ u in L2(Ω)

then

lim inf
ε↓0

Gε(uε) � G(u).

Proof. It is not restrictive to assume that

lim sup
ε↓0

Gε(uε) = M < +∞.

Let ūε = ū(uε,Ω) be defined as in Lemma 4.1 so that

Gε(uε) = Fε(ūε)

and let q∗ : Ω × M
2×3 → R be another family of quadratic forms with Lipschitz coefficients

satisfying (1.14aa, b) and (4.1). We denote by Fε∗ , Gε∗ the corresponding functionals defined
by (1.17),(1.39) respectively, and by F∗, G∗ their Γ -limits as in Theorems 1.1, 1.2 and 1.5; we
also take

ū∗ ∈ L2(Ω;R
2) such that �(u∗) = u, G∗(u) = F∗(ū∗).

Applying the previous lemma we get

Gε(uε) = Gε(uε) − Gε∗(uε) + Gε∗(uε)

� Fε(ūε) − Fε∗ (ūε) + Gε∗(uε)

� −d(q, q∗)Fε(ūε) + Gε∗(uε)

= −d(q, q∗)Gε(uε) + Gε∗(uε).

Passing to the limit as ε ↓ 0 we get

lim inf
ε↓0

Gε(uε) � G∗(u) − Md(q, q∗)

= F(ū∗) + (G∗(u) − F(ū∗)) − Md(q, q∗)
= G(u) + (F∗(ū∗) − F(ū∗)) − Md(q, q∗)
� G(u) − d(q, q∗) max

{
F∗(ū∗), F(ū∗)

} − Md(q, q∗)
� G(u)(1 − Cd(q, q∗))

where C is a positive constant depending on G(u), λ,Λ. Since by standard approximation results
we can find a Lipschitz continuous family of quadratic forms q∗ arbitrarily close to q w.r.t. the
distance d, we conclude. �

5. A strict estimate from below.

This last section contains the proof of Theorem 1.8 for the ‘bidomain model’.
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As we have seen in Section 3, it is not restrictive to assume A1, A2 independent of the space
variable x . In the next lemma, we show a simple but important algebraic relation between q and q .
Let us recall that A is the symmetric and positive definite matrix

A = A1 A−1 A2 = A2 A−1 A1 = (
A−1

1 + A−1
2

)−1.

LEMMA 5.1 Let A1, A2, A := A1 + A2 be symmetric and definite positive matrices; let q, q and
q be the quadratic forms

q(ξ) := 〈A1ξ1, ξ1〉 + 〈A2ξ2, ξ2〉 ∀ ξ = (ξ1, ξ2) ∈ R
n × R

n

q(ξ) = 〈Aξ, ξ〉, q(ξ) := 〈Aξ, ξ〉 ∀ ξ ∈ R
n .

If Ri := A−1 Ai , then for every choice of ξ ∈ R
n × R

n , ξ := ξ1 + ξ2, we have

q(ξ) = q(ξ) + q(R1ξ1 − R2ξ2). (5.1)

Proof. We simply have

q(ξ) − q(ξ) = 〈A1ξ1, ξ1〉 + 〈A2ξ2, ξ2〉 − 〈A(ξ1 + ξ2), ξ1 + ξ2〉
= 〈(A1 − A)ξ1, ξ1〉 + 〈(A2 − A)ξ2, ξ2〉 − 2〈Aξ1, ξ2〉.

We observe that

A1 − A = A1 − A1 A−1 A2 = A1 A−1 A − A1 A−1 A2

= A1 A−1(A − A2) = A1 A−1 A1,

and analogously

A2 − A = A2 A−1 A2.

Substituting into the previous equation we get

q(ξ) − q(ξ) = 〈A1 A−1 A1ξ1, ξ1〉 + 〈A2 A−1 A2ξ2, ξ2〉 − 2〈Aξ1, ξ2〉.
Now we observe that

〈A1 A−1 A1ξ1, ξ1〉 = 〈(A1 A−1)A(A−1 A1)ξ1, ξ1〉
= 〈A(A−1 A1)ξ1, (A−1 A1)ξ1〉 = q(R1ξ1),

and

〈A2 A−1 A2ξ2, ξ2〉 = q(R2ξ2), 〈Aξ1, ξ2〉 = 〈Aξ2, ξ1〉 = 〈(A1 A−1)A(A−1 A2)ξ2, ξ1〉 = 〈AR2ξ2, R1ξ1〉.
Combining these three relations we get the thesis. �

Let us now fix a direction ν ∈ S
n−1 and an admissible cylinder Q = Σ (a, b; η) w.r.t. ν, as in

definition (1.20a–e); we will also introduce the corresponding infinitely stretched cylinders

Q∞ := Σ (−∞,∞; η), Q∞+ := Σ (0,∞; η), Q∞− := Σ (−∞, 0; η). (5.2)
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Since we are dealing with unbounded domains, we modify slightly the definition of B(Q;R
2) as

C(Q∞;R
2) :=

{
u ∈ H1

loc(Q∞;R
2) :

∫
Q∞

|∇u(x)|2 dx < +∞, (5.3)

∃C > 0 : u(x ± tη) ≡ s± if x ∈ Σ , t � C
}

.

