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Abstract

We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe
the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of
primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order
expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics
decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the
next. In the same manner, different scales within the inertial range can behave independently at any given time or
location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative
cascade rates for short periods of time, as reported earlier for individual samples of data.
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1. Introduction

Although there remains a strong tendency to describe solar
wind fluctuations as a collection of waves of varying modes
(Coleman 1966; Belcher & Davis 1971; Bale et al. 2005;
Roberts et al. 2015, 2017), there is a growing recognition that
solar wind fluctuations are interacting and evolving nonlinearly
in a manner that is most often described as turbulent (Coleman
1968; Matthaeus & Goldstein 1982; Smith 2009; Matthaeus &
Velli 2011; Narita et al. 2011; Bruno & Carbone 2013).
Whether the turbulence is analogous to hydrodynamic (HD)
turbulence, more correctly described as interacting waves
(so-called “weak turbulence theory”), or a hybrid of the two
remains a topic of debate (Goldreich & Sridhar 1995; Bale
et al. 2005; Sahraoui et al. 2009, 2010; Narita et al. 2011;
Smith et al. 2012; Alexandrova et al. 2013; Roberts et al.
2015, 2017).

While the precise dynamics responsible for the turbulent
evolution of interplanetary fluctuations remains a source of
debate, the identities of the spectral subranges are generally
agreed upon. At the largest scales, which are typically
distances greater than 4.5×106 km, and spacecraft-frame
frequencies fsc<10−4 Hz at 1 au, variations in the measured
plasma parameters are thought to originate with the Sun in
combination with dynamics like compression and large-scale
shear (e.g., Matthaeus & Goldstein 1986; Zank et al. 1996;
Smith et al. 2001a, 2006b, 2011; Tessein et al. 2011). This
variability, or fluctuation at the largest scales, is seen to be long-
lived on the scale of multiple au. This includes wind shear that is
derived from stream interactions, shocks, and coronal mass
ejections (CMEs). This is typically called the “energy-containing
range” and is the source of energy that forms the spectrum at
higher frequencies (Matthaeus et al. 1994).

At smaller scales, the fluctuations are argued to originate
within the solar wind by nonlinear processes that remake the
fluctuation energy according to the nonlinear dynamics of
turbulence. Any energy at these scales that may have originated
at the Sun is argued to be converted via nonlinear processes
into some other form of fluctuation (other wave modes,

turbulent eddies, etc.). Scales smaller than the energy-contain-
ing range and greater than the proton inertial scale or proton
Larmor radius form the inertial range that is the most
extensively studied portion of the interplanetary spectrum
(e.g., Belcher & Davis 1971; Matthaeus & Goldstein 1982;
Tessein et al. 2009; MacBride et al. 2010; Bruno & Carbone
2013). It is the dynamics of these and smaller scales that are
most in question at the present time. The scale that marks the
transition between the energy-containing and inertial scales is
generally associated with the correlation scale.
The turbulent cascade of energy through the inertial range of

energy-conserving dynamics results in dissipation at scales
comparable to the proton gyroradius or ion inertial scale
(Behannon 1978; Goldstein et al. 1994; Leamon et al. 1998a,
1998b, 1998c, 1999, 2000; Smith et al. 2001b, 2006a;
Hamilton et al. 2008; Markovskii et al. 2008; Bourouaine
et al. 2012; Chen et al. 2014). This forms the dissipation range,
which is more correctly now called the “ion dissipation range.”
The rate of energy cascade in the inertial range can be
measured directly by the application of the mixed, third-order
structure functions (Politano & Pouquet 1998a, 1998b;
MacBride et al. 2005, 2008; Sorriso-Valvo et al. 2007; Marino
et al. 2008, 2011, 2012; Stawarz et al. 2009; Coburn et al.
2012; Hadid et al. 2017). The measured energy cascade leads to
dissipation at ion scales, which depends on solar wind
conditions, and is in good agreement with the measured
heating of the thermal protons (Vasquez et al. 2007; Stawarz
et al. 2009; Coburn et al. 2012; Hadid et al. 2017). Likewise,
turbulent transport theory that is based on turbulence scaling
laws has reproduced the observed heating rate for thermal
protons from 0.3 to 100 au (Zhou & Matthaeus 1990a, 1990b;
Matthaeus et al. 1994, 1999; Zank et al. 1996, 2012; Smith
et al. 2001a, 2006b; Isenberg et al. 2003, 2010; Breech et al.
2005, 2008, 2009a, 2009b; Isenberg 2005; Usmanov &
Goldstein 2006; Ng et al. 2010; Oughton et al. 2011; Usmanov
et al. 2011, 2012, 2014, 2016; Adhikari et al. 2015a, 2015b). At
still smaller scales, there is evidence of a second inertial range
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and, ultimately, energy dissipation by electron dynamics (e.g.,
Alexandrova et al. 2009).

The common theories for the dynamics of energy cascade in
a turbulent fluid are based upon the power spectrum of the
fluctuations and suggest a steady-state cascade of energy
through the inertial range (Kolmogorov 1941a; Iroshnikov
1964; Kraichnan 1965; Shebalin et al. 1983; Higdon 1984;
Goldreich & Sridhar 1995; Boldyrev 2005, 2006; Smith 2009).
However, these theories are all based on specific dynamical
processes. A more general description of the turbulent cascade
is available from third-moment theory, which is derivable from
basic statistical properties (homogeneity, incompressibility,
scale separation, and isotropy or another geometry). The
derivable third-moment expressions yield a correct analysis of
the turbulent cascade regardless of the underlying physical
processes. Third-moment theory yields an expected linear
function of measurement lag (separation) when the turbulence
is stationary that is consistent with the same value of energy
transport at all scales within the inertial range. Recent
examination of the third-order structure functions that describe
the energy cascade in the inertial range have revealed linear
functions of lag with strong variation between independent
samples that are separated by one or more correlation lengths of
the primitive variables (magnetic field, solar wind velocity, and
proton density; Coburn et al. 2014, 2015). The implication is
that relatively short data intervals are demonstrating a turbulent
cascade that is independent from neighboring samples.

