
Minimum-Fuel Control Strategy for Spacecraft Formation
Reconfiguration via Finite-Time Maneuvers

G. Di Mauro∗

University of Florida, Gainesville, Florida 32611

D. Spiller†

Sapienza University of Rome, 00138 Rome, Italy

and

S. F. Rafano Carnà‡ and R. Bevilacqua§

University of Florida, Gainesville, Florida 32611

DOI: 10.2514/1.G003822

This paper addresses the minimum-fuel spacecraft formation reconfiguration maneuver in J2 perturbed near-

circular orbits. In this study, only the deputy is assumed to be maneuverable and capable of providing a piecewise

constant control thrust. The optimal control problem is formulated as amixed-integer linear programming problem.

Tomake the proposed strategy compliant with the requirements deriving from a realistic flight scenario, the collision

avoidance and the maneuvering time constraints dictated by mission operations are included in the mathematical

formulation. A linear dynamics model based on relative orbit elements parameterization and its associated closed-

form solution are used to impose the boundary conditions, avoiding the dynamics integration within the optimization

process. Several examples are shown to demonstrate the effectiveness of the proposed approach.

I. Introduction

I N RECENT years, there has been an increasing interest in
spacecraft formation flying concepts. In fact, the use of

multiple spacecraft operating in a coordinated way allows
improving the mission performance, while providing increased
adaptability, versatility, and robustness. In light of this, different
national space agencies, government research, and development
centers as well as numerous universities and private companies
have designed and funded more than 20 formation flying
missions in the last two decades and plan to launch another 10
within the next 10 years [1].
Among the various technical challenges involved in spacecraft

formation flying, the capability to reconfigure the relative motion
represents a key aspect that has been intensively studied over the last
years. The formation reconfiguration problem is defined as the
achievement of a specific relative formation geometry in a defined
time interval, given a general initial relative configuration. Thus far,
many methods have been proposed to solve the aforementioned
problem, ranging from the impulsive to the continuous control
techniques. The impulsive approach for the satellite formation
control has been widely discussed in many works. Gaias and
D’Amico [2] addressed the problem of multi-impulsive solution
schemes for formation reconfiguration in near-circular Keplerian
orbits using relative orbit elements (ROEs). They proposed a
general methodology, based on the inversion of relative dynamics
equations, which led to the straightforward computation of

analytical or numerical control solutions. A similar impulsive
approach based on the ROE parameterization is developed by
Chernick andD’Amico in [3]. Here, the authors extended the results
reported in [2], deriving the analytical and semi-analytical solutions
for in-plane and out-of-plane reconfigurations, respectively, in
near-circular J2 perturbed and eccentric unperturbed orbits. Vaddi
et al. [4] obtained a two-impulse analytical solution for the
formation establishment and reconfiguration problems, using
Gauss’s variational equations (GVE) in terms of nonsingular
elements. They demonstrated that the derived analytical solution is
also fuel-optimal when only magnitudes of the relative eccentricity
and inclination vectors are varied and the initial relative semimajor
axis is null, comparing it with the result obtained using NPOPT, a
numerical nonlinear optimization tool. Roscoe et al. [5] proposed an
iterative method based on Lawden’s primer vector theory to
determine the n-impulse fuel-optimal maneuvers for the establish-
ment and reconfiguration of spacecraft formations. The proposed
method is valid in circular and elliptic orbits and includes first-order
secular J2 effects, whereas the dynamics is expressed in terms of
differential mean orbital elements. The continuous methodology is
implemented when the maneuverable satellites in the formation are
equipped with low-thrust actuation system. Ben Larbi and Bergner
[6] derived the nonimpulsive thrust maneuvers for formation
reconfiguration in unperturbed circular orbits, using the relative
orbit elements to describe the relative motion. Di Mauro et al. [7]
derived a fully analytical solution for the in-plane reconfiguration
with three tangential finite-time maneuvers by inverting the ROE-
based linearized equations of relative motion. In addition, they
proposed a semi-analytical approach to solve the out-of-plane
satellite formation control problem with a single finite-time
maneuver. Acikmese et al. [8] presented a convex guidance
algorithm for optimal formation reconfiguration with collision
avoidance using the Clohessy–Wiltshire–Hill equations. The
collision avoidance constraints are imposed via separating planes
between each pair of spacecraft. Moreover, a heuristic is introduced
to choose these separating planes that leads to the convexification of
the collision avoidance constraints. Huntington and Rao [9]
proposed a fuel-optimal reconfiguration strategy for a tetrahedral
formation. The reconfiguration problem was posed as a multiple-
phase nonlinear optimal control problem and is solved via direct
transcription using the Gauss pseudospectral method.Wu et al. [10]
presented a method to determine the fuel-optimal low-thrust
trajectories for satellite formation maneuvers in presence of J2
effect. The resulting nonlinear optimal control problem is converted
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into nonlinear programming (NLP) problem by the Legendre
pseudospectral method. The NLP problem is then solved using a
sparse nonlinear optimization algorithm. Richards et al. [11]
proposed a fuel-optimal control strategy by using the linear time-
varying Clohessy–Wiltshire–Hill relative dynamics model. The
trajectory optimization approach was based on the solution of a
mixed-integer linear programming (MILP) problem, including
collision avoidance and thruster plume impingement constraints.
This paper addresses the design of the minimum-fuel spacecraft

formation reconfiguration strategy in near-circular J2-perturbed
orbits. The associated optimal control problem is formulated as a
MILP problem. Based on the linear programming, both constraints
and the objective functionmust be linear. In light of this, the relative
motion is described through a linear dynamics model based on ROE
parameterization. To design a control strategy to be implemented in
a realistic flight scenario, a collision avoidance constraint is
included along with some operational constraints such as the
minimum firing duration of the thrusters and the maximum number
of performed finite-time maneuvers. The main advantage to
translate the minimum-fuel problem into the MILP form is that a
linear programming problem, even in the presence of a large number
of variables and constraints, can be solved in a quite reasonable
amount of time. The first contribution of this work is the
development of an efficient algorithm for the design of the
minimum-fuel reconfiguration maneuver for a two-satellite
formation in near-circular J2-perturbed orbits. The proposed
method provides the finite-time maneuver strategy to control the
relative trajectory, which has been proven to increase the final
accuracy with respect to the impulsive counterpart [7]. Moreover, it
is able to deal with a full formation reconfiguration problem (i.e., to
handle the dynamics coupling between the in-plane and out-of
plane motion due to the J2 perturbation). A further contribution is the
inclusion of some additional constraints in the MILP formulation,
such as the maximum number of finite-time maneuvers or the time
constraints imposed by mission operations, to obtain a more flexible
control scheme.
The reminder of this paper is organized as follows. In Sec. II, the

ROE-based relative dynamics describing the satellite formation
motion as well as its associated analytical solution is presented. In the
same section, the optimization problem related to the design of the
fuel-optimal reconfiguration maneuvering strategy is introduced.
Section III shows theMILP formulation and details the equations for
the considered constraints. The main results are reported in Sec. IV,
pointing out the performance of proposed approach in terms of
maneuver cost and accuracy and showing the computational burden
of MILP solver.

II. Problem Statement

This section aims at defining the optimal control problem
associated to the design of the minimum-fuel strategy for the
formation flying reconfiguration. The full reconfiguration problem
addressed in this study denotes the achievement of a specific in-plane
and out-of-plane relative configuration in a given time interval. It
must be observed that a full reconfiguration maneuver is required
typically in specific operational scenarios as predocking v-bar
approach or not passively safe close proximity operations.
First, the linear dynamics model describing the relative motion

between two Earth-orbiting satellites is presented, along with the
corresponding analytical solution. The proposed dynamics model is
formulated using the dimensionless ROE defined by D’Amico in
[12]. It allows the inclusion of the J2 effects aswell as those due to the
external accelerations. Finally, the acceleration control profile used in
this work is presented.

