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Abstract

The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity
field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity
variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce
the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially
regarding the Jovian flow structure and its depth, whichcan influence the measured gravity field. In this study we
propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a
trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both
for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show thatthis
methodcan fitsome of the gravitational harmonicsbetter to the “measured” harmonics, mainly because ofthe
added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the
method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated
from the Juno and Cassini radio science experiments.

Key words: gravitation – hydrodynamics – planets and satellites: gaseous planets –
planets and satellites: individual (Jupiter, Saturn)

1. Introduction

The Jovian gravity field is determined by means of accurate
measurements of a spacecraft range rate. The observable
quantities are processed by an orbit determination code, which
estimates the gravity harmonic coefficients together with the
spacecraft state and other parameters of the model. These
estimates of the gravity field, which by themselves rely on
modeling of the observables, may be aided and improved
whengeophysical models are incorporated in this analysis.

The potential for a new estimate of Jupiter’s gravity field
comes from the NASAJuno spacecraft that currently is in
orbit around Jupiter. One of the scientific goals of the Juno
mission is the accurate determination of the gravity field of the
planet (Bolton 2005). The gravity experiment is based on the
measurement of the Doppler shift in a coherent two-way radio
link, consisting of a ground station transmitting a reference
signal that is received by a transponder on Juno and
retransmitted back to Earth preserving phase coherence. The
same ground station receives the downlink signal and measures
its Doppler shift by comparing the incoming and outgoing
signals. Junoʼs Doppler observables are especially accurate
thanks to the use of a Ka-band radio link at 32–34 GHz. Indeed,
at these frequencies the noise from interplanetary plasma is
strongly reduced. Junoʼs radio science system enables range
rate measurements accurate to ´ - -3 10 m s6 1 over timescales
of 1000 s.

The Doppler shift is processed by an orbit determination
code to provide very accurate information on Jupiterʼs gravity
field. The orbit determination analysis relies on two main
background gravity measurements. The first is apreviously
estimated value of Jupiter’s gravity field (Jacobson 2003),
which provides a first indication of the solid-body contribution.

A second source of spatially and time-dependent gravity
variation is related to Jupiter normal modes, which may perturb
the gravity field to a considerable level (Durante et al. 2016).
The deviation of Jupiter’s gravity field from that of a point

mass may result from two main sources. The first isthe
deviation of the planet from sphericity as a result ofits rotation
(e.g., Hubbard 1984). An oblate planet results in a gravity field
that depends on latitude with symmetry between the northern
and southern hemispheres. This latitudinal dependence also
depends on the planet’s internal density distribution. Lack of
knowledge on the density distribution inside Jupiter results in
large uncertainties regarding the planet solid-body gravity field
(e.g., Hubbard & Militzer 2016; Miguel et al. 2016; Wahl
et al. 2017).
The second source of spatially dependent gravity variations

is the existence of differential flow (deviations with respect to
the mean solid-body rotation) within the planet. Such flow
would be accompanied by redistribution of the density field
(e.g., Kaspi et al. 2010)and therefore will have an impact on
the gravity field. Knowledge about the shape and density
distribution of the solidbody could help to determine the low-
degree even gravity harmonics (mostly J J J, ,2 4 6 and J8), while
knowledge about the differential flow dynamics should
improve the estimate of the low-degree odd harmonics J J,3 5
and J7 and the gravity harmonics higher than J8.
Several studies discussed the relation between Jupiter-

observed cloud-level wind and the gravity field induced by
the wind (e.g., Hubbard 1999; Kaspi et al. 2010, 2016;
Kaspi 2013; Zhang et al. 2015). Some assume cylindrically
symmetric flow, while others allow for the wind to decay with
depth. Other studies demonstrated that regardless of the depth
of the cloud-level flow, a wind-density relation that is based on
thermal wind balance is valid for Jupiter (Kaspi et al. 2016;
Galanti et al. 2017). Recent studies investigated the inverse
problem of deducing the flow structure from the measured
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gravity field (Galanti & Kaspi 2016, 2017)and showed
thatunder reasonable physical assumptions, the flow field
could be derived from the expected Juno observations with an
uncertainty on the depth of the flow that is at least an order of
magnitude smaller than the value itself.