Despite the variation, the computed third-order structure
functions for individual intervals are seen to have linear scaling
in lag over inertial-range scales as predicted by the theory. The
variability of measured third-order structure functions between
samples of a correlation length or longer is not simply a matter
of convergence due to noise in the measurement. The linear
scaling of individual samples indicates there is a true variability
of local cascade conditions. Convergence to a mean cascade
rate requires significantly more data (Podesta et al. 2009). The
observed variability of the cascade rate shows that the energy
cascade at any given time can be either positive or negative,
indicating energy transport to smaller or larger scales,
respectively. This strongly suggests that the internal dynamics
of solar wind turbulence are, in fact, spotty and perhaps
describable as intermittent, depending on the definitions that
are used (Kolmogorov 1962; Burlaga 1991; Sorriso-Valvo
et al. 1999). Sustained negative-valued energy cascade rate to
large scales would result in reduced heating of the thermal
population and transfer of energy to larger scales and bring into
question what can serve as the energy reservoir for such a
process.

This raises critical questions regarding the nature of the
energy cascade in the inertial range, the time and spatial scales
over which the cascade dynamics change, and possible
nonuniformity throughout the inertial range at any given point
in space and time. Specifically, we ask whether the energy
transport dynamics change only over scales comparable to or
greater than the correlation scale of the primitive fluctuations,
or is the scale of variation dependent upon the choice of
particular scale within the inertial range of the turbulence? In
addition, do all inertial-range scales exhibit the same energy
transport at any given point in time for a given sample of data?
One way to gain insight into these questions is to measure the
correlation scale for the cascade dynamics and determine
whether the energy cascade is correlated across different spatial

scales in the inertial range. We seek to provide insight into
these questions by computing the correlation function for the
energy cascade dynamics as described by the third-order
expressions.

2. Theory

Here we define the autocorrelation function and turbulent
cascade rates as computed from mixed, third-order expressions.

2.1. Autocorrelation Function

Correlation functions provide a measurement of the
dependence or independence of measured variables subject to
separation in space and time. Autocorrelation functions provide
the same measurement of a single variable at two different
points. Homogeneous turbulence is defined by correlation
functions that are independent of absolute location while
maintaining dependence on relative spatial separation. Sta-
tionary turbulence is defined by correlation functions that are
independent of absolute time while maintaining dependence on
relative temporal separation.
We define the autocorrelation function of an observable F to be

¢ ¢ º á ¢ ¢ ¢ + ¢ + ñ( ( ) ( )) ( ) ( )
( )

x x x x xA F t F t F t F t t, , , , , ,
1

ensem

where á ñ... ensem denotes an ensemble average of similarly
prepared samples. We will focus on fluctuations in the
observables, so we can write

d º - ( )F F F . 2mean

How the average of F, Fmean, is best computed is the subject of
some debate in the community and will be discussed below.
Assuming homogeneity, and if we assume both measurements
are made at the same point in time, A becomes a function of
relative separation only. We can then define δ x≡(x− x′) and
write

d d d d d= á ¢ ¢ + ñ( ) ( ) ( ) ( )x x x xA F F F, , 3ensem

where A(δF, δx) is assumed to no longer be a function of x′.
We will use Advanced Composition Explorer (ACE) single-

spacecraft data at a fixed cadence (the time between
measurements) of 64 s, apply the Taylor frozen-in-flow
assumption (Taylor 1938), and assume the turbulence is both
stationary and homogeneous. The Taylor assumption states that
the time to convect the measurement past the spacecraft is short
compared to the time required to evolve the measured
variables. This is equivalent to assuming that the measurements
are made at a single point in time and many points in space
even though the operational reality is the reverse of this. The
measurements are one-dimensional time series recorded along
the solar wind velocity at a prescribed cadence allowing the
above ensemble average to be replaced by a simple average
over the time series á ñ... t. If we label the data points Fn

according to their position in the time series, n=1, 2,L N, we
can rewrite Equation (3) as

å

d d d d d
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Hereafter, we will omit the subscript on á ñ... whenever the
expressions apply equally to both ensemble and time averages.
We will apply Equation (4) to a variety of measurements,
including the magnetic field, solar wind velocity, and thermal
proton density and temperature. We will also apply this
formalism to compute the correlation function and correlation
length of the third-order expressions that describe the cascade
of energy through the inertial range of the turbulence.

From this point on, we will interchangeably use the
separation according to the data index, δn, and the physical
separation given by the Taylor frozen-in-flow assumption,
δx=VSWδt, where VSW is the solar wind speed and δt is the
separation in time between two arbitrary measurements in
the time series. Note that this separation in time represents the
relative separation associated with the convection of the solar
wind over the spacecraft and does not represent two different
times in the evolution of the turbulent system. If we set the
cadence of the measurements to be τ, then δt=(δn) τ. In this
analysis, τ=64 s. From here on, we will use δt and δn
interchangeably.

There are numerous ways to apply the concept of
Equation (4). When addressing the correlation of the fluctua-
tions relative to the mean, there are currently debates on what is
an appropriate definition of “mean.” Traditionally, a relatively
large sample of 1 hr or more of data is selected, the mean of
that sample is computed, the mean is subtracted from the
individual measurements, and the resultant fluctuations are
analyzed (e.g., Matthaeus & Goldstein 1982; Hamilton et al.
2008). We will describe our approach to the calculation of the
mean in the analysis below.

It still becomes necessary to perform an ensemble average to
obtain A(δF, δn) from individual estimates, so in the past, we
subset the data into subintervals that are a correlation length or
more in duration for the primitive variables (Coburn et al. 2014,
2015) in order to obtain uncorrelated estimates for building an
ensemble of independent estimates of A. The average over the
resulting estimates yields the statistical average of A(δF, δn).
Using subintervals that are shorter than a correlation length
would imply an interdependence of sequential estimates that
would require a more complex statistical theory. Independent
estimates allow us to use Gaussian statistics to compute means
and uncertainties when addressing the ensemble average.