A. Relative Dynamics Model

The relativemotion of a spacecraft (deputy)with respect to another
one, referred to as chief, can be parameterized using the dimension-
less relative orbit elements defined by [12]

δα

2
6666664

ad∕ac − 1

�ud − uc� � �Ωd −Ωc�c�ic�
exd − exc
eyd − eyc
id − ic

�Ωd − Ωc�s�ic�

3
7777775

�

2
6666664

δa
δλ
δex
δey
δix
δiy

3
7777775

∈ R6 (1)

where a, i, Ω, and u indicate the semimajor axis, inclination, right
ascension of the ascending node, and argument of latitude. The
symbols s�⋅� and c�⋅� denote the functions sin�⋅� and cos�⋅�,
respectively. The terms ex and ey represent the components of
eccentricity vector and are defined as ex � e cos�ω� and
ex � e cos�ω�, where e and ω are the orbit eccentricity and the
argument of perigee, respectively. In Eq. (1), the subscripts c and d
label the chief and deputy satellite. Then, the relative state vector δα
consists of the relative semimajor axis δα the relative longitude δλ as
well as the coordinates of the relative eccentricity vector δe and
relative inclination vector δi, respectively. The preceding relative
state is nonsingular for circular orbits (ec � 0), whereas it is still
singular for strictly equatorial orbits (ic � 0) [3].
The averaging theory [13] can be used to derive the variation of the

mean ROE due to the Earth’s oblateness J2 [7,14]. Moreover, as
discussed by the authors in [7], the well-known GVE [5] can be
exploited to determine the change of the mean ROE due to the
continuous control acceleration f�t� ∈ R3. Hence, the set of
nonlinear differential equations describing the mean relative motion
under the effects of J2 perturbing acceleration and the continuous
control acceleration acting on the deputy can bewritten as follows [7]:

δ _α

2
664

0

nd�αc;αd� − nc�αc�
04×1

3
775� σJ2�αc;αd� � σF�αc;αd; f�t��

� ξ�αc;αd; f�t�� (2)

where

σJ2�αc;αd�

�

2
666664

0

�ηdPdKd−ηcPcKc���KdQd−KcQc�−2�Kdcid−Kccic�c�ic�
−eydKdQd�eycKcQc

exdKdQd−eycKcQc

0

−2�Kdc�id�−Kcc�ic��s�ic�

3
777775
(3)

σF�αc;αd; f�t�� �

2
66666666664

_ad
ac

_ud � _Ωdc�ic�
_exd
_eyd

id
_Ωds�ic�

3
77777777775

� ΓF�αd�f�t� (4)

The vector α�⋅�, where the subscript (⋅) stands for c and d, denotes
the quasi-nonsingular orbital elements vector, i.e., α�⋅� �
�a�⋅�; ex�⋅�; ey�⋅�; i�⋅�;Ω�⋅�; u�⋅��T , where ex�⋅� � e�⋅� cos�ω�⋅��, ey�⋅� �
e�⋅� sin�ω�⋅��, and u�⋅� � M�⋅� � ω�⋅�. In Eq. (3), the quantities K�⋅�,
Q�⋅�, P�⋅�, and η�⋅� are

K�⋅� �
γn�⋅�
a2�⋅�η

4
�⋅�

η�⋅� �
���������������
1 − e2�⋅�

q
n�⋅� �

�������
μ�
a3�⋅�

s

Q�⋅� � 5 cos �i�⋅��2 − 1 P�⋅� � 3 cos �i�⋅��2 − 1 γ � 3
4
J2R

2
E

(5)
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where J2 indicates the second spherical harmonic of the Earth’s

geopotential (J2 � 1.082 × 10−3),RE is the Earth’s equatorial radius

(RE � 6378.13 km), and μ� is the Earth gravitational parameter

(μ� � 3.98600 × 105 km3∕s2). The individual terms of the control

influence matrix ΓF�αd� in Eq. (4) are listed in the Appendix. Note

that the function ξ�αc;αd; f�t�� can be reformulated in terms of αc

and δα using the following identities [14]:

ad � acδa� ac ed �
����������������������������������������������������������
�exc � δex�2 � �eyc � δey�2

q
id � ic � δix ωd � tan−1

�
eyc � δey
exc � δex

�

Ωd � Ωc �
δiy

sin�ic�
ud � uc � δλ� �Ωd −Ωc� cos�ic� (6)

Performing a first-order Taylor expansionof the nonlinear function

ξ�αc; δα; f�t�� in Eq. (2) around the chief orbit (i.e., δα � 0 and

f � 0) and assuming that the chief is moving on a near-circular orbit

(i.e. ec → 0) yield the following linear dynamics model [7]:

δ _α�t� � ∂ξ
∂δα

�
δα�0
f�0

δα�t� � ∂ξ
∂f

�
δα�0
f�0

f � ANCδα�t� � BNC�t�f�t�

(7)

where ANC ∈ R6x6 and BNC ∈ R6x3 are the plant matrix and input

sensitivity matrix related to the control acceleration f�t� ∈ R3,

respectively, here reported for completeness:

ANC �

2
666666666664

0 0 0 0 0 0

−Λc 0 0 0 −KcFcSc 0

0 0 0 −KcQc 0 0

0 0 KcQc 0 0 0

0 0 0 0 0 0

7KcSc
2

0 0 0 2KcTc 0

3
777777777775

BNC�uc� �
1

ncac

2
666666666664

0 2 0

−2 0 0

s�uc� 2c�uc� 0

−c�uc� 2s�uc� 0

0 0 c�uc�

0 0 s�uc�

3
777777777775

(8)

In Eq. (8), the following substitutions are applied for clarity:

Fc � 4� 3ηc; Ec � 1� ηc; Sc � sin�2ic�;

Tc � sin �ic�2; Λc �
3

2
nc �

7

2
EcKcPc (9)

The term uc indicates the mean argument of latitude of the chief

orbit at the instant t and is related to the time t through the following
expression:

uc � u0 �Wc�t − t0� (10)

whereWc � nc � KcQc � ηcKcPc, and u0 � uc�t0� [7]. Note that
the variables t anduc can be considered interchangeable because they
are linearly related through Eq. (10). As discussed in [7,14,15], the

complete solution of the systemof differential equations [Eqs. (7) and

(8)] is given by

δα�uc� � ΦNC�uc; u0�δα0 �ΨNC�uc; u0�f�uc� (11)

where δα0 � δα�u0� is themeanROEat the initial instant t0,f�uc� ∈
R3 is a continuous piecewise constant function (see Sec. II.B formore

details), and ΦNC�uc; u0� ∈ R6×6 and ΨNC�uc; u0� ∈ R6×3 are the

state transition matrix and the convolution matrix, respectively, i.e.,

ΦNC�uc;u0� �

2
6666666664

1 0 0 0 0 0

−Λc
Δu
Wc

1 0 0 −KcFcSc
Δu
Wc

0

0 0 c�CΔu� −s�CΔu� 0 0

0 0 s�CΔu� c�CΔu� 0 0

0 0 0 0 1 0
7
2
KcSc

Δu
Wc

0 0 0 2KcTc
Δu
Wc

1

3
7777777775

(12)

ΨNC�uc; u0�

�

2
6666666666666666664

0 2Δu
ncacWc

0

− 2Δu
ncacWc

− ΛcΔu2
ncacW

2
c

FcKcSc�c�uc�−c�u0 ��s�u0 �Δu�
ncacW

2
c

− c�uc�−c�u0�CΔu�
ncacβWc

2
suc−s�u0�CΔu�
ncacβWc

0

− s�uc�−s�u0�CΔu�
ncacβWc

−2 cuc−c�u0�CΔu�
ncacβWc

0

0 0
s�uc�−s�u0�
ncacWc

0 7
2
KcScΔu2
ncacW

2
c

0
B@− �Wc�2KcTc��c�uc �−c�u0��

ncacW
2
c

− 2KcTcs�u0 �Δu
ncacW

2
c

1
CA

3
7777777777777777775

(13)

In Eqs. (12) and (13), Δu indicates the variation of the mean

argument of latitude of the chief orbit between the instant t0 and t (i.e.,
Δu � uc − u0). The quantities C and β are constant coefficients that
depend on the mean semimajor axis, mean eccentricity, and

inclination of the chief orbit as follows [7,15]:

C � �KcQc�
Wc

; β � 1 − C (14)

B. Piecewise Constant Control Profile

In this study, only the deputy is assumed to be maneuverable and

capable of providing a thrust along the x, y, and z directions of its own
radial–tangential–normal (RTN) reference frame. This reference

frame consists of a basis vector with x directed along the absolute

position vector, z along the angular momentum of the orbit, and y
completing the right-handed orthonormal basis. The control

acceleration profile is to be a piecewise constant function f�uc� �
�fx�uc�; fy�uc�; fz�uc��T ∈ R3 defined in the maneuvering interval

�u0; uT � (uT � uc�t � T�) as (see Fig. 1)

Fig. 1 Piecewise constant acceleration profile for a generic axis (⋅) of
RTN reference frame.