Here we propose a novel approach to improve the gravity
field estimate by including in the analysis the estimation of
Jupiter’s flow field. An improved estimate of theJupiter gravity
field is accomplished using an iterative method based on
simulated Juno measurements, a trajectory estimation model
(TEM), and an adjoint-based inverse flow model (FM). We
show that the method can lead to improved gravity analysis
under completely different scenarios that might be expected on
Jupiter. The inclusion of an inverse model for the solid-body
solution should in principle improvethe gravity estimate even
further, but this task is beyond the scope of this study.

The manuscript is organized as follows: in Section 2 we
present the two models used in the study—the TEM and the
FM. In Section 3 we discuss the experimental setup, and the
results are presented in Section 4. A discussion and conclusion
is given in Section 5.

2. Models

The methodused in this study is comprised by two
completely independent methods forcalculatingthe Jupiter
gravitational harmonics. The TEM uses the observed Juno
range rate to estimate the gravity harmonics, and the FM uses
the observed cloud-level wind to calculate the wind-induced
gravity harmonics. Below we discuss the two methods and the
experimental setup that combines them to obtain an optimized
solution.

2.1. The Trajectory Estimation Model (TEM)

The trajectory estimation process estimates a set of
parameters that affect the spacecraft motion. The recovery of
the spacecraft trajectory is obtained throughreconstructingthe
acceleration acting on the spacecraft, which mainly depends on,
but is not limited to, the gravity field coefficients. Thus, the
estimation of the spacecraft trajectory encompasses an estimate
of the Jupiter gravity field in terms of spherical harmonic
coefficients.

The accelerations acting on the spacecraft can be summar-
ized as

=- +g gU G.all N

Here,g GN includes the non-gravitational acceleration. The
variable U is the gravitational potential of the planet, which is
expanded in spherical harmonics
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where G is the gravitational constant,M is theJupiter mass, a is
the planet mean radius, Pl m, are the un-normalized associated
Legendre polynomials, C S,l m l m, , are the spherical harmonics

coefficients to be calculated, and m q= cos ,with θ being the
latitude.
The dynamical model of the spacecraft, discussed exten-

sively by Finocchiaro & Iess (2010), Finocchiaro (2013), and
Tommei et al. (2015), accounts for gravitational accelerations
from all solar systembodies and from the Galilean satellites, as
well as for the tides raised by the satellites on Jupiter. The non-
gravitational accelerations include the effect of the solar
radiation pressure on Junoʼs large solar panels, theJupiter
albedo, and thermal emission. The Lense-Thirring effect,
although inseparable from an offset of Jupiter’s pole (Le
Maistre et al. 2016), is included as a deterministic known
effect. The Jupiter rotation model is based on the IAU
convention (Archinal et al. 2011). The possible effects of
Jupiter normal modes on its gravitational field (Durante
et al. 2016) and thus on the proposed optimization method
are not accounted for.
The simulation of the Juno gravity experiments (see

discussion of experimental setup in Section 3) is carried out
with JPLʼs newest orbit determination code (MONTE, see
Evans et al. 2016) and a separate, multi-arc weighted least-
squares differential corrector for the estimation process. The
synthetic Doppler data for a two-way Ka-band radio link is
simulated for all perijove arcs devoted to gravity science, on
the reference 14-day trajectory for the Juno orbital phase.4