LEMMA 5.2 Let φ : S
n−1 → R be the function defined as in (1.25); then there exists a family

uk ∈ C(Q∞;R
2), uk = uk

1 + uk
2, such that

φ(ν) � lim sup
k→+∞

∫
Q∞

(q(∇vk(x)) + W (vk(x)))dx, (5.4)

and, for uk := Z(uk) (cf. (3.4)∫
Q∞−

√
q(∇zk) dx =

∫
Q∞+

√
q(∇zk) dx ∀ k ∈ N. (5.5)

Proof. From Theorem 1.1 we know that there exists a family of functions vε ∈ B(Q;R
2), ε > 0,

such that

φ(ν) = lim
ε↓0

ε

∫
Q

q(vε(x)) dx + 1

ε

∫
Q

W (vε(x)) dx .

Let sε± be the (constant) traces of vε on the basis Σ± of the cylinder Q; by definition, the sum of
their coordinates is exactly s±. We extend vε to the whole Q∞ by setting

vε(x) =
{

sε− if x ∈ Q∞− \ Q,

sε+ if x ∈ Q∞+ \ Q.

It is easy to see that vε ∈ C(Q∞;R
2). We set

wε(y) := vε(εy), ∀ y ∈ ε−1 Q∞,

so that ∇wε(x) = ε∇vε(εx). We easily find

ε

∫
Q∞

q(∇vε(x)) dx + 1

ε

∫
Q∞

W (vε(x)) dx =

εn+1
∫

ε−1 Q∞
q(∇vε(εy)) dy + εn−1

∫
ε−1 Q∞

W (vε(εy)) dy =

εn−1
(∫

ε−1 Q∞
q(∇wε(y)) dy +

∫
ε−1 Q∞

W (wε(y)) dy

)
.

Now we choose ε := (2k + 1)−1, k ∈ N, and we observe that ε−1 Q∞ = (2k + 1)Q∞ is the disjoint
union (up to a negligible set) of

(2k + 1)Q∞ =
⋃

max | jm |�k

(
Q∞ +

n−1∑
m=1

jmηm

)
.



ANISOTROPIC ENERGIES ARISING IN THE CARDIAC BIDOMAIN MODEL 261

Therefore there exist integers j∗1 , j∗2 , . . . , j∗n−1 between −k and k and a cylinder

Q∗ := Q∞ +
n−1∑
m=1

j∗mηm,

such that

εn−1
(∫

ε−1 Q∞
q(∇wε(y)) dy +

∫
ε−1 Q∞

W (wε(y)) dy

)

�
(∫

Q∗
q(∇wε(y)) dy +

∫
Q∗

W (wε(y)) dy

)
.

Finally we set

ũk(x) := wε

(
x −

n−1∑
m=1

j∗mηm

)

which satisfy (5.4), i.e.

φ(ν) � lim sup
k→+∞

∫
Q∞

(q(∇ũk(x)) + W (ũk(x))) dx .

Now we have only to modify ũk in order to satisfy (5.5) too. Let us remark that, by (3.9), z̃k :=
Z(ũk) ∈ W 1,1

loc (Q∞) and∫
Q∞

√
q(∇ z̃k) dx �

∫
Q∞

(q(∇ũk(x)) + W (ũk(x))) dx .

We introduce the function

βk(s) :=
∫ s

−∞

(∫
Σ

√
q(∇ z̃k(x + sη)) dHn−1(x)

)
ds

which is continuous, monotone and satisfies

βk(−∞) = 0, βk(+∞) = |〈η, ν〉|
∫

Q∞

√
q(∇ z̃k) dx .

It is obvious that there exists real numbers sk such that βk(sk) = βk (+∞)
2 ; choosing uk(x) :=

ũk(x + skη) we conclude. �

COROLLARY 5.3 Let φ : S
n−1 → R be the function defined as in (1.25), ν ∈ S

n−1, and Q∞ be an
admissible infinite cylinder for ν. Then

φ(ν) � I (ν) := inf

{∫
Q∞

q(∇u(x)) + W (u(x)) dx : u ∈ C(Q∞;R
2)

}
.
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In order to conclude the proof of Theorem 1.8, we want to show that if φ(ν) = φ(ν), then ν is a
common eigenvector of A1, A2. Let us denote by ‖ · ‖q the norm associated to q ,

‖ξ‖q :=
√

q(ξ).

Let us choose η as

η := Aν

q(ν)
, so that 〈η, ν〉 = 1, (5.6)

and let us consider q-projection along ν

Π ξ := 〈Aξ, ν〉
q(ν)

ν = 〈ξ, η〉 ν, Π ′ξ := ξ − Π ξ . (5.7)

Of course we have

q(ξ) = q(Π ′ξ) + q(Π ξ) = q(Π ′ξ) + |〈Aξ, ν〉|2
q(ν)

= q(Π ′ξ) + |〈ξ, η〉|2 q(ν).