Article in Advance / DI MAURO ETAL. 3

D
ow

nl
oa

de
d 

by
 S

E
R

IA
L

S 
SE

C
T

IO
N

 o
n 

D
ec

em
be

r 
23

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
38

22
 



f�⋅��uc� �
(

�f�j��⋅� � const ≠ 0; u�j�c�⋅�;0 ≤ uc ≤ u�j�c�⋅�;f; �f�⋅�;j ∈ R; j � 1; : : : ; N�⋅�
0; otherwise

(15)

The term N�⋅� ∈ N denotes the number of finite-time maneuvers

along the axis (⋅) within the interval �u0; uT �, whereas u�j�c�⋅�;0 andu
�j�
c�⋅�;f

indicate the mean argument of latitude of the chief orbit at the

beginning and the end of the jth maneuver, respectively, or

alternately the initial and final instant of time of the jth maneuver

according to the relationship reported in Eq. (10).
By assuming that the relativemotion is well described by the linear

model [Eqs. (7) and (8)] with the closed-form solution reported in

Eqs. (11–13) and that the control acceleration has the form described

in Eq. (15), the total change of the mean ROE through the

maneuvering interval, Δδα�uT� � δα�uT� −Φ�uT; u0�δα0, can be

analytically computed as follows [7]:

Δδα�uT� � ϱx�uT� � ϱy�uT� � ϱz�uT� (16)

where

ϱx�uT� �
XNx

j�1

0
B@Φ

�
uT; u

�j�
cx;f

�
Ψ
�
u�j�cx;f; u

�j�
cx;0

�24 �f�j�x

0

0

3
5
1
CA (17)

ϱy�uT� �
XNy

j�1

0
B@Φ

�
uT; u

�j�
cy;f

�
Ψ
�
u�j�cy;f; u

�j�
cy;0

�24 0
�f�j�y

0

3
5
1
CA (18)

ϱz�uT� �
XNz

j�1

0
B@Φ

�
uT; u

�j�
cz;f

�
Ψ
�
u�j�cz;f; u

�j�
cz;0

�24 0

0
�f�j�z

3
5
1
CA (19)

In further detail, Eqs. (16–19) can be written in the extended form

as follows:

XNy

j�1

~u�j�y
�f�j�y � κΔδa�uT� (20)

XNx

j�1

~u�j�x
�f�j�x � Λc

Wc

XNy

j�1

�
uT − û�j�y

�
~u�j�y

�f�j�y �

−
FcKcSc
2Wc

XNz

j�1

�
−s�û�j�z �s� ~u�j�z � � s�û�j�z − ~u�j�z � ~u

�j�
z

−
�
uT − û�j�z − ~u�j�z

�
c�û�j�z �s� ~u�j�z �

�
�f�j�z � −κΔλ�uT� (21)

1

2β

XNx

j�1

s�CuT�βû�j�x �s�β ~u�j�x � �f
�j�
x � 1

β

XNy

j�1

c�CuT�βû�j�y �s�β ~u�j�y � �f
�j�
y

� κΔδex�uT� (22)

−
1

2β

XNx

j�1

c�CuT�βû�j�x �s�β ~u�j�x � �f
�j�
x � 1

β

XNy

j�1

s�CuT�βû�j�y �s�β ~u�j�y � �f
�j�
y

� κΔδey�uT� (23)

1

2

XNz

j�1

c�û�j�z �s� ~u�j�z � �f
�j�
z � κΔδix�uT� (24)

7KcSc
2Wc

XNy

j�1

�
uT − û�j�y

�
~u�j�y

�f�j�y

� 1

Wc

XNz

j�1

�
KcTc

�
uT − û�j�z − ~u�j�z

�
c�û�j�z �s� ~u�j�z �

� 1

2
�Wc � 2KcTc�s�û�j�z �s� ~u�j�z � − KcTcs�û�j�z − ~uz;j� ~u

�j�
z

�
�f�j�z

� κΔδiy�uT� (25)

where κ � Wcncac∕4. ~u
�j�
�⋅� and û

�j�
�⋅� indicate the half angular duration

and the angular location of the center of the jth finite-time maneuver,

respectively, i.e.,

~u�j��⋅� �
u�j�c�⋅�;f − u�j�c�⋅�;0

2
; û�j��⋅� �

u�j�c�⋅�;f � u�j�c�⋅�;0
2

(26)

From Eqs. (20–25), it is clear that the variation of the mean

ROE at the end of the maneuvering interval, Δδα�uT� �
�Δδa�uT�;Δδλ�uT�;Δδex�uT�;Δδey�uT�;Δδix�uT�;Δδiy�uT��T , is

a nonlinear function of û�j��⋅� and ~u�j��⋅� , whereas it depends linearly on

the acceleration amplitudes f�j��⋅� . Moreover, it is worth noting that,

because of J2 perturbation, the in-plane and out-of-plane dynamics

are coupled [see Eq. (8)]. Then, the control accelerations along the

cross-track and along-track directions, f�j�z and f�j�y , will affect also

the mean relative longitude and y component of the relative

inclination vector, respectively [see Eqs. (21) and (26)].

C. Fuel-Optimal Reconfiguration Maneuvering Problem

The problem of designing the fuel-minimum maneuver for the

formation reconfiguration can be formulated as a Lagrange optimal

control problem [16] with the performance index

J �
Z

uT

u0

jfx�uc�j duc �
Z

uT

u0

jfy�uc�j duc �
Z

uT

u0

jfz�uc�j duc
(27)

Hence, the optimization problem can be summarized as follows:

Find f�uc�:uc → F ⊂ R3; uc ∈ R

minimizing J

subject to ∀ uc ∈ �u0; uT �
dynamics constraints: δ _α�uc� � ANCδα�uc� �BNC�uc�f�uc�
boundary constraints: δα�uT� � δαdes

�or alternately;Δδα�uT� � Δδαdes�
path constraints: x�δα�uc�� > xca

control constraints: fmin ≤ jf�⋅��uc�j ≤ fmax fmax; fmin > 0 ∈ R

(28)

The dynamics constraints have been described in Sec. II.A. The

final condition is imposed to guarantee the achievement of the desired
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relative configuration δαdes in the given maneuvering interval
[u0, uT]. According to Eqs. (16–19), the vector δα�uT� can be
computed as

δα�uT� � Φ�uT; u0�δα0 � ϱx�uT� � ϱy�uT� � ϱz�uT� (29)

During the reconfiguration maneuver, the collision between the
satellites has to be prevented. To this purpose, the relative position
vector expressed in Cartesian coordinates, x�δα�uc��, must lie
outside a safety box centered in the chief spacecraft. In this study, the
linear mapping originally presented in [17] and discussed more in
detail in [18] is used to map the mean ROE vector to the Cartesian
relative state, i.e.,

2
6666664

x
y
_x
_y
z
_z

3
7777775

� acM�uc�δα�uc� (30)

with

M�uc��

2
666666664

1 0 −cos�uc� −sin�uc� 0 0

0 1 2sin�uc� −2cos�uc� 0 0

0 0 nc sin�uc� −nccos�uc� 0 0

−3
2
nc 0 2nccos�uc� 2nc sin�uc� 0 0

0 0 0 0 sin�uc� −cos�uc�
0 0 0 0 nccos�uc� nc sin�uc�

3
777777775

(31)

It is worth remarking that Cartesian relative state should be
computed through a series of nonlinear transformations including
the relations between Cartesian state and orbital elements [19]
and the transformations from osculating to mean elements discussed
in [20]. However, because the Jacobian of the osculating-to-mean
transformation is approximately a 6x6 identity matrix when J2 is
considered [21], the mean orbit elements can be approximated by
the corresponding osculating ones. In addition, when the satellite
orbits are near-circular as it is intended in this study, a linear relation
mapping the osculating elements to Cartesian state can be used. The
preceding considerations justify the use of Eq. (30) to compute the
relative Cartesian state directly from the mean ROE vector to the
corresponding Cartesian state to allow the inclusion of path
constraints through the optimization method proposed in this study.
Finally, because the control form given in Eq. (15), the objective

function J in Eq. (28) can be written as follows:

J	 � 2

Wc

�XNx

j�1

j �f�j�x j ~u�j�x �
XNy

j�1

j �f�j�y j ~u�j�y �
XNz

j�1

j �f�j�z j ~u�j�z

�
(32)

III. Solution via Mixed-Integer Linear
Programming Approach

The optimization problem described by Eq. (28) is nonlinear
because of the boundary constraints and the definition of the
objective function J	. In further detail, the variation of themean ROE
at the end of themaneuvering intervaluT is a nonlinear function of the

finite-timemaneuvers’ locations and durations, i.e., û�j��⋅� and ~u�j��⋅� with
j � 1; : : : ; N�⋅� [see Eqs. (20–25)]. Moreover, the objective function

J	 in Eq. (32) is a nonlinear function of the maneuvers’ magnitudes
�f�j��⋅� . Given the specific piecewise constant control profile considered
in this study (see Sec. II.B), the optimal control problem [Eq. (28)]
can be converted in a constrainedNLPproblem and, therefore, solved
through one of the numerous available algorithms for NLP solution,
such as gradient-based algorithms [22], or metaheuristic algorithms

as the genetic or the particle swarm algorithms [23,24]. Nevertheless,
the efficiency of the aforementioned algorithms is significantly
hindered by the increase of the number of optimization variables.
Note that problem (28) is a large-scale NLP problem with, at least