Each arc is 24hr long, centered on the closestJupiterapproach
(see Figure 1, where the tracks are shown for −20 to +20
minutes around perijove), and include approximately an 8hr
long tracking arc, according to the relative geometry of Juno
and NASAʼs DSS 25 at NASAʼs DSN Goldstone complex, the
only station capable of transmitting in Ka-band. White noise
with a standard deviation of -0.020 mm s 1 is added to the
observable at 60s to simulate realistic Doppler data points.
Note that Cassini Ka/Ka two-way coherent radio link data
points collected during cruise phase showa noise on Doppler
data as low as -0.012 mm s 1 at 60 s (Asmar et al. 2005). The
level of noise selected in this study alsoaccountsfor variability
with tracking conditions, thus is larger than the best
performances achievable with current radio tracking systems.
The estimation process iteratively converges to the solution

by computing differential corrections starting from a reference
solution. The parameters to be solved include the Juno initial
condition for each arc, the gravitational coefficients C S,l m l m, ,
(in principle, up to arbitrary degree and order), the Love
numbers k k,2 3,and k4, and the Jupiter pole direction, R.A. and
decl. in the EME2000 frame, and their rates (Archinal
et al. 2011).
The partialderivatives of the frequency residual of Doppler

observables with respect to the parameter list are computed,

= - ( )y f f , 2i
observed computed

=
¶
¶

= ( )H
x

y
for i N, 1,..., , 3i

i

where x are the estimated parameter set at the reference epoch,
y are the Doppler observables residuals yi, Hi is a vector
containing the partial derivatives of a Doppler point with
respect to the unknown parameters x, to be collected in the

4 Because ofconcerns about the performances of the propulsion system, Juno
is currently on a 53-day orbit. It is currently unknown if and when Juno could
attain its originally planned orbit. The conclusions of this study are largely
independent ofthe orbital period.

2

The Astronomical Journal, 154:2 (9pp), 2017 July Galanti et al.



matrix H (with a size given by the number of observables times
the number of unknown parameters), and N is the number of
Doppler points. The least-squares filter provides the differential
correction on the parameters

d = + +- - -( ) ( ) ( )x H W H P H W y P x , 4k
T

H k
T

H k
1 1 1

with the covariance matrix given by

= + -( ) ( )P H W H P , 5T
H

1

whereWH is a diagonal weight matrix for the Doppler residuals,
P is the a priori covariance matrix for the parameters, and xk is
the difference between the reference solution and the current
estimated value, at kth iteration (starting from =x 00 ). See
Tapley et al. (2004) for further details on the orbit determina-
tion process. The process is iterated until convergence is
attained, i.e., until the frequency residuals appear unbiased and
consistent with the expected spectral properties of the noise.
The SRIF filter provides the estimated parameters and their
covariance matrix, allowing the process to converge. When the
residuals are fitted to the noise level, a statistically trustable
trajectory is recovered and an estimate of the gravity field
harmonic coefficients is retrieved.

2.2. The Flow Model (FM)

Two versions of the FM are used in this study. The first is
solving the gravitational field based on the zonally symmetric
wind (Galanti & Kaspi 2016), while the second solves the case
where both the zonal and meridional cloud-level winds are
assumed to affect the density field (Parisi et al. 2016).

In both versions, the cloud-level wind is based on the
analysis of Cassini images (Choi & Showman 2011), in which
both the zonal and meridional velocities are estimated as a

function of longitude and latitude. The spatial variability of the
cloud-level wind is illustrated in Figure 2, where the strong
equatorial zonal flow is apparent as well as the location of the
Great Red Spot around 20 S and 90 W (a more detailed and
quantitative analysis is given in Parisi et al. 2016).
The observed cloud-level winds are then projected inward

along lines parallel to the axis of rotation, and are assumed to
decay toward the planet center using a global radial decay
depth, so that the 3D flow field follows

q f q f= -
-⎡

⎣⎢
⎤
⎦⎥( ) ( )u r u

a r

h
, , , exp ,

u
0

q f q f= -
-⎡
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h
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where q f q f( ) ( )u v, , ,0 0 are the azimuthal and meridional
components of the observed cloud-level wind (Choi &
Showman 2011), and hu is the decay scale of the cloud-level
wind. Note that in the first version of the model, we set =v0