Several quantities of immediate use are made available by
this analysis. When addressing fluctuations, the correlation
function at zero lag is the variance of the fluctuations. Its value
can depend upon the length of data used to determine the mean
as the averaging process exchanges energy between the locally
computed mean and the fluctuation. We can quantify the
correlation scale that characterizes the distance over which the
measurement decorrelates in several ways (Batchelor 1953;
Matthaeus et al. 1999). The standard definition for the
correlation scale is the integral under the correlation function
divided by the variance,

ål d d d dº =
d =

( ) ( ) ( )A F n A F n, , 0 , 5c
i

n

N

0

where this definition is only valid if the computed lc
i is shorter

than the maximum lag of the analysis where A(δF, N);0. Some
correlation functions shown here do not extend to sufficient lags,
so we also use an alternative definition that the correlation length,
lc

e, is the lag where d l d d= =( ) ( )A F A F n e, , 0c
e and

e=2.71828.... As a practical matter, the correlation scale offers
an objective determination of the large-scale limit for the inertial
range of the primitive variables. Larger scales are more correctly
associated with the so-called “energy-containing range” that
provides the energy reservoir to drive the turbulence.

2.2. Third-order Expressions

It is possible to derive a statistical expression to compute the
rate of energy transport through the inertial range for isotropic,
homogeneous, stationary, incompressible turbulence. If we first
consider Navier–Stokes HD flow, von Karman & Howarth
(1938) demonstrated that the statistical correlations in HD flow
could be expressed in a generalized tensor form. Kolmogorov
(1941b) realized that if the flow exhibited scale separation such
that there exists an inertial range where energy transport is
energy conserving and a separate dissipation scale where
energy is dissipated, then it is possible to derive an expression
without additional approximation that yields the average rate of
energy transport through the inertial range and, hence, the rate
of energy dissipation. This is his so-called “Four-Fifths Law”
of incompressible HD. We write this in a manner to explicitly
acknowledge the ensemble average:

º + -( ) [ ( ) ( )] ( )L x L xS V V 6L L3
HD 3

and

á ñ = -( ) ( ) ∣ ∣ ( )L LS 4 5 , 73
HD HD

where VL is the component of the flow velocity along the
separation vector L and òHD is the scale-independent rate of
energy transport through the inertial range. Hereafter, we will
refer to terms like Equation (6) as “third-order expressions,” as
they are only structure functions in the formal sense when
averaged over an ensemble as in Equation (7). The ensemble
average contained in Equation (7) is critical to the definition of
òHD, as the derivation requires the application of symmetry
arguments that may not be point-wise valid. Equation (7) is
similar to a related third-order expression derived by
Yaglom (1949).
This third-order expression has been generalized for

application to magnetohydrodynamic (MHD) flow (Politano
& Pouquet 1998a, 1998b),

åº D D ( ) ( ) [ ( )] ( )L LD L Z Z 8L
i

i3
2

and

á ñ = - ( ) ( ) ( )D L L4 3 , 93 MHD

where

prº  ( ) ( )Z V B 4 10

defines the Elsässer variables (Elsässer 1950). We use the
instantaneous density to compute Z±, although in past studies
averaging over 1–12 hr samples we found no significant
difference if we used the average density to compute Z±.
The variable ZL is the component of Z along the separation
vector L, and

D º - +( ) ( ) ( ) ( )Z x L Z x Z x L, . 11

3
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In keeping with the convention of the original derivation,

  = ++ -( ) ( )2 12MHD
tot

MHD MHD

is the total energy cascade for the turbulent system.
Unlike the questions surrounding the computation of

correlation functions, Equation (9) can be evaluated without
subtraction of a local mean. The term ΔZ automatically
subtracts the local mean in a manner prescribed by a first-
principles derivation.

In order to better understand the underlying correlations of
the terms in Equation (9), we can define an expression at each
point n in the series and a fixed lag λ:

å

l l

l

= - +

´ - +



=

 

 ( ) [ ( ) ( )]

[ ( ) ( )] ( )

D n Z n Z n

Z n Z n

,

. 13

L L

i
i i

3

1

3
2

The distinction between λ above and δn in the autocorrelation
function expressions is made to facilitate the computation of
the autocorrelation function of l( )D3 . As with δn, time
separation associated with the lag in the third-order expression
is given by δt=λτ, and spatial separation is given by
L=τλVSW. We evaluate L for the purpose of computing ò by
using the value of VSW averaged for the two lagged points in
ΔZ±. In keeping with Equation (12), we can define an
averaged third-order function at each point in the data:

l l l= ++ -( ) ( ( ) ( )) ( )D n D n D n, , , 2. 143
tot

3 3

By definition, Equations (13) and (14) lack the statistical
properties that are assumed for the turbulent cascade including
homogeneity. We can average Equation (13) over sufficient
data to reclaim those statistical properties,
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and from this we can compute ò±. The same applies to the
ensemble average of Equation (14).

It is well established that a fundamental asymmetry exists in
the solar wind between Z±, wherein there is typically greater
energy in the outward (anti-sunward) propagating component.
Since the propagation direction of Z± is defined relative to the
mean magnetic field, we can define Zout/in according to the
local sector type where Z+ (Z−) propagates sunward (anti-
sunward) in an away sector field and anti-sunward (sunward) in
a toward sector field. We will refer to anti-sunward propagation
by Zout and sunward propagation by Zin, and in some
instances, we will gather statistics according to this definition.

It should be noted that Equations (7), (9), and 16 are derived
for isotropic turbulence while solar wind turbulence is well
known to be highly anisotropic (Belcher & Davis 1971;
Matthaeus et al. 1990). Very similar expressions for two-
dimensional (2D) turbulence and turbulence that is a combina-
tion of 2D and field-aligned have been derived and analyzed
(MacBride et al. 2005, 2008; Smith et al. 2009, 2010; Stawarz
et al. 2009, 2010, 2011; Forman et al. 2010; Coburn et al.
2012, 2014, 2015). We will present an analysis of these slightly
simpler isotropic expressions so as not to unduly complicate
the discussion.