3Nx � 3Ny � 3Nz � 3 variables: the locations û�j��⋅� , durations ~u�j��⋅� ,

andmagnitude �f�j��⋅� of each thruster impulse plus the number of active

impulses. In addition, in the NLP problems, the initial guess plays a
fundamental role. Starting at a point close to a local optimum might
lead the solver to find a local minimum instead of the global one. To
overcome these difficulties, the minimum-fuel reconfiguration
problem in Eq. (28) is formulated as aMILP problem [25]. TheMILP
is a generalization of the linear programming (LP) problem [26] in
which some variables can be constrained to take only integer values.
Constraints on such variables enable the inclusion of logical
expressions in the optimization, encoding the combinatorial part of
the problem [27]. Therefore, by introducing additional integer
variables as well as by discretizing the entire maneuvering interval
[u0, uT], the problem in Eq. (28) can be fully written in a pure linear
form for all the constraints as well as in the objective function. This is
discussed in detail in the rest of this section. Once the original
optimization problem [Eq. (28)] is converted into the MILP form,
numerous software packages can be used for its solution, such as
FICO Mosel XPRESS [28], Gurobi [29], or CPLEX [30]. These
software packages usually implement linear and/or Lagrangian
relaxations embedded in branch-and-bound or brunch-and-cut
algorithms,which solve theMILPproblembygenerating and solving
LP subproblems in accordance with a tree search, where the nodes of
the tree correspond to LP subproblems [27]. In general, these
algorithms are specifically designed to exploit the characteristic
linearity of the problem (search of the global optimum within the
convex hull of the problem) to be very efficient for large-scale
problems, and typically they do not require the definition of an initial
guess. Hence, they are the natural choice to solve the problem
described in Eq. (28), oncewritten in the linear form. In this study, the
CPLEX software package is used. In fact, to the authors’ knowledge,
it is one of the most efficient and reliable MILP solvers available,
implementing the branch-and-bound algorithm in conjunction with
many adjustable heuristics.

A. Mixed-Integer Linear Programming Formulation

Asmentioned in Sec. III, tomake theMILP approach suited for the
determination of the minimum-fuel strategy for the formation
reconfiguration, the constrained nonlinear optimization problem
[Eq. (28)] has to be first transformed into a linear one. To this purpose,
let us divide the maneuvering interval [u0, uT] in a finite number of
subintervals Nd of fixed length 2 ~ud and associate to each of them a

finite-time maneuver of magnitude f �m� � � �f�m�
x ; �f�m�

y ; �f�m�
z �, with

�f�m�
x , �f�m�

y , �f�m�
z ∈ �−fmax; fmax� andm � 1; : : : ; Nd. In this way, the

optimization variables become the maneuvers’magnitudes related to

the mth subinterval, �f�m�
�⋅� (see Fig. 2). However, the discretization of

the maneuvering interval does not solve the issue of nonlinearity of

Fig. 2 Example of discretization for a generic axis (⋅) of RTN reference
frame.
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the objective function, which would be still nonlinear in �f�m�
�⋅� . Then,

let us split �f�m�
�⋅� into two subsets, �f�

�m�
�⋅� ∈ �0; fmax� and

�f−
�m�

�⋅� ∈ �−fmax; 0�, such that the objective function in Eq. (32) can

be rearranged as

J	MILP � 2

Wc

XNd

m�1

h�
�f�

�m�
x � �f�

�m�
y � �f�

�m�
z

�
~u�m�
d

−
�
�f−

�m�
x � �f−

�m�
y � �f−

�m�
z

�
~u�m�
d

i
(33)

FromEq. (33), the objective function J	MILP is now a linear function

of the new set of optimization variables [ �f�
�m�

�⋅� , �f�
�m�

�⋅� ],

with m � 1; : : : ; Nd.
Finally, the MILP problem associated to the minimum-fuel

reconfiguration strategy design can be formulated as

minimizing J	MILP

subject to ∀ xMILP � �η; τ�T; η ∈ R6Nd ;

τ ∈ Z � fτ: τs ∈ N; s � 1; : : : ; 6Ndg
HxMILP ≤ Y (34)

where

η � �f�
x ; f

−
x ; f

�
y ; f

−
y ; f

�
z ; f

−
z � τ � �ρ�x ; ρ−x ; ρ�y ; ρ−y ; ρ�z ; ρ−z � (35)

being

f�
�⋅� �

h
f̂�

�1�
�⋅� ; : : : ; f̂�

�Nd�
�⋅�

i
; f−

�⋅� �
h
f̂−

�1�
�⋅� ; : : : ; f̂−

�Nd�
�⋅�

i

f̂�
�m�

�⋅� �
�f�

�m�
�⋅�
fmax

∈ R; f̂−
�m�

�⋅� �
�f−

�m�
�⋅�

fmax
∈ R (36)

ρ��⋅� �
h
ρ�

�1�
�⋅� ; : : : ;ρ�

�Nd�
�⋅�

i
; ρ−�⋅� �

h
ρ−

�1�
�⋅� ; : : : ;ρ−

�Nd�
�⋅�

i
; ρ�

�m�
�⋅� ;ρ−

�m�
�⋅� ∈N

(37)

Let us recall that the subscript (⋅) stands for x, y, and z in the

preceding expressions. f̂�
�m�

�⋅� , f̂−
�m�

�⋅� are real quantities and express

the nondimensional positive and negative control accelerations in the

mth interval. They can vary continuously from 0 to 1. ρ�
�m�

�⋅� , ρ−
�m�

�⋅� are

binary variables (integer variables all included in the range [0, 1])
introduced to define the sign of the control input along the (⋅) axis and
are defined as follows:

ρ−
�m�

�⋅� �
(
1; if f̂−

�m�
�⋅� < 0

0; otherwise
; ρ−

�m�
�⋅� �

(
1; if f̂−

�m�
�⋅� < 0

0; otherwise
;

m � 1; : : : ; Nd (38)

According to the optimization problem [Eq. (28)], the following
21Nd inequalities have to be included in the MILP formulation
[Eq. (34)]:

0 ≤ f̂�
�m�

�⋅� ≤ ρ�
�m�

�⋅� ; 0 ≤ f̂�
�m�

�⋅� ≤
�
1 − ρ−

�m�
�⋅�

�
; m � 1; : : : ; Nd

(39)

−ρ−�⋅�;m ≤ f̂−
�m�

�⋅� ≤ 0; −
�
1 − ρ�

�m�
�⋅�

�
≤ f̂−

�m�
�⋅� ≤ 0; m � 1; : : : ; Nd

(40)

Mf

�
f̂�

�m�
�⋅� − f̂−

�m�
�⋅�

�
≥ρ�

�m�
�⋅� �ρ−

�m�
�⋅� ; withMf>0∈R; m�1; : : : ;Nd

(41)

Equations (39) and (40) are introduced to enforce the definition of

quantities ρ�
�m�

�⋅� , ρ−
�m�

�⋅� , i.e., f̂�
�m�

�⋅� is different from zero (and positive)

only ifρ�
�m�

�⋅� is 1 andρ−
�m�

�⋅� is zero, and (viceversa) f̂−
�m�

�⋅� is different from

zero (and negative) only if ρ−
�m�

�⋅� is 1 and ρ�
�m�

�⋅� is zero. Finally, Eq. (41)

imposes that, for each mth interval, either f̂�
�m�

�⋅� or f̂−
�m�

�⋅� is different

from zero. Thus, in Eq. (33), only one force component, either positive

or negative, is considered for each interval. This choice eliminates the

nonlinearity given by the absolute value in Eq. (32). Defining

Mf � fmax∕fmin, the magnitudes of the positive and negative finite-

time maneuvers, �f�
�m�

�⋅� and �f−
�m�

�⋅� , vary in the range [fmin, fmax] and

[−fmin, fmax], respectively, with fmin > 0. Finally, the equality

constraints on the final ROE state [see the boundary constraints in

Eq. (28)] are transformed in inequality constraints to match the MILP

formulation [Eq. (34)]. More details on the matrixH and the vector Y
are given in the following sections. Let us remark that, in accordance to

the definition of the MILP state vector reported in Eq. (35), the

objective function J	MILP in Eq. (33) can be rearranged as

J	MILP � 2fmax

Wc

h
~ud;− ~ud; ~ud;− ~ud; ~ud;− ~ud; 01×6Nd

i
xMILP

� 2fmax

Wc

cxMILP (42)

where ~ud � � ~u�1�d ; : : : ; ~u�Nd�
d � ∈ RNd , andxMILP is defined inEqs. (34)

and (35).