0 and average the zonal velocity over longitude so that =u0

q( )u0 .
The 3D flow is then related to the density anomalies using

the thermal wind balance

W r r =  ¢ ´( · )[ ] ( )u g2 , 70

whereW is the planetary rotation rate, r ( )r is the background
density field, ( )u r is the 3D velocity, ( )g r0 is the mean gravity
vector, and r q f¢( )r, , is the dynamical density anomaly
(Pedlosky 1987; Kaspi et al. 2009). Note that this version of
thermal wind balance is difference than that common in Earth
dynamics since here the meridional density gradients are
balanced by the shear in the direction of the spin axis. Galanti

Figure 1. Juno gravity tracks shown on a global map of Jupiter. Lines indicate the location of the track from 20minutes before perijove to 20minutes after. The
location of the perijove for each track is marked with a red cross.
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et al. (2017) have shown that deviations from thermal wind
balance that aredue to the effects of oblateness are small and
have a negligible effect on the gravity harmonics. In the first
setup (zonally symmetric), the 3D density field is degenerated
in the longitude direction. From the density field the gravity
harmonics are calculated. The zonal coefficients are
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where l 2 and m 1 are the degree and order of the
expansion. Note that in the zonally symmetric case Clm and Slm
are identically zero.

As discussed in Galanti & Kaspi (2016, 2017), the FM can
be used in an optimization setup. Given a set of “measured”
gravity harmonics = [ ]K J C S, ,l

o
lm
o

lm
o0 , the FM can be used to

find the depth of the cloud-level winds hu that results in a
model solution = [ ]K J C S, ,m

l
m

lm
m

lm
m that minimizes the cost

function

= - -( ) ( ) ( )K K W K KL , 11m o
K

m o T

where WK is a weight matrix calculated as the inverse of the
covariance matrix multiplied by 9 (equivalent to threetimes the
uncertainties). Galanti & Kaspi (2017) explored complex
scenarios in which the depth of the wind can vary with
latitude, as well as scenarios in which in addition to the wind
related to thecloudlevel,a deep flow existsthat is completely
separated. For the sake of simplicity, we assume here that there
is no independent deep flow, and that the depth of the cloud-
level wind is independent of latitude. Whenthe Juno
measurements are analyzed, these assumptions could be easily
relaxed. Note also that since we are searching for one parameter
only (depth of the wind), we do not use here the adjoint method
in the optimization process (Galanti & Kaspi 2016, 2017). If a
more complex scenario is desired, then the adjoint method will
be needed in order to reduce the computational burden.

3. Experimental Setup

Since we do not know how deep the flow is on Jupiter, we
examine here two distinctly different possible cases. Using the
FM, we generate two potential scenarios, one in which the
cloud-level winds are deep with a decay scale of =h 3000u km
(Equation (6)), and another in which the winds are much
shallower with a decay scale of =h 300u km. In the zonally
symmetric setup, the zonal gravity harmonics (Equation (8))
are calculated up to the 50th degree (Figure 3, blue and red
squares), while when using the full cloud-level winds, the
tesseral field up to degree 30 is used (Equations (8)–(10)).
Given these gravity harmonics, the TEM is used to integrate a
Juno trajectory and the corresponding Doppler observables for
two scenarios of flow.
The number of gravity harmonics to be used in the TEM is a

balance between the expected magnitude of the measured

Figure 2. Observed cloud-level wind (Choi & Showman 2011). Shown are the wind vectors [ ]u v,0 0 with a resolution of 3° in latitude and 6° in longitude.
Arrowlengths correspond to the magnitude of the wind.
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harmonics and the uncertainties in the TEM. This is evident in
Figure 3, where the solid and dotted black lines show the
formal uncertainty associated with a TEM solution based on 50
and 24 zonal gravity harmonics, respectively. The decrease in
uncertainty for higher degree harmonics is an artifact caused by
the truncation of the estimated spherical harmonic coefficients.
The former indicates that the maximum number of harmonics
should not exceed 10 since the uncertainty in the higher
harmonics is much higher than the expected values (dashed
line). However, looking for a solution with only 10 harmonics
will result in very large errors becausehigher degree contribu-
tions areneglected. We found that using 24 harmonics gives a
good balance, and therefore we use this number of harmonics
in the TEM throughout the experiments. This conclusion does
not change when analyzing the full tesseral field (not shown),
since the zonal coefficients Jl always have much higher values
than the tesseral coefficients C S,lm lm.