The third-order formalism described above is completely
general subject to the stated assumptions of incompressibility,
homogeneity, stationarity, isotropy, and scale separation. For
some purposes, any of the above assumptions can be argued to
be invalid in the solar wind, but this represents a good starting
point from which to examine the correlation scale of turbulent
processes. The expressions are valid regardless of the nonlinear
dynamics active in the turbulent cascade and are derived
without regard to specific wave modes.

3. Data Analysis

We focus on a single solar rotation of solar wind data
recorded by the ACE spacecraft (Garrard et al. 1998; McComas
et al. 1998; Smith et al. 1998; Stone et al. 1998). There is
nothing unique about this rotation. The measurements were
recorded shortly after the peak activity of solar maximum. The
interval contains shocks and assorted variations in solar wind
conditions that provide a good sample of the diverse conditions
for solar wind turbulence at 1 au.

3.1. Primitive Variables

A well-known problem with measuring correlation lengths in
the solar wind derives from the fact that there is substantial
power in fluctuations at arbitrarily long timescales. Attempts to
measure the correlation length for the primitive variables such
as magnetic field, velocity, and density fluctuations associated
with interplanetary turbulence can be influenced by stream
structure, sector structure, solar rotation, and even the solar
cycle. Past attempts to overcome this problem place the
correlation length for the turbulence at between 30 minutes and
several hr (Fisk & Sari 1973; Matthaeus et al. 1999, 2005;
Dasso et al. 2008; Matthaeus et al. 2010).
We illustrate this fact by selecting a solar rotation from the

ACE catalog that has good data coverage and a range of flow
conditions (Garrard et al. 1998; McComas et al. 1998; Smith
et al. 1998; Stone et al. 1998). We choose solar rotation 2303
that extends from day of year (DOY) 101 to 127 of 2002 and
use the merged MAG and SWEPAM data set with δt=64 s
resolution. We select data in heliocentric RTN coordinates,
where the radial component R extends from the Sun to the
spacecraft, the azimuthal component T is coplanar to the Sun’s
rotational equator and directed in the sense of rotation, and the
normal component N= R× T. This is the same coordinate
system in which Parker first defined the spiraling heliospheric
magnetic field (Parker 1961, 1963). When applying the
expressions derived above, the direction of positive lag L is
equivalent to the −R component, which opposes the solar
wind flow.
Figure 1 shows the data used in this analysis. The plot is

made using data from the MAG and SWEPAM instruments
with a common 64 s resolution for Carrington solar rotation
2303 extending from DOY 101 to 127 of 2002. The SWEPAM
data have a natural 64 s cadence, while the MAG data are
collected at 3 s−1 and averaged to the 64 s cadence of
SWEPAM via an intermediate 16 s average. The top three
panels show the field intensity; the magnetic field north/south
elevation angle d º -

^( )B Btan N
1 , where º +B̂ B BR T

2 2 ;
and the magnetic field azimuthal angle Q º - ( )B Btan T R

1 .
Both Θ and δ are given in degrees computed in (R, T, N)
coordinates. Here VR, VT, and VN are the three components of
the wind velocity in heliocentric (R, T, N) coordinates; NP is the

4
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measured proton density; TP is the measured proton temperature;
and = + +V V V VR T NSW

2 2 2 defines the wind speed. Through-
out the paper, we use units of nT for magnetic field, km s−1 for
speed, cm−3 for density, and K for temperature.

There are four shocks cataloged for this solar rotation and
marked by arrows above the top panel of Figure 1. Although
Figure 1 would seem to show two additional shocks on DOYs
117 and 127, careful examination of the data does not support

this interpretation. Table 1 lists the shock times and general
characteristics, where the shocks are determined to be either
forward (F) or reverse (R). The table lists the shock
compression ratio rN≡ρd/ρu, where ρd (ρu) is the proton
density downstream (upstream) of the shock; the angle between
the computed shock normal and upstream magnetic field
direction ΘBn; and the Mach number of the shock
MA=VS/VA, where VS is the shock speed in the plasma

Figure 1. Observations by the ACE spacecraft of solar wind plasma conditions for solar rotation 2303 extending DOY 101–127 of 2002. Top to bottom: magnetic field
intensity B in nT; magnetic field north/south elevation angle δ in deg; magnetic field azimuthal angle Θ in deg; radial, tangential, and normal component of the solar
wind velocity; proton density NP in cm−3; and proton temperature TP in K. The arrows above the top panel mark the locations of four shocks. See text for further
description.

Table 1
Recorded Shocks Evident in Figure 1

DOY::Hour:Min Exclusion F/R rN ΘBn MA

[UT] [UT] [deg]

107::10:21 106::22:21–108::22:21 F 3.4±0.1 90°±1° 2.2±0.4
109::08:02 108::20:02–110::20:02 F 2.4±0.5 67°±6° 1.6±0.4
109::20:50 109::08:50–111::08:50 F 1.2±0.1 53°±20° 2.0±0.5
113::04:15 112::16:15–114::16:15 F 3.0±1.1 25°±8° 3.7±0.7

Note. Here F denotes a forward shock (no reverse shocks were evident in this solar rotation), rN is the compression ratio of the shock, ΘBn is the angle between the
shock normal and the upstream magnetic field, and MA is the Alfvénic Mach number.