B. Boundary Constraints

At the end of the maneuvering time, uT , the rth mean ROE

component, δαr�uT�, has to be equal to the desired corresponding

mean ROE, δαr;des, i.e., δαr�uT� � δαr;des, with r � 1; : : : ; 6. This
equality constraint can be transformed in the following inequalities:

�Δδαr�uT� − Δδαr;des� ≤ εreljΔδαr;desj;
−�Δδαr�uT� − Δδαr;des� ≤ εreljΔδαr;desj (43)

where εrel is the user-defined tolerance. Hence, Eq. (43) leads to the
following 12 inequalities:


 fmax

κ

XNd

m�1

�
f̂�

�m�
y � f̂−

�m�
y

�
~u�m�
d ≤ 
Δδades � εreljΔδadesj (44)


 fmax

κ

�
−
XNd

m�1

�
f̂�

�m�
x � f̂−

�m�
x

�
~u�m�
d

−
Λc

Wc

XNd

m�1

�
uT − û�m�

��
f̂�

�m�
y � f̂−

�m�
y

�
~u�m�
d

� FcKcSc
2Wc

XNd

m�1

�
−s�û�m��s� ~ud� � s�û�m�− ~ud� ~u

�m�
d

− �uT − û�m� − ~ud�c�û�m��s� ~ud�
��

f̂�
�m�

z � f̂−
�m�

z

��
≤ 
Δδλdes � εreljΔδλdesj (45)


 fmax

κ

�
1

2β

XNd

m�1

s�CuT�βû�m��s�β ~u�m�
d

�
�
f̂�

�m�
x � f̂−

�m�
x

�

� 1

β

XNd

m�1

c�CuT�βû�m��s�β ~u�m�
d

�
�
f̂�

�m�
y � f̂−

�m�
y

��

≤ 
Δδex;des � εreljΔδex;desj (46)
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 fmax

κ

�
−

1

2β

XNd

m�1

c�CuT�βû�m��s�β ~u�m�
d

�
�
f̂�

�m�
x � f̂−

�m�
x

�

� 1

β

XNd

m�1

s�CuT�βû�m��s�β ~u�m�
d

�
�
f̂�

�m�
y � f̂−

�m�
y

��

≤ 
Δδey;des � εreljΔδey;desj (47)


 fmax

κ

�
1

2

XNd

m�1

c�û�m��s� ~u�m�
d

�
�
f̂�

�m�
z � f̂−

�m�
z

��

≤ 
Δδix;des � εreljΔδix;desj (48)


fmax

κ

�
7KcSc
2Wc

XNd

m�1

�uT− û�m��
�
f̂�

�m�
y � f̂−

�m�
y

�
~u�m�
d

� 1

Wc

XNd

m�1

�
KcTc

�
uT− û�m�− ~ud

�
c�û�m��s� ~ud�

�1

2
�Wc�2KcTc�s�û�m��s� ~u�m�

d
�−KcTcs�û�m�− ~u�m�

d
� ~ud

��
f̂�

�m�
z � f̂−

�m�
z

��
≤
Δδiy;des�εreljΔδiy;desj (49)

Note that, in the preceding expressions, the only unknowns are the

scaled accelerations’ magnitudes f̂�
�m�

�⋅� and f̂−
�m�

�⋅� . In fact, û�m� and
~u�m�
d are not optimization variables because they are established a

priori in the discretization process. Therefore, Eqs (44–49) can be

expressed in a matricial form as required in Eq. (34). This exercise is

left to the reader.

C. Path Constraints

To prevent the collision between the deputy and chief satellites

during the reconfiguration maneuver, the deputy vehicle must

maintain a specified distance from the chief (i.e., it has to lie outside a

specific screening volume around the chief). In this study, a square-

base rectangular exclusion zone of dimension Rca is considered. The

preceding collision avoidance constraint can be formulated as

jx�uc�−xdesj≥Rca OR jy�uc�−ydesj≥Rca OR jz�uc�−zdesj≥Rca

(50)

where xdes, ydes, and zdes are the Cartesian coordinates of the center

of the safety box relative to the chief, and therefore

xdes � ydes � zdes � 0. The constraints in Eq. (50) can be converted
into a mixed-integer form by introducing the binary variables ϑ�

�m�
�⋅� ,

ϑ−
�m�

�⋅� ∈ �0; 1� ∈ N as follows:

−x�m� � xdes ≤ −Rca �Mcaϑ
��m�
x ; x�m� − xdes ≤ −Rca �Mcaϑ

−�m�
x ;

m� 1; : : : ;Nd (51)

−y�m� � ydes ≤−Rca �Mcaϑ
��m�
y ; y�m� − ydes ≤−Rca �Mcaϑ

−�m�
y ;

m� 1; : : : ;Nd (52)

−z�m� � zdes ≤ −Rca �Mcaϑ
��m�
z ; z�m� − zdes ≤ −Rca �Mcaϑ

−�m�
z ;

m� 1; : : : ;Nd (53)

ϑ��m�
x � ϑ−

�m�
x � ϑ��m�

y � ϑ−
�m�

y � ϑ��m�
z � ϑ−

�m�
z ≤ 5; m� 1; : : : ;Nd

(54)

The quantity Mca is an arbitrary positive number, larger than any

distance in the problem. The terms x�m�, y�m�, and z�m� represent the
Cartesian coordinates of the deputy position expressed in the chief

RTN reference frame at themth time instant u�m�
c � û�m� � ~u�m�

d with

m � 1; : : : :; Nd, defined by the maneuvering interval discretization.
To be consistent with the MILP formulation, the linear mapping
reported in Eq. (30) is employed to determine the Cartesian relative

position at u�m�
c , i.e.,

2
6666664

x�m�

y�m�

_x�m�

_y�m�

z�m�

_z�m�

3
7777775

� acM�u�m�
c �δα�u�m�

c � (55)

where, according to Eq. (16), δα�u�m�
c � is

δα�u�m�
c � � ϱx�u�m�

c � � ϱy�u�m�
c � � ϱz�u�m�

c � −Φ�u�m�
c ; u0�δα0

(56)

Equations (51–54) are 7Nd inequalities to be included in the matrix

H [see Eq. (34)]. It is clear that the binary variablesϑ�
�m�

�⋅� , ϑ−
�m�

�⋅� have to

be added to the optimizer state reported in Eq. (34). Hence, defining

the vectors ϑ��⋅� � �ϑ�1��⋅� ; : : : ; ϑ
��Nd�
�⋅� � and ϑ−�⋅� � �ϑ−�1�

�⋅� ; : : : ; ϑ−
�Nd �

�⋅� �,
the MILP state becomes xMILP � �η; τ; ϑ�x ; ϑ−x ; ϑ�y ; ϑ−y ; ϑ�z ; ϑ−z �T .
Accordingly, the objective function J	MILP shown in Eq. (42) can be

rearranged as J	MILP � �2fmax∕Wc��c; 01×6Nd
�xMILP.

D. Additional Constraints

The set of constraints discussed in Secs. III.A and III.B, alongwith
those reported in Eqs. (39–41), allows the MILP to solve the
optimization problem described in Eq. (28), i.e., to find the
minimum-fuel reconfiguration maneuver when an admissible range
of acceleration is imposed and an exclusion volume for the relative
trajectory is set to prevent the satellites’ collision. However, the
control profile might be constrained by other practical aspects. From
an operational point of view, for instance, the number of finite-time
maneuvers to achieve a specific formation configuration cannot be
arbitrary. It should be limited to a reasonable number to reduce the
complexity of the associated operations and increase the overall
reliability. In addition, time constraints might be required to meet
technical and operational mission requirements. In this study, the
minimum duration of thruster firing and the minimum time spacing
between consecutive maneuvers are taken into account. To include
the aforementioned constraints, additional binary variables are
appended to the MILP state introduced in Sec. III.C, namely and,
defined as

σ�m� �
(
1; if ρ��m�

x � ρ−
�m�

x � ρ��m�
y � ρ−

�m�
y � ρ��m�

z � ρ−
�m�

z ≥ 1;

0; otherwise

m � 1; : : : ; Nd (57)

ς�m� �
(
1; if

Pm�Ns−1
k�m σ�k� � Ns and σ�m−1� � 0;

0; otherwise

m � 2; : : : ; Nd − Ns � 1

ς�1� �
(
1; if

PNs

k�1 σ
�k� � Ns

0; otherwise
(58)