The Juno orbit geometry (Figure 1) means thatthe low-
degree harmonics are estimated in the TEM with a very good
accuracy, while the uncertainty of the estimated higher
harmonics increases rapidly (Figure 3, solid and dotted lines).
It is possible to overcome this difficulty by associating an
a priori covariance matrix with the estimated parameters
(Tapley et al. 2004). This acts to constrain the solution and
improve the numerical stability of the filter. We implement an
a priori on gravity field coefficients (both zonal and tesseral
field) according to the FM generated scenarios. Running the
FM with different wind depths, the highest possible absolute
value for each of the gravity harmonics is found (Figure 3,
dash-dotted line). We use this upper limit multiplied by 10 as
a priori for the TEM. This choice gives a physically based
range where a solution could be searched for using the TEM.
The scaling factor enables the filter to search in an even wider
range of values than those predicted by the model, thus this
choice does not provide a strict constraint.

Given the above choice of a priori information and the
selected Juno trajectory scenario, the TEM is used to find a
solution for the gravity harmonics. The solution, along with its
accompanying error covariance matrix, is passed back to the
FM as measurements and weights to be used in the cost
function (Equation (11)). Since the TEM solves for the full

gravity harmonics, which also include the unknown contrib-
ution from the solid-body rotation, we set to zero all the
coefficients in the weight matrix WK in Equation (11)
that correspond to the even zonal gravity harmonics
=l 2, 4, 6, 8, 10, so that these harmonics do not contribute

to the cost function. As the >l 10 even zonal gravity
harmonics from the solid-body rotation are much smaller than
the corresponding harmonics from the atmospheric dynamics,
they are retained in the minimization of the cost function. By
optimizing the cost function, we find the wind depth hu and its
accompanying uncertainty (calculated from the Hessian matrix,
see Galanti & Kaspi 2017). We also use the uncertainty in hu to
calculate the uncertainty in the solution for the gravity
harmonics (see for details Galanti & Kaspi 2017). Finally,
the TEM is used again to reestimate the gravity harmonics, but
using the FM solution as an initial guess, and the uncertainty of
the gravity solution from the FM (multiplied by 10) as an
a priori. These back-and-forth iterations between the TEM and
the FM are continued iteratively until the solution for the
gravity field does not change beyond the a priori range
associated with the TEM.
While in both the FM and TEM the calculation of the gravity

field is made in spherical harmonics space, it is useful to
analyze the outcome of the whole optimization process in terms
of the physical gravity anomalies. This emphasizes the nature
of the solutions and their uncertainties with respect to the
locations of the Juno ground tracks. The gravity anomaly on
the surface of a planet is defined as the difference between the
calculated gravity acceleration and the reference gravity,
composed ofthe point-mass gravity g0 and accounting for
contribution coming from the even zonal harmonics
J J J J, , , ,2 4 6 8 and J10. These zonal harmonics are derived from
a model of the interior structure. The resulting gravity
anomalies in the radial direction are
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The overall process can be summarized as follows:

1. Use the FM solution, based on a prescribed flow pattern,
to generate a simulation of the Juno trajectory (this stage
will be replaced with the Juno observations).

2. Use the TEM to find the gravity harmonics, given an
a priori based on the largest FM solution, and starting
from a zero initial guess for the flow contribution.

3. Use the FM adjoint optimization to find the depth of wind
whose induced gravity harmonics best match the TEM
solution.