5
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frame. The computation of shock properties is performed using
the Rankine–Hugoniot shock conditions (Boyd & Sanderson
1969) and an adaptation of the method developed by Viñas &
Scudder (1986), Szabo (1994), and Vorotnikov et al. (2008,
2011). The shock crossings are clearly evident in Figure 1,
where both B and VR increase at the shock while the magnetic
field and flow are redirected after the shock passage, magnetic
fluctuation level, proton density, and proton temperature rise
downstream. Shocks, their foreshocks, and their drivers are
eliminated from our analyses throughout this paper by
excluding any data from 12 hr before the shock until 36 hr
after the shock crossing. Because the first three shocks occur in
close proximity, this removes 154 hr and 29 minutes of data
from the analysis. There are ∼20.5 days of remaining data in
this solar rotation. Allowing for missing data and requiring that
all primitive variables be available for any given time to
perform the analyses described here, there are 24,417 data
points analyzed here.

We first compute the correlation functions using those
20 days of primitive variables. We focus on the three
components of the magnetic field (BR, BT, BN), the field
magnitude B, the three components of the solar wind velocity
(VR, VT, VN), the proton density NP, and the proton temperature
TP. We include TP even though it is not used elsewhere in this
analysis. The correlation function A(δF, δt) is computed using
Equation (4) out to a lag of 100 points (δn= 100 points,
δt= 6400 s). A maximum lag of 100 points ;1.8 hr, which is
comparable to or exceeds the generally agreed-to range of

correlation lengths for primitive variables in the solar wind.
The function A(δF, δt) requires that we use fluctuations of the
primitive variables. To obtain estimates of the means, we use a
sliding average of Nmean points centered on each data point.
Points near the beginning or end of the solar rotation and points
near the boundaries of excluded data involving shocks and their
drivers use asymmetric means so that the number of available
data points is preserved by the averaging process. We have
done this using several (odd) values for Nmean and will compare
those results below. Averages and differences across the
heliospheric current sheet are not permitted, as this would
artificially increase the fluctuation. Therefore, we compute A
for primitive variables in the toward and away sectors
separately. This produces a data set that retains the 64 s
cadence of the original but with local mean values subtracted.
The evaluation of A(δF, δt) is obtained using Equation (4)

without any intermediate averaging of the estimates. We show
the computed results in Figure 2, where solid lines represent
toward sectors and dashed lines represent away sectors. In this
instance, we use Nmean=101 points (Nmean τ= 6464 s). Both
the values of the correlation functions at zero lag A(δF, δt= 0)
(the variance) and the correlation scales computed using the
e-folding method are listed on the panels. Note that the
measured correlation length is in all cases shorter than the 100
point=6400 s maximum lag. Values vary from 384 to 1344 s
with a resolution of 64 s due to the analysis method. Values of
the correlation scale derived from the integration method are
comparable and listed in Table 2.

Figure 2. Correlation function for fluctuations in the primitive variables computed in the traditional manner for toward sectors (solid curves) and away sectors (dashed
curves). Left to right and top to bottom, they represent the variables BR, BT, BN, Bmag, VR, VT, VN, VSW, NP, and TP. The correlation functions both here and below are
computed using Equation (4). The value of the correlation function at zero lag, A(δF(0)), is the variance for each variable analyzed, and the correlation lengths are
given in each panel (left to right) for toward and away sectors.
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Several other familiar facts are evident in Figure 2. The
variance, A(0), is smaller for B than for the components in
keeping with the often-stated claim that magnetic fluctuations
are magnitude-conserving. Toward sectors have larger magn-
etic variances and correlation scales than away sectors, except
for B, where the roles oflc

e andlc
i are reversed. The variance of

the solar wind velocity is approximately equal across the
components and the magnitude while the away sectors have
larger variances and smaller lc

e. This holds for lc
i as well. The

proton density and temperature are very much like every other
primitive variable except for one thing: the relative values of
the variance and correlation scales for NP are the same as for
the other proton data, while TP follows the scaling of the
magnetic field data.

As stated above, the length of the averaging interval used to
compute the fluctuations of the primitive variables has a profound
effect on the statistics and correlation of the fluctuations. Figure 3
shows the computed correlation functions for the same variable,
BN, using five different values of Nmean=21, 51, 101, 201, and
301 points (Nmean τ= 1344, 3264, 6464, 12,864, and 19,264 s).
Toward and away sectors are again analyzed separately. As
Nmean increases, energy is transferred from the designated
mean to the fluctuation with an increase in both the variance
and the correlation scale. While there are varying and
subjective opinions on the proper definition for both the
mean and the fluctuations, there is no agreed-to formalism.
The variability seen here when the averaging interval is
altered is an indication of one uncertainty in the overarching
question, “What is the correlation length for primitive
variables in the solar wind?” That uncertainty is how to
correctly define the mean so as to then compute the
fluctuations relative to the mean. This is not the case when
examining the third-order expressions that describe the

turbulent energy cascade because no subjective mean field
subtraction is required.

3.2. Energy Cascade

The energy cascade, as described by the ensemble-averaged
third-order structure functions, can be taken to predict uniform
cascade rates across the inertial-range scales when one also
considers the theories of HD cascade rates based on the
turbulent power spectrum (Kolmogorov 1941a) and MHD
(Iroshnikov 1964; Kraichnan 1965; Zhou & Matthaeus 1989;
Goldreich & Sridhar 1995). However, the statistics of these
expressions when averaged over 1–3 hr intervals (one or more
correlation scales of the primitive variables) have been shown
to exhibit large variability with standard deviations an order of
magnitude greater than the ensemble-averaged means com-
puted from many hours of data (Coburn et al. 2014, 2015). In
HD, the lifetime of a turbulent eddy is one turnover time (one
oscillation). A fundamental tenet of weak turbulence theory is

Table 2
Parameters from Figure 2

A Sector A(0) l tc
e l tc

i

T/A (s) (s)

A(BR) T 5.43 1280 1356
A 2.97 832 861

A(BT) T 7.05 1344 1599
A 3.43 832 867

A(BN) T 4.94 960 667
A 4.24 576 283

A(B) T 0.51 704 294
A 0.23 832 609

A(VR) T 31.0 1024 1429
A 98.4 448 213

A(VT) T 78.3 1216 1732
A 146.2 448 238

A(VN) T 31.8 832 667
A 149.3 384 85

A(VSW) T 33.6 1088 1511
A 102.4 448 215

A(NP) T 1.11 960 686
A 1.56 896 742

A(TP) T 8.27 704 547
A 3.10 384 107

Note. Here T/A denotes toward/away sectors, A(0) is the correlation function
value at zero separation,lc

e is the exponential definition of the correlation scale,
and lc

i is the integration definition of the correlation scale.