The variable σ�m� enables one to count the subintervals of time
mesh in which the propulsion system delivers the desired
acceleration, regardless its direction, whereas the variable ς�m�
introduces the concept of RTN maneuver as the consecutive Ns

subintervals (i.e., thruster impulses) in which the propulsion system
operates. Thus, the parameter NS [see Eq. (58)] indicates the
minimum duration of thrusters’ firings. For the sake of clarity, let us
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consider the control profile illustrated in Fig. 3. Accordingly,
assuming Ns � 3, the vector containing the variable σ�m� is
σ � �0; 1; 1; 1; 1; 0; 0; 0; 1; 1; 1; 0�, whereas the vector containing the
variable ς�m� is ς � �0; 1; 0; 0; 0; 0; 0; 0; 1; 0�. The propulsion system
performs two maneuvers.
To obtain a control solution with a maximum number of thruster

firings equal to NI and characterized by a minimum number of
consecutive burns of duration 2 ~u�m�

d equal to Ns > 1, once Nd is set,
the following 5Nd − 2Ns � 2 inequalities are to be included in the
MILP formulation:

ρ��m�
x �ρ−

�m�
x �ρ��m�

y �ρ−
�m�

y �ρ��m�
z �ρ−

�m�
z ≥ σ�m�; m� 1; : : : ;Nd

(59)

ρ��m�
x �ρ−

�m�
x �ρ��m�

y �ρ−
�m�

y �ρ��m�
z �ρ−

�m�
z ≤3σ�m�; m�1; : : : ;Nd

(60)

ς�m� ≤
1

Ns

Xm�Ns−1

k�m

σ�k�; m � 1; : : : ; Nd − Ns � 1 (61)

ς�m� ≤ 1 − σ�m−1�; m � 2; : : : ; Nd − Ns � 1 (62)

σ�m� − σ�m−1� ≤ ς�m�; m � 2; : : : ; Nd − Ns � 1 (63)

σ�m�1� ≤ σ�m�; m � Nd − Ns; : : : ; Nd − 1 (64)

σ�1� ≤ ς�1� (65)

XNd−Ns�1

k�1

ς�k� ≤ NI (66)

Equations (59–64) enforce the definition of quantities σ�m� and
ς�m�, i.e., σ�m� is different from zero only if at least one of the
corresponding variables ρ�

�m�
�⋅� or ρ−

�m�
�⋅� is 1, whereas ς�m� is different

from zero only if the sum of consecutive σ�m� is equal to Ns and the
maneuver starts from themth element. Equation (66) imposes that the
number of thruster firings cannot overcome the valueNI . Ultimately,
the constraint on the minimum time separation between consecutive
maneuvers can be introduced forcing the thrusters to provide a null
acceleration for Nt subintervals. Hence, the following Nd − Nt

inequalities are to be added:

Xmax�m−Nt;1�

k�m−1
σ�k� ≤ Nt�1 − ς�m�� with m � 2; : : : ; Nd − Ns � 1

(67)

It isworth remarking that the optimizer statevector has tobe updated

to include the aforementioned additional binary variables σ�m� and
ς�m�. In further detail, the MILP state vector becomes xMILP �
�η; τ;ϑ�

x ;ϑ−
x ;ϑ�

y ;ϑ−
y ;ϑ�

z ;ϑ−
z ; σ; ς�T , where σ � �σ�1�; : : : ; σ�Nd��

and ς � �ς�1�; : : : ; ς�Nd−Ns�1��. As a consequence, the objective
function J	MILP in Eq. (42) has to be rearranged as J	MILP �
�2fmax∕Wc��c; 01×6Nd

; 01×Nd
; 01×�Nd−Ns�1��xMILP, where c � � ~ud;

− ~ud; ~ud;− ~ud; ~ud;− ~ud; 01×6Nd
�.

IV. Numerical Simulations

This section presents the trajectories designed using the MILP
formulation, pointing out the maneuvering performances in terms of
accuracy and delta-v. A two-satellite formation reconfiguration
scenario is considered. Only one of the two spacecraft, namely the
deputy, is assumed to be maneuverable and capable of providing
continuous thrust along the radial, tangential, and normal directions
of its own RTN reference frame. The chief moves on a sun-
synchronous circular orbit (ec � 0)with about 98.6 deg inclination at
an altitude of 800 km.Without loss of generality, the initialmean right
ascension of ascending node and the mean anomaly of the chief orbit
are assumed to be zero as well as the mean argument of latitude (i.e.,
Ωc � Mc;0 � u0 � 0 rad). At the beginning of the maneuver, the
mean relative orbit is centered 5 km away from the chief along the
along-track direction (i.e., acδλ � 5 km). The initial relative
inclination vector has a nonzero x component, which corresponds to
an inclination difference Δi � 0.0069 deg. The magnitude and
orientation of the initialmean relative inclinationvector areackδik �
1.2247 km and 45 deg, respectively, whereas the magnitude and
orientation of the mean relative eccentricity vector are acδe �
707.1 m and −45 deg, respectively. Table 1 reports the initial
formation configuration in terms of mean ROE (first row) and the
final desired mean relative orbit (second row). It is worth noting that
the phases of the desired mean relative eccentricity/inclination
vectors do not vary with respect to the initial configuration (i.e.,
eccentricity/inclination vectors are perpendicular at the beginning
and at the end of the reconfiguration maneuver).
To compute the maneuvering accuracy, a high-fidelity satellite

orbit simulator is exploited to propagate the initial states of deputy
and chief expressed in the Earth-centered inertial (ECI) reference
frame (J2000), including 1) the geopotential accelerations deter-
mined through the EGM2008 model (up to the 10th order), 2) the
atmospheric drag computed through the NRLMSISE-00 density
model, 3) the solar radiation pressure perturbation, and 4) the sun and
moongravitational perturbing accelerations. The control acceleration
profile obtained in the deputy RTN reference frame is projected in
ECI and added as external accelerations to the deputy’s motion.

Fig. 3 Example of RTN maneuver.

Table 1 Initial and desired mean relative orbits

Relative orbit acδa, m acδλ, m acδex, m acδey, m acδix, m acδiy, m

Initial formation configuration 0 5 × 103 500 −500 500
���
3

p
500

���
3

p
Desired formation configuration 0 0 800 −800 1600 1600
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Note that the linear mapping developed by Brouwer [31] and

Lyddane [32] is used to transform the mean orbital elements to

osculating and vice versa. As illustrated in Fig. 4, following a chain

of transformations comprising the nonlinear relations between

Cartesian ECI state and osculating orbital elements and the

aforementioned linear map to convert the osculating to mean

elements, the distance between the current relative orbit and the

desired one can be computed as

ϵΔδαr�t� �
Δδαnumr �t� − Δδαr;des

jΔδαr;desj
r � 1; : : : ; 6 (68)

where Δδαnum�t� � δαnum�t� −Φ�t; t0�δα0.
All simulations, including the computation of MILP solution, are

carried out using a personal computer with an Intel Core i7-2677M

CPU 1.8 GHz processor and 4 GB of RAM.

A. Validation of Mixed-Integer Linear Programming Approach

This section intends to validate the MILP approach presented in

Sec. III. To this purpose, the results obtained by the MILP solver are

comparedwith those from thewell-known impulsive theory [2,3,12].

In further detail, starting from the scenario described in the previous

section, three study cases are investigated, assuming a maneuvering

interval of eight chief orbital periods (i.e., uT � 16π rad

corresponding to about 13.45 h). First, the unperturbed (J2 � 0)
in-plane and out-of-plane reconfiguration problems are considered.

The positions of the finite-time burns and the total delta-v obtained

through the MILP approach are compared with the corresponding

fuel-optimal impulsive solutions discussed by D’Amico [12]

and Gaias and D’Amico [2]. Second, the J2-perturbed full

reconfiguration problem is analyzed (i.e., the simultaneous control of

the in-plane and out-of-plane relative motion). In this case, the

performance of the MILP solution is validated against the fuel-

optimal impulsive solution derived by the authors using a particle

swarm optimization (PSO) algorithm tailored for the formation

control and presented in [15].
Because the lower kinematic efficiency of finite-timemaneuvering

with respect to the impulsive one, it is expected that the cost of

reconfiguration maneuver due to the MILP solution is always higher

than the corresponding impulsive one. However, if the discretization

is such that the minimum firing duration is small enoughwith respect

to the maneuvering interval, then the location of the finite-time

maneuvers has to match (or at least be close to) the position of the

impulsive burns.