LEMMA 5.4 Let us choose η := Aν as in (5.6) and u ∈ C(Q∞;R
2) with z := Z(u); then

φ(ν) �
∫

Q∞
‖Π (∇z)‖q dx �

(∫
Q∞

‖Π (∇u)‖2
q + W (u)

)
dx

�
∫

Q∞
q(∇u(x)) + W (u(x)) dx;

in particular, φ(ν) � I (ν).

Proof. We easily have∫
Q∞

(q(Π (∇u)) + W (u)) dx �
∫

Q∞
2
√

q(Π (∇u))W (u) dx

=
∫

Q∞
‖Π (∇u)‖q

∣∣Z ′(u)
∣∣ dx

=
∫

Q∞
‖Π (∇z)‖q dx .

Now we observe that (5.7) yields

‖Π (∇z)‖q = |〈∇z, η〉| ‖ν‖q = |∂ηz| ‖ν‖q

so that by (2.16) and the definition of φ in (1.33)∫
Q∞

‖Π (∇z)‖q dx = ‖ν‖q

∫
Q∞

|∂ηz| dx

� ‖ν‖q

∫
Σ

(Z(s+) − Z(s−)) dHn−1(x)

= 2
√

q(ν)

∫ s+

s−

√
W (s) ds = φ(ν).

�
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COROLLARY 5.5 Let uk ∈ C(Q∞;R
2), with zk := Z(uk), be a family satisfying (5.4) and (5.5) as

in Lemma 5.2; if φ(ν) = φ(ν), then we have

lim
k↑+∞

∫
Q∞

q(Π ′(∇uk)) + q(R1(∇uk
1) − R2(∇uk

2)) dx = 0 (5.8)

and

lim
k↑+∞

∫
Q∞−

‖∇zk‖q dx = lim
k↑+∞

∫
Q∞+

‖∇zk‖q dx (5.9)

= 1
2 lim

k↑+∞

∫
Q∞

‖∇zk‖q dx = 1
2φ(ν) = 1

2 I (ν).

�

PROPOSITION 5.6 Let us assume that φ(ν) = φ(ν); then ν is a common eigenvector of A1 and A2.

Proof. Let us denote by Σt the t-section of Q∞:

Σt := Σ + tη.

Let us observe that (5.5), (2.16), and the definition of C(Q∞;R
2) entail for every t > 0

‖ν‖q

∫
Σt

|zk(x) − Z(s+)| dHn−1(x) � ‖ν‖q

∫
Q∞+

∣∣∂ηzk
∣∣ dx

�
∫

Q∞+
‖∇zk‖q dx

� 1
2

∫
Q∞

(q(∇uk) + W (uk)) dx;

analogously, for t < 0

‖ν‖q

∫
Σt

|zk(x) − Z(s−)| dHn−1(x) � 1
2

∫
Q∞

(q(∇uk) + W (uk)) dx .

By standard compactness results, we can extract a suitable subsequence (still denoted by uk) such
that

uk → u, zk → z = Z(u) in L1
loc(Q∞) and a.e., with u, z ∈ W 1,1

loc (Q∞).

By lower semicontinuity, recalling Ri = A−1 Ai , we get

Π ′(∇v) = 0, A1∇v1 = A2∇v2. (5.10)

By the first relation of (5.10) we deduce the existence of a function f ∈ W 1,1
loc (R) such that

u(x) = f (〈x, ν〉), z = Z( f (〈x, ν〉)) a.e. in Q∞.
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On Σt we have

z(y) = z(x + tη) = Z( f (t〈η, ν〉)) = Z( f (t))

so that

‖ν‖q |Z( f (t)) − Z(s+)| � 1
2φ(ν) = 1

2‖ν‖q(Z(s+) − Z(s−))

and in particular

|Z( f (t)) − Z(s+)| � 1
2 (Z(s+) − Z(s−)) ∀t > 0.

Analogously,

|Z( f (t)) − Z(s−)| � 1
2 (Z(s+) − Z(s−)) ∀t < 0.

If f (t) ≡ f0 would be a constant function, then

Z( f0) = 1
2 (Z(s+) + Z(s−)), and therefore s− < f0 < s+

but this is not possible, since∫
Q∞

W (u(x)) dx =
∫ +∞

−∞
W ( f (t)) dt < +∞.

Thus f is not constant. From the second relation of (5.10) we get

∇v1 = R2∇v = f ′(〈x, ν〉)R2ν, ∇v2 = R1∇v = f ′(〈x, ν〉)R1ν.

Since f is not constant, we deduce that R2ν and R1ν are parallel to ν, i.e.

A1ν, A2ν are parallel to A−1ν.

�
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