Figure 3. Top to bottom: correlation function for fluctuations in BN for toward
sectors (solid curves) and away sectors (dashed curves) using five values for the
local mean analysis: Nmean=21, 51, 101, 201, and 301 points (Nmean τ =
1344, 3264, 6464, 12,864, and 19,264 s). Both the correlation function at zero
lag and the correlation length are given for toward sectors (left) and away
sectors (right). Variation in the length of the averaging interval leads to an
exchange in what is determined as mean and fluctuation. Longer means admit
lower-frequency fluctuations into the analysis, resulting in larger variances and
longer correlation scales.
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that the timescale at which energy is exchanged between the
modes is long compared to the wave period. It therefore
becomes difficult to imagine that the variability of the cascade
is coherent across the turbulent spectrum over timescales
comparable to the correlation scale of the primitive variables if
for no other reason than that the transfer of energy to larger
scales would deplete whatever energy exists at smaller scales in
a relatively short time. Moreover, the disparate life spans of
fluctuations at different scales would also require that new
small-scale dynamics remain sufficiently in phase so that the
energy cascade in the same sense is maintained. Given that
energy is transported through the turbulent spectrum at a finite
rate and over a finite time, strict agreement between the third-
order expressions at all scales and theories based on the
turbulent power spectrum (above) would require a very high
degree of coherence over many lifetimes of the turbulent
fluctuations. The analysis presented here attempts to address
these questions. As a practical matter, it is also beneficial to
establish the correlation scale for the energy cascade dynamics
and compare it to the correlation scale of the primitive
variables.

Figure 4 shows Equations (9) and (16) averaged over the
solar rotation, with the exclusion of the same data points that
were excluded in the above analysis. The functions ltá ñ( )D t3
possess good linearity for lags up to ∼3000 s. For the same
reason, the functions ò±,tot(λτ) show nearly constant values
over the same range of lags, with some departure from
constancy at the smallest scales. A lag of 3000 s is a good
assessment of the correlation scale marking the largest scales of
the energy-conserving dynamics of the inertial range and the
onset of the energy-containing range. The functions ltá ñ( )D t3
are not predicted to have linear scaling at energy-containing
scales, and the functions ò±,tot(λτ) are not predicted to be
constant at these scales. This is easy to understand. If

ltá ñ( )D t3 provides a measure of the energy transport through
the scale in question, where energy transport is scale-
independent in the inertial range, in the energy-containing
range, this measure divides the energy sources into scales that
are larger and smaller than the scale in question. If the
turbulence provides net transport to smaller scales, then the net
average energy transport decreases with increasing scale in the
energy-containing range, as few sources are available at
increasing scales. It appears that the measurement of

ltá ñ( )D t3 and ò may be a good, independent assessment of

the scale demarking the boundary between the energy-
containing and inertial ranges.
Coburn et al. (2014, 2015) demonstrated that 1 and 3 hr

averages of Equation (9) yield a broad distribution of values
with standard deviations a factor of 10 greater than the mean.
These two averaging intervals were chosen because of their
relationship to the correlation scale for the primitive variables.
It is worthwhile here to examine the distribution function for
D3

tot defined in Equation (14) when computed at higher time
resolution, as these are the values that underpin the above
distributions. We choose λ=5, 10, 25, and 100 points
(λτ= 320, 640, 1600, and 6400 s), which samples the range
of inertial-range lags available from these data. Figure 5
shows the distribution of values computed for D3

tot using the
full 64 s cadence of the data. The 64 s resolution is too coarse
to resolve the likely rollover of the distribution at small values
where the distribution is expected to be approximately
Gaussian. Between 35% and 75% of the data have

>∣ ∣D 2003
tot km3 s−1 and are off the scale of the plot. We

omit these values so that the distribution can be better seen
around the value of the mean.
Table 3 lists the mean, á ñD t3

tot ; standard deviation, σstd; and
error of the mean, σM, for each panel in Figure 5. The error of
the mean is defined as σstd divided by the square root of the
number of correlation lengths in the data. The correlation
length is computed below. The means are consistently smaller
than the error of the mean, but the purpose of showing this
analysis is not to argue that one solar rotation contains enough
data to obtain convergence of the mean to a statistical average.
The purpose of this analysis is to demonstrate the variability of
the measurement and the dependence upon lag. More data that
are similarly prepared will reduce the error of the mean, but it is
unlikely to significantly alter the computed standard deviation.
This, together with the need to select data intervals with
comparable wind speed and temperature, offers an explanation
of why so many data are required to produce average energy
cascade rates that are in agreement with proton heating
(Stawarz et al. 2009; Coburn et al. 2012).
We can address the scale at which the above measurements

decorrelate simply by evaluating the autocorrelation function
for the third-order expressions at a fixed lag. We do this by
evaluating Equation (13) as a time series using the primitive

Figure 4. Top left: calculated values of á ñ+D t3 (solid curve) and á ñ-D t3 (dotted curve). Top right: calculated values of á ñD t3
out (solid curve) and á ñD t3

in (dotted curve).
Bottom left: calculated values of ò+ (solid black curve), òtot (red curve), and ò− (dotted curve). Bottom right: òout (solid black curve), òtot (red curve), and òin (dotted
curve).
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variables and then computing the correlation function:
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The analysis is the same as was used to prepare Figure 2, but
now we use the computed third-order expression at a lag λ as
input rather than the primitive variables. Figure 6 shows the
result using a lag of δn=25 points (δt= 1600 s). Note the
demonstrably shorter correlation scales evident in all Five panels
of Figure 6 compared to those seen in Figure 2. Moreover, the
correlation lengths vary from 20% to 30% of the lag value.