4. Use the TEM to find again the gravity harmonics, but
now using the FM optimized solution as an initial guess,
and an a priori based on the FM solution uncertainties.

5. Repeat stages 3 and 4 until the solution does not change
beyond the a priori range associated with the TEM.

4. Results

Two main categories of experiments are conducted. In the
first set of experiments (Section 4.1) we examine the
methoddeveloped in this study assuming the flow on Jupiter

Figure 3. FM zonal gravity harmonics for the deep (blue) and shallow (red)
wind cases, and maximumvalues (dashed black line). The solid and dotted
lines show the formal uncertainties of the TEM, and the green squares indicate
the solid-body harmonics.
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is zonally symmetric. The second set of experiments is
intended to simulate the measurements expected from Juno,
therefore the full cloud-level wind is used and the full tesseral
and zonal harmonics are computed (Section 4.2). In both
categories we examinethe cases of deep( =h 3000u km) and
shallow flows ( =h 300u km).

4.1. A Case with a Zonally Symmetric Flow

This experiment is meant to serve as a validation of the
methodpresented in this studyand to set a reference to the
more realistic case discussed in Section 4.2. Using the FM, we
generate a gravity field that is independent of longitude and
conduct the entire iterative analysis using the zonal harmonics,
both even and odd. The simulated measurements (Figure 3) are
used to simulate the corresponding Juno trajectories. Then, the
TEM is used to calculate the zonal gravity harmonics (Figure 4,
blue squares), starting from the solid-body solution for J J J, ,2 4 6
and a zero initial guess for the rest of the coefficients, and using
as a priori 10 times the FM maximumvalues (Figure 4, dotted
line). We also showin Figure 4 the TEM uncertainties (dashed
lines). Note that the TEM solutions are shown after
subtractingthe solid-body harmonics J J J J, , ,2 4 6 8 and J10.

Next, the FM is used to fit the model solution to the TEM
solution (Equation (11)) with weights based on 3 times the
TEM uncertainties. The FM solution (Figure 4, red squares) is
reached for = h 3003 2u km and = h 281 11u km for the
deepand shallow winds, respectively. In both cases, the
solution is within s2 of the uncertainty, indicating that the
process works well and is self-consistent. The FM ability to
reach a good agreement with the TEMstrongly dependson the
uncertainty in the TEM. The effect of the TEM uncertainties on
the solution in the TEM issubstantial, especially for the higher
coefficients, and it is much more pronouncedin the shallow
windcase. Thus the FM solution is ingood agreement with the
TEM whenever the gravity coefficient value is higher than the
TEM uncertainty.

The question now is whether the optimized FM solution
(Figure 4, red squares) can be used to help the TEM reach a
better estimate of the gravity harmonics. In order to examine
this, we runthe TEM again, but this time usingthe solution of
the FM as an initial guess, and usingthe uncertainties in

gravity harmonics from the FM as a priori(Figure 4, dash-
dotted lines) multiplied by 3. These uncertainties are very
small, typically smaller than 10−9, and therefore they great-
lyrestrictthe parameter space that needs to be searched by the
least-squares filter of the TEM.
We find that in both cases the TEM can reach a new solution,

as valid as the first solution, but much closer to the simulated
measurements. The solution, which is within the TEM a priori,
is reached after one iteration (additional iterations neither
improve the solution nor cause it to diverge). In Figure 5 we
show the gravity solution as function of latitude for the two
cases. The simulated measurements (red) correspond to the
blue and red squares in Figure 3. The blue lines are the TEM
first solution, and the black lines are the TEM second optimized
solution. For both TEM solutions, the accompanying uncer-
tainties are shown as shading around the solutions. In both
cases, the difference between the region where Juno is close to
the perijove (see Figure 1) and the higher latitude regions is
evident. The TEM has a much better ability to reach a good
solution in the former case, while in the latter its errors and
uncertainties are much larger, with a maximum near the south
pole. It is also evident that thesolution reached with the second
optimized TEM setup is much better. The errors and the
uncertainty (the black shading region is too small to be seen in
the figure)are bothmuch smaller, indicating a much better
solution. It is also important to note the difference between the
red line and the final black line. These differencesessentially
arise becauseeven in the second stage, we compute the gravity
signal only up to degree 24, whereas the red curve comes from
a full FM solution up to degree 50.