1. Unperturbed In-Plane Reconfiguration Maneuver

For the in-plane reconfiguration problem in the unperturbed

(J2 � 0) circular orbit (ec � 0), it is possible to compute the

minimum delta-v required to achieve the desired formation

configuration, as discussed in [2,3,33]. This lower delta-v bound is

independent from the number or type of executedmaneuvers and it is

given by [2]

VLB � max

�
ncacΔδe

2
;
ncacjΔδa	j

2

	
(69)

where

jΔδa	j�maxfjδades−δa�u0�j;jδa	transf−δa�u0�j; jδa	transf−δadesjg
(70)

and

δa	transf � 2

3

Δδλdes
�uT − u0�

(71)

δa	transf represents the minimum relative semimajor axis for
accomplishing a givenmean relative longitude transfer over the finite
time to span (uT − u0). Moreover, from the finding by D’Amico [12]
and Gaias and D’Amico [2], if the reconfiguration cost is driven by
the variation of relative eccentricity vector, i.e., kΔδek > jΔδa	j and
kΔδek > 2Δδλdes∕3�uT − u0�, the fuel optimal in-plane reconfig-
uration can be accomplished by three tangential impulses of
magnitude

Δv�j�y;imp � −
ncacξj

2π�k2�1 − �−1�k3� − k3�1 − �−1�k2�� j � 1; : : : ; 3

(72)

located at

u�1�cy;imp � atan

�
Δδex
Δδey

�
� k1π u�2�cy;imp � u�1�cy;imp � k2π

u�3�cy;imp � u�1�cy;imp � k3π (73)

In Eqs. (72) and (73), kj ∈ N, whereas the quantities ξj are

ξ1 � �−1�k2φ1 − �−1�k3φ2 � �−1�k1�χ2 − χ1� (74)

ξ2 � φ1 − �−1�k3φ3 � �−1�k1χ2 (75)

ξ3 � φ2 − �−1�k2φ3 � �−1�k1χ1 (76)

φj �
3

2
nc�uT − u�j�cy;imp�Δδades � ncΔδλdes (77)

χ1 �
3

2
nck2πΔδedes χ2 �

3

2
nck3πΔδedes (78)

Note that the preceding solution exists if k2 ≠ k3 and if k2 �
2n� 1 (or k3) when k3 � 2n (or k2), with n ⊂ N.
Let us consider the mission scenario presented in Sec. IV, assuming

that only the in-plane components of the mean ROE vector are to be
modified by the control strategy, i.e., acΔδαdes � ac�Δδades;Δδλdes;
Δδex;des;Δδey;des�T � �0;−5 × 103; 300;−300�T m. According to

Eq. (69), the lower delta-v bound VLB is 0.2202 m∕s. The preceding
minimum delta-v can be obtained by the impulsive strategy described
by Eqs. (72–77) choosing the parameters k1 � 2, k2 � 7, and

k3 � 8. The three tangential impulses have magnitudes Δv�1�y;imp �
0.0826 m∕s, Δv�2�y;imp � −0.11 m∕s, and Δv�3�y;imp � −0.0275 m∕s.

Fig. 4 Numerical simulations layout.

Article in Advance / DI MAURO ETAL. 9

D
ow

nl
oa

de
d 

by
 S

E
R

IA
L

S 
SE

C
T

IO
N

 o
n 

D
ec

em
be

r 
23

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
38

22
 



It is worth noting that, because the optimal impulsive scheme described

by Eqs. (72) and (73) represents a family of solutions, the lower bound

could have been obtained through a different combination of kj.
To obtain the finite-time maneuver control scheme through the

MILP formulation, the “quasi-uniform” time mesh discussed in [15]

is employed. This discretization guarantees that the angular

separation between the middle point of each finite-time maneuver

(i.e., û�m�) and the reference angle �u � atan�Δδex∕Δδey� is a

multiple of π (i.e., ~ud � dπ, where d ∈ R). This choice guarantees
that the impulsive solutions shown in Eqs. (72) and (73) are included

in the space of the feasible solution of the optimizer. Let us remind

that this discretization is called quasi-uniform because the interval

[uL, uR] is always uniformly divided in Nqu � NL � NR ∈ N
subintervals, with (see [15] for more details)

uR � �u� ~ud � NR2 ~ud; uL � �u� ~ud − NL2 ~ud (79)

and

NR � floor

��uT − � �u� ~ud��
2 ~ud

�
; NL � floor

��� �u� ~ud�− u0�
2 ~ud

�
(80)

For the simulations presented in this section, it is assumed that
~ud � π∕16 rad (i.e., Nd � 257), corresponding to a firing duration

of 3.152 min. Note that only the boundary constraints are considered

here (see Secs. III.A and III.B), i.e., the MILP state vector is

xMILP � �f�
x ; f

−
x ; ρ�x ; ρ−x ; f�

y ; f
−
y ; ρ�y ; ρ−y �T . Without loss of general-

ity, the maximum and minimum admissible accelerations are set

equal to 0.03 and 3 × 10−5 m∕s2, respectively.
The MILP approach provides a control solution consisting of

three tangential finite-time maneuvers of magnitude �f�1�y �
4.37 × 10−4 m∕s2, �f�2�y � −5.83 × 10−4 m∕s2, and �f�3�y � 1.46 ×
10−4 m∕s2 corresponding to Δv�1�y;ft � −0.082 m∕s, Δv�2�y;ft �
−0.11 m∕s, and Δv�3�y;ft � 0.0276 m∕s, and a total maneuvering cost

of ΔvTot;ft � jΔv�1�y;ftj � jΔv�2�y;ftj � jΔv�3�y;ftj � 0.02206 m∕s. Figure 5
illustrates the acceleration profile along the tangential direction of the

deputy RTN reference frame. Note that the MILP formulation does

not produce anymaneuver along the radial direction. This result is to

be expected due to the higher efficiency of the along-trackmaneuvers

with respect to the radial ones [12]. The middle points of the three

tangential finite-time maneuvers are located at the same mean

argument of latitude of the impulsive burns, i.e., û�1�y;ft � u�1�y;imp �
�u� 2π, û�2�y;ft�u�2�y;imp�u�1�y;imp�7π, and û�3�y;ft�u�3�y;imp�u�1�y;imp�8π.
The difference of maneuvering cost between the two approaches

stems from the dynamics model exploited to derive the finite-time

maneuver control strategy (see Sec. II.A). It converges to the

impulsive model discussed in [3] when the firing duration ~ud tends to
zero (i.e., Nd → ∞). For this reason, the MILP solver fires the

thrusters slightly before and after the optimal instants of time u�j�y;imp,

where j � 1; : : : 3, to reduce the totalmaneuvering delta-v, adjusting

the values of �f�j�y with j � 1; : : : 3 to get Δv�j�y;ft ≈ Δv�j�y;imp. In light of

this, it is clear that the difference in terms of delta-v between the fuel-

optimal impulsive strategy and the one given by the MILP reduces

when a finer time mesh is used. A comprehensive analysis of the

effects of the discretization on the MILP solution is given in

Sec. IV.B.

2. Unperturbed Out-of-Plane Reconfiguration Maneuver

The fuel-optimal impulsive solution for the unperturbed (J2 � 0)
circular (ec � 0) out-of-plane reconfiguration problem can be

derived analytically and yields [12]

Δv�1�z;imp �
ncac

cos�u�1�z;imp�
u�1�z;imp � atan

�
Δδix
Δδiy

�
� kπ (81)

where k ∈ N. With reference to the scenario described in Sec. IVand

the relative formation configuration summarized in Table 1, the fuel-

optimal impulsive solution can be obtained with k � 0. Then, the

impulsive strategy involves a single burn of magnitude Δv�1�z;imp �
1.1077 m∕s located at u�1�z;imp � 0.78 rad. Let us recall that only the

out-of-plane components of the meanROE vector have to bemodified

by the control scheme (i.e., acΔδαdes � ac�Δδix;des;Δδiy;des�T �
�733.97; 733.97�T m for the simulated maneuver). This means that no

in-plane control accelerations are required. In fact, no coupling

between the in-plane and out-of-plane dynamics exists because the

satellites’ orbits are Keplerian.
To derive the MILP solution, the same quasi-uniform

discretization introduced in Sec. IV.A.1 is used, with �u �
atan�Δδiy∕Δδix� [see Eq. (81)]. In addition, as for the preceding

validation simulation, the control acceleration is assumed to range

from 3 × 10−5 to 0.03 m∕s2. Because only the boundary constraints
are taken into account, the MILP state vector is further reduced,

including 2Nd real variables f�
z and f−

z as well the corresponding

2Nd binary variables ρ�z and ρ−z (i.e., xMILP � �f�
z ; f

−
z ; ρ�z ; ρ−z �T).

Figure 6 depicts the acceleration profile provided by the MILP

solver along the cross-track direction of the deputy RTN reference

frame. It consists of a single finite-time burn of magnitude �f�1�z �
5.706 × 10−3 m∕s2 whose middle point is located at the same mean

argument of latitude of the impulse burn (i.e., û�1�z;ft � u�1�z;imp � �u).