We can vary the lag used in the analysis. Figure 7 shows the
correlation function for D3

tot computed in the same manner
using four different values of the lag: λ=5, 10, 25, and

100 points (δt= 320, 640, 1600, and 6400 s). Figure 7 (left)
shows the analysis of the same data used in Figure 6. In each
case, the apparent correlation scale tracks at 20% of the lag
value with l lc

e
c
i (see Table 4). This means that the third-

order expressions decorrelate on the scale of the lag. Unlike the
primitive variables, which have correlation scales that are
dependent on the scale on which the mean is computed, the
third-order expressions decorrelate in a single scale length
consistently without regard for any secondary consideration
required to compute a mean value. Inertial-range dynamics are
coherent over only the scale of interest. In the event that the
above conclusions can be traced to the frequent crossings of the
heliospheric current sheet, as evidenced in the first half of
Figure 1, we offer Figure 7 (right), which uses only data from
DOYs 117–124 when the spacecraft is consistently within an
away sector region and does not cross the heliospheric current
sheet. The results are nearly identical, which indicates that the
conclusion that the correlation length scales with the lag is a
property of the background turbulence.

3.3. Second-order Expressions

The correlation functions for second-order expressions behave
in much the same manner as the equation for the energy cascade.
We can take Equation (4) and let d º D [ ( )]F Z Li

2 to compute
the correlation function for a second-order expression evaluated
at a given lag. Note that ΔZi automatically removes the mean
from the variable. For simplicity, let us choose the radial
component ltD =+( )Z L VR SW . All components of ΔZ± behave

Figure 5. Distribution function for D3
tot computed for four different values of

the lag: λ=5, 10, 25, and 100 points (λτ = 320, 640, 1600, and 6400 s). Note
that in each case, the standard deviation σstd is significantly greater than the
mean á ñD t3

tot , implying large variations in the cascade rate relative to the
average value.

Table 3
Parameters for Figure 5

λ λτ á ñD t3
tot σstd σM

(s) (km3 s−3)

5 320 82.6 2.6×104 176
10 640 29.9 3.5×104 235
25 1600 267. 5.2×104 354
100 6400 −3050 13.5×104 941

Note. Here λ counts data separation by data points, λτ counts data separation
by time, á ñD3

tot is the mean of D3
tot, σstd is the standard deviation of D3

tot, and
σM is the error of the mean of D3

tot.

Figure 6. Correlation functions for D3 , D3
tot, and D3

out,in evaluated at a lag of
λ=25 points (λτ = 1600 s). The time series for D3 are computed from the
primitive variables. Subtraction of means is unnecessary, as the expressions
naturally accomplish this goal. The technique is otherwise identical to that used
in Figure 2.
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in the same manner. Figure 8 shows the resulting correlation
function for four different values of the lag, where we use the
same technique as was used to produce Figure 7. As with

( )A D3 , the correlation scale is again consistently 20% of the
lag value.

This raises the interesting point that the correlation functions of
structure functions generally behave as seen in Figures 7 and 8 in
that their correlation scale depends on the lag chosen. At the least,
we have examined the first- and second-order expressions of the
primitive variables (not all shown here) along with the third-order
expressions for ò, and they all behave in the same manner. This
can be understood relatively simply if one examines the
autocorrelation function for the second-order expression,

ål d
d l

l d l

D =
- -

´ D D +

d l
+

=

- -

([ ( )] )
( )

{[ ( )] [ ( )] }
( )

A Z n
N n

Z n Z n n

,
1

, , ,
18

R
n

N n

R R

2

1
2 2

where λ is the lag in terms of the variable point count
associated with the second-order expression, L=λτVSW, and

δn is again the variable associated with the lag in the computed
autocorrelation function. The two terms that form the argument
of the summation provide the greatest reinforcement when
δn�λ. If δn?λ, the two differences are significantly out of
phase as they sum across the time series, and this results in
decorrelation. For the mixed, third-order expressions above that
are not positive in the manner that the second-order expression

Figure 7. Left: correlation function for D3
tot evaluated at four lags: λ=5, 10, 25, and 100 points (λτ = 6400, 1600, 640, and 320 s) computed using the same data as

in Figure 6. Right: same analysis using only DOYs 117–124. Note that the correlation scale tracks with the lag used in each analysis while the variance (correlation at
zero lag) on the right is significantly greater than that on the left. The variance is given in Table 4.

Table 4
Parameters for Figure 7

λ λτ A(0) l tc
e l tc

i

(s) (s) (s)

5 320 7.0×108 64 67
10 640 1.2×109 128 148
25 1600 2.7×109 320 284
100 6400 1.8×1010 1472 1277

Note. Here λ counts data separation by data points, λτ counts data separation
by time, A(0) is the correlation function value at zero separation, lc

e is the
exponential definition of the correlations scale, and lc

i is the integration
definition of the correlation scale.

Figure 8. Correlation function for the second-order expression D +( )ZR
2

evaluated at the same four lags as in Figure 7. Note that the correlation scale
again tracks with the lag used in each analysis.
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is seen to be, this decorrelation includes outright cancellation in
much the same way that two sine functions are orthogonal to
each other under appropriate integration. If δn is sufficiently
small, the two terms are nearly identical, and there is no
cancellation.

What is important to remember is that the expressions for the
energy cascade rate were derived from the dynamical equations
in a general manner that did not select specific nonlinear
processes or wave modes. It is a general aspect of the MHD
equations that expressions describing the nonlinear transport of
energy in the inertial range are third-order structure functions,
and these expressions possess a lag-dependent correlation
scale. It therefore follows that this is a characteristic of the
cascade and thereby more significant than being simply a
property of the autocorrelation of structure functions generally.