4.2. A Case with the Full Latitude-longitude Flow

Next, we repeat the same procedure as weused in
Section 4.1, but with a scenario in which the full wind field
is used to generate the Juno trajectories. Again, we examine a
case with deep winds and a case with shallow winds. Using the
second version of the FM, we calculate a 30 by 30 tesseral
field (Equations (9), (10)) with the density being derived
from a 3D wind based on the observed cloud-level wind

q f q f[ ( ) ( )]u v, , ,0 0 . The resulting gravity anomalies are shown
as functions of latitude and longitude in Figures 6(a)

Figure 4. Two-step optimization process: first, given a general a priori (based on 10 times the FM maximal gravity field, see the dashed line in Figure 3), the TEM
results in a gravity solution (blue squares), and its formal uncertainty (dashed line). Second, the FM is used to find an optimized solution (red squares), and the 3 times
FM uncertainty (dash-dotted line). We also showfor reference the simulations (gray squares). (a) Solutions for the deep windcase, (b) solutions for the shallow
windcase.
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and(b)for the deep windcase and for the shallow windcase,
respectively. While the dominant features remain longitude
independentand similar to the zonally symmetric case, insome
regionsthe deviations are substantial. For example, the
location of the Great Red Spot can beclearly seen in both
cases around 20 S and 90 W. It is a reflection of the
anticyclonic vortex seen in Figure 2. Interestingly, in the deep
windcasesome regions in the northern hemisphere, around

90 W, also showstrong gravity anomalies.
A gravity field that best explains the simulated Juno

trajectory is then searched forusing the TEM. Similar to the
zonally mean experiments discussed in Section 4.1, as an
a priori we use 10 times the maximumgravity harmonics
calculated with the FM, and start from a zero initial guess for
the non-solid-body gravity field. The first challenge is to
determine the number of gravity harmonics to be used for each
case. It is found that for the deep windcase, in addition to the
24 zonal coefficients, a field of 16 by 16 tesseral coefficients is
required in order to reach a consistent solution. In the shallow
windcase, a solution can be reached using only the zonal
coefficientsbecause the contributions coming from the zonally
asymmetric flow are too small to be detected by TEM. The
TEM solutions for the gravity field are shown in Figures 6(c)
and(d). Inthe region where the Juno trajectory is close to the
perijove (equatorial region and northward up to latitude 35), the
gravity anomalies are close to the simulated measurements in
both cases, similarly to the solutions in the zonally symmetric
cases. However, the non-zonal features, such as the Great Red
Spot, are not captured well in the deep windcase, and by
definition, they are not captured at all in the shallow windcase
(since only zonal coefficients are estimated). In the high
latitudes, especially in the southern hemisphere, the solution
differs greatly from the simulated measurements. The source of
this behavior can be clearly seen in the uncertainties associated
with the solutions (Figure 7), where the large uncertainty near
the south pole dominatesthe map. In addition, the longitudes
where larger uncertainties exists are also evident, especially
around regions where the spacecraft does not pass.

Usingthe TEM solutions, the depth of the wind is found in
the FM to be = h 2999 2u km and = h 292 10u km for

the deepand shallow winds, respectively. When we again
solvewith the TEMusing as an initial guess the FM solution
as a priori andthe uncertainties (multiplied by 3) associated
with the FM gravity harmonics solution, an improved solution
is reached (Figures 6(e) and(f)). Notably, the regions with the
large errors seen in the first TEM solution nowexhibit a much
better agreement with the simulation. As in the previous
experiments, one iteration is sufficient to reach a solution that is
within the TEM uncertainties. Repeating the process results in
a TEM solution that is almost identical to the solution
shown here.