4. Discussion

We have examined the correlation function for mixed, third-
order expressions that can be derived as general equations for
the energy cascade in incompressible MHD turbulence. These
expressions are highly general and derived without relying on a
specific underlying cascade dynamic. The corresponding HD
expressions that describe the energy cascade in the inertial
range have been shown to yield rates that are closely correlated
with dissipation rates (Stolovitzky et al. 1992). The MHD
forms have been shown to yield energy cascade rates that agree
with thermal proton heating rates in the solar wind at 1 au
(Stawarz et al. 2009; Coburn et al. 2012) and at higher latitudes
(Marino et al. 2012) when averaged over suitable ensembles.
The sample sizes used in our earlier papers (1–12 hr) were
comparable to or exceeded the correlation scales for the
primitive variables. This was assumed to be adequate to justify
the use of Gaussian statistics in describing uncertainties in
those analyses. In view of the results shown here, such long
intervals represent many correlation scales for the cascade
dynamics. Still, many such intervals were required for the
average to converge to a mean that is consistent with the
observed average heating rate and with scalings predicted
by theories derived from the power spectrum (Vasquez
et al. 2007). The convergence analysis shown in Table 3 and
the distributions shown in Figure 5 offer partial explanations
for the slow convergence. Examination of the statistical
variations of the third-order expressions averaged over 1–3 hr
intervals (Coburn et al. 2014, 2015) still shows large variations
in the computed cascade rates. In both cases, the majority of the
third-order averages computed over 1–3 hr intervals were seen
to scale linearly with lag, as predicted by theory. The statistical
variability is seen both here and in Coburn et al. (2014, 2015)
to have a standard deviation ∼10× larger than the mean of the
distribution, which is the quantity that compares favorably with
the local heating rates. This means that in almost half of the
observations, the inferred energy cascade rate is negative.
Without a significant energy source at small scales, it is difficult
to imagine how the solar wind turbulent cascade could
maintain energy transport from small to large scales.

We have taken care to distinguish between Equations (8) and
(9) and other expressions like them, where one involves an
ensemble average and one does not. The quantities that have
been derived to describe the turbulent cascade of energy all
involve ensemble averages. This is why we use language such
as “third-order expression” that forms the basis for our analysis
instead of “third moment,” which requires an ensemble

average. Inherently, we are assuming that the ensemble average
needed to satisfy the derivation of third-moment expressions
such as Equations (9) and (16) commutes with the average
contained within the correlation functions, but this is unproven.
This analysis indicates that the energy cascade rate is not

correlated from one sample to another and that it decorrelates at
the scale of interest. Therefore, if L is a scale within the inertial
range, the cascade at one point in the fluid is decorrelated from
the cascade in less than a distance L away. If the scale L/10 is
also within the inertial range, it decorrelates at a distance L/10.
This suggests that the instantaneous cascade rate at any point in
space and time is not uniform across the inertial-range scales
and that the cascades at the various scales are likely to be
uncorrelated with one another. This motivates a view of
inertial-range dynamics where the separate scales are indepen-
dently transporting energy, with the net transport of energy
from large to small scales being only a long-term average result
and not a reliably instantaneous description of the turbulence.
While we have not employed the traditional analysis of higher-
order structure functions, this form of patchy and highly
variable energy cascade could be described as intermittent
(Monin & Yaglom 1971; Sreenivasan & Antonia 1997).

5. Summary

We have used ACE magnetic field and thermal proton data to
compute the autocorrelation function for third-order expres-
sions that were previously derived as equations for the rate of
energy transport through the turbulent spectrum. One solar
rotation of data was employed with the removal of shocks, their
foreshocks, and driver gas. For comparison, we also compute
the autocorrelation function for the primitive variables (magn-
etic field, solar wind velocity, proton density, and temperature)
using techniques that are comparable to previous analyses.
While the primitive variables possess correlation scales that
vary with the definition of the mean, the third-order structure
functions that yield rigorous definitions for the turbulent
cascade rate possess lag-dependent correlation scales. Correla-
tion scales for structure functions are consistently ∼20% of the
lag value, where the lag value is the scale size of interest. This
means that the cascade dynamics associated with the larger
scales of the turbulent inertial range remain coherent
over comparably large scales, while the smaller scales
decorrelate over relatively small scales. When combined with
the observation that the cascade rates are almost equally
positive and negative, the conclusion is that separate scales
within the turbulent inertial range act independently, with the
net transport of energy from large to small scales resulting only
as the average behavior, which is by no means steady-state.
The transport of energy within the inertial range is a highly
variable, scale-dependent process that only results in the
heating of thermal particles over relatively long time averages.

The authors thank the ACE/SWEPAM team for providing the
thermal proton data used in this study. C.W.S. is supported by
Caltech subcontract 44A-1062037 to the University of New
Hampshire in support of the ACE/MAG instrument. C.W.S.,
B.J.V., and M.A.F. are supported by NSF/SHINE grant 1622413
to the University of New Hampshire. J.T.C. is a graduate student
at Università della Calabria. Data used here can be obtained at the
ACE Science Center and National Space Science Data Center.
The shocks identified in this study are described at http://www.
ssg.sr.unh.edu/mag/ace/ACElists/obs_list.html and are available

11

The Astrophysical Journal, 858:21 (13pp), 2018 May 1 Smith et al.

http://www.ssg.sr.unh.edu/mag/ace/ACElists/obs_list.html
http://www.ssg.sr.unh.edu/mag/ace/ACElists/obs_list.html


online through the ACE Science Center. The authors wish to
thank Prof. Sean Oughton at the University of Waikato for a very
useful discussion.

Appendix
Exponential Correlation Functions

Above, we adopt the tradition of showing correlation
functions on linear scalings so that the reader may see that
the correlation functions cross zero, which is of interest in some
discussions. However, it is worth demonstrating that the
correlation functions also exhibit an exponential scaling in
the inertial range, and that our method for finding lc

e accurately
reproduces that exponential form. Figure 9 gives several of the
panels from Figure 2 with a logarithmic vertical axis. The red
lines possess the computedlc

e for slopes and are offset from the
curves for clarity. Note that lc

e yields a good description of the
correlation functions at these scales.
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