5. Discussion and Conclusions

The upcoming Juno orbits will enable an unprecedented
high-accuracy estimate of the Jupiter gravity field with spatial
variability. The analysis of the gravity field is expected to be
spatially limited, however, because ofthe geometry of the Juno
orbits, andadditional physical knowledge aboutthe expected
gravity field may therefore help to improve the estimate.
Here we propose a new method for improving the Juno

gravity analysis, usually obtained with a TEM, using the
observed cloud-level wind and an inverseflow balance model
that relates the flow on Jupiter to a resulting gravity field. The
FM uses the observed cloud-level winds, projected inward to
within the planet with a decay depth that can be adjusted (this
could be easily modified to incorporate more complex flow
structures, as discussed in Galanti & Kaspi 2016, 2017). The
full 3D flow field is then related to density rearrangement via
the thermal wind balance. We simulated two distinctly different
flow regimes that might be expected to be measured by Juno.
Using the FM, we generated two potential scenarios, one in
which the cloud-level winds are deep with a decay scale of
3000km (Equation (6)), and another in which the winds are
much shallower with a decay scale of 300km. Note that these
two cases are used as an example, and other vertical structures
can be used as well.
Beginning with the simulated gravitational field, the TEM

together with an optimization procedure was used to obtain an
initial solution for the gravitational harmonics. As an upper
limit constraint(a priori), the TEM takes the gravity harmonics

Figure 5. Wind-induced gravity anomalies as afunction of latitude (Equation (12)). Shown are the simulated measurements (red), the first unconstrained TEM
solution (blue), and the second optimized TEM solution (black). We also showthe uncertainties associated with each solution (shadows). (a) Solutions for the deep
windcase. (b) Solutions for the shallow windcase.
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obtained from an FM in which the winds are assumed to
penetrate barotropically along the direction of the spin axis.
The solution from the TEM was then used as measurements for
the FM, and together with an optimization method, the optimal
penetration depth of the winds was computedand its
uncertainty evaluated. As a final step, the gravity harmonics
solution from the FM was returnedto the TEM, along with an
estimate of their uncertainties, to be used as an a priori for a
new calculation of the gravity field. In all experiments done
here, one exchange between the FM and the TEM was
sufficient to reach a solution, but iterative repetition of this
process might be required with the Juno observations.

We tested this method for several cases, with zonal harmonics
only, and with the full gravity field including tesseral harmonics as

well, related to the longitudinal variations of the wind profile. The
results show that withthis method, most of the gravitational
harmonics arebetter fit to the “measured” harmonics, mainly
becausethe FM takesthe wind structure and depth into
consideration. Thus, it is suggested that the method presented
here has the potential of improving the accuracy of the expected
gravity harmonics estimated through precise orbit determination
of the Juno trajectory alone. A similar approach could be taken for
the expected Cassini mission Grand Finale gravity measurements.
In this study we examined the effect of awind-induced

gravity signal on the gravity estimate. While this effect is
important forestimatingthe low-degree odd harmonics J J,3 5

and J7 and the gravity harmonics higher than J8, the low-degree
even harmonics J J J, ,2 4 6 and J8 are mostly affected by the

Figure 6. (a, b) Simulated measurements of the gravity anomalies dgr in mGal. (c, d) The unconstrained TEM solution. (e, f) The optimized TEM solution. The left
panels showsolutions for the deep windcase. The right panels showsolutions for the shallow winds case.
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solid-body shape and density structure. In our experiments we
assumed a known solution for the solid body (based on
Hubbard 2012), but as recently discussed by Hubbard &
Militzer (2016), there are large uncertainties associated with
any solid-body solution for Jupiter. The inclusion of an inverse
solid-body model should in principle improvethe gravity
estimate even further. This complex task is beyond the scope of
this studyand is left for future studies.
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