However, the MILP strategy requires higher delta-v (i.e.,

Δv�1�z;ft � 1.1079 m∕s). Again, this discrepancy is due to the

continuous dynamics model used in the MILP formulation; in fact,

when the number of subintervals increases, that is Nd → ∞ and

~u�m�
d → 0, the continuous dynamics model reduces to the impulsive

one; therefore, Δv�1�z;ft → Δv�1�z;imp.

Fig. 5 Along-track acceleration profile obtained by the MILP. Fig. 6 Cross-track acceleration profile given by the MILP.
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3. J2-Perturbed Full Reconfiguration Maneuver

In this section, the optimality of the MILP solution for a full

reconfiguration maneuver in presence of J2 perturbation is

investigated. The MILP finite-time maneuver control scheme

is compared with the fuel-optimal impulsive solution derived

using another numerical technique suited for solving nonlinear

programming problem, namely the particle swarm optimization

(PSO). In fact, to the authors’ knowledge, an analytical fuel-optimal

impulsive control solution that counts for the coupling due to the J2
perturbation is not available. The PSO algorithm is a metaheuristic

optimization method based on the cooperation between a fixed-size

set (swarm) of NSW particles (i.e., a group of candidate solutions

containing the optimization parameters [23]). The particles move

through the set of acceptable and meaningful solutions, referred to as

the feasible search space, modifying their position (i.e., the values of

the M optimization parameters associated with it) through an

appropriate perturbation named velocity. During the evolution, the

generic ith particle is evaluated at the step k through the performance

index Jki , which takes into account the goal of the optimization and

the imposed constraints [34]. To obtain the impulsive control scheme,

the PSO developed by the authors and presented in [15] is employed

in this work. With respect to the formulation shown in [15], because

an impulsive strategy is to be found, the dynamicsmodel presented in

[3] is used. In light of this, the ith PSO particle is defined as follows:

xi;PSO �
h
Δvx;imp;Δvy;imp;Δvz;imp; ux;imp; uy;imp; uz;imp

i
T

∈ R2Nx�2Ny�2Nz (82)

where

Δvx;imp �
h
Δv�1�x;imp; : : : ;Δv

Nx

x;imp

i
T
;

Δvy �
h
Δv�1�y;imp; : : : ;Δv

Ny

y;imp

i
T
;

Δvz �
h
Δv�1�z;imp; : : : ;Δv

Nz

z;imp

i
T

(83)

ux;imp �
h
u�1�x;imp; : : : ; u

Nx

x;imp

i
T
;

uy;imp �
h
u�1�y;imp; : : : ; u

Ny

y;imp

i
T
;

uz;imp �
h
u�1�z;imp; : : : ; u

Nz

z;imp

i
T

(84)

As discussed in [15], the performance index Jki includes the total
delta-v as well as a penalty function associated to the final condition

constraints, i.e.,

Jki � J	 �
X4
r�1

dr max

�
0;





Δδαr�xi;PSO� − Δδαr;des
Δδαr;des





 − εrel

�
(85)

where J	 is defined in Eq. (32). Note that the PSO approach requires

the user to define the maximum number of impulses along each axis

to perform the reconfiguration maneuver (i.e., to set the parameters

Nx, Ny, and Nz). Here, a maximum number of three impulses along

the tangential direction and one along the cross-track direction are

chosen.With reference to the orbital scenario presented in Sec. IV, the

PSO algorithm leads to a maneuvering cost of 1.2289 m∕s, with the
magnitudes and locations of the burns reported in Table 2.

The continuous MILP solution is derived using the quasi-uniform
with ~ud � π∕�16β� and �u � atan�Δδiy∕Δδix�∕β. The parameter β
defined in Eq. (14) is introduced to account for the shift in the
impulses’ locations due to the J2 perturbation, as discussed in [15].
This choice leads to a minimum finite-time maneuver of 3.154 min.
For this simulation, only the boundary constraints are considered, i.e.

xMILP � �η; τ�T with η and τ defined inEq. (35), and the same extreme
values of control accelerations used in the preceding validation test
cases are imposed. Figure 7 illustrates the control profile obtained by
theMILP in the along-track and cross-track directions, which leads to
ΔvTot � 1.2345 m∕s. From the figure, themaneuvers’midpoints are
located close to the impulsive burns computed by the PSO algorithm.
In further detail, the along-track maneuvers are centered at

û�1�y;ft � 5.5709 rad, û�2�y;ft � 46.3884 rad, and û�3�y;ft � 49.5282 rad,

whereas the cross-track maneuvers are consecutive and placed at

û�1�z;ft � 0.6650 rad and û�2�z;ft � 0.8612 rad. The slight difference is

due to the discretization of the maneuvering interval involved in the
MILP formulation. In fact, the finite-time maneuvers can occur only
in specific instants depending on the defined time mesh. On the
contrary, the impulses computed through the PSO algorithm can be
located at any value of uc.

B. Analysis of Discretization of the Maneuvering Interval

This section aims at investigating the effects of the maneuvering
interval discretization on the full reconfiguration strategy
performances. To this purpose, a uniform time mesh is considered,
with Nd varying between 50 and 700 corresponding to a minimum
firing duration ranging between 1.154 and 16.158 min. All
simulations presented in the following refer to the scenario presented
in Sec. IV, assuming a maneuvering interval of eight chief orbital
periods and a control acceleration varying between fmin �
0.03 m∕s2 and fmax � 3 × 10−5 m∕s2. In the MILP formulation,
both path constraints and additional constraints presented in Secs. III.
C and III.D, respectively, are ignored, i.e., xMILP � �η; τ�T , with η and
τ defined in Eq. (35). In fact, when these constraints are included in
the formulation, the performance of the control strategy does not
depend only on the number of subintervals but rather on the
additional user-defined parameters NI , Ns, and Nt, and on the
dimension of the exclusion box Rca.
Figure 8 shows the total maneuvering cost over the number of

subintervals. Accordingly, ΔvTot decreases with the increase of Nd.
More specifically, the highest value of 1.29 m∕s is obtained with the
coarsest time mesh (i.e., Nd � 50), whereas the smallest value of
1.22 m∕s is achieved when the number of subintervals is 666. It is

Table 2 Impulsive PSO solution

Tangential Impulses Cross-track impulses

Impulses Maneuver 1 Maneuver 2 Maneuver 3 Maneuver 1

Locations u�j��⋅�;imp, rad 5.5255 46.4188 49.5093 0.7140

Magnitude Δv�j��⋅�;imp, m∕s 0.0480 −0.1104 0.0624 1.0082

Fig. 7 Along-track and cross-track acceleration profile given by the
MILP.
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worth remarking that, regardless of the time grid chosen for the MILP

implementation, the control acceleration along the radial direction of

the deputy RTN reference frame is always null. In addition, for the

specific studied case, only an improvement of the total delta-v of

5.42% is achieved with respect to the reference delta-v (i.e., ΔvTot at
Nd � 50). In further detail, when Nd becomes greater than 210, the

gain in termof total delta-v is lower than 0.70%with respect toΔvTot at
Nd � 210. Hence, depending on the specific application, a tradeoff

should be carried out to evaluate the benefits of a discretization

refinement, keeping in mind that the number of variables and

inequalities to be handled by the optimizer increases linearly with the

parameterNd (e.g., here the number of variables is 12Nd with 21Nd �
12 inequalities), affecting the computational performance. Figure 9

shows the mean computing time (each dot indicates the average value

of computing time determined over 50 runs) versus the number of

subintervals Nd. From the figure, the computational performance

degrades with the increase ofNd, remaining under 30 s for the specific

studied case. In light of this, when the MILP approach is meant to be

exploited for onboard determination of the control strategy, an

admissible number of subintervals has to be considered. In addition, it

must be remarked that the time grid must be compatible (i.e., much

larger) with the dynamic response characteristic of the propulsion

system and with its capability of reorienting the thrust vector.
Figure 10 illustrates the control profiles corresponding toNd � 50

(left plot) andNd � 666 (right plot). Figure 11 (left) and Fig. 12 (left)
depict the variation of delta-v along the y and z axes of the deputy
RTN reference frame, respectively, i.e.,

XNd

m



Δv�m�
�⋅�




where the symbol (⋅) stands for y and z. Figures 11 and 12 show the

evolution of themean of absolute values of themaneuvers’ amplitude

over the maneuvering time, i.e.,

~fy �
XNy

j

j �fy;jj∕Ny and ~fz �
XNz

j

j �fz;jj∕Nz

respectively. From these plots, ~fy and ~fz tend to increase with the
increase of the number of discretization intervals. This result is
consistent with the fact that the MILP solution tends to the fuel-
optimal impulsive one with the increase of Nd, compatibly with the
maximum available control acceleration.

C. Minimum-Fuel Reconfiguration Maneuver Strategy via

Mixed-Integer Linear Programming

In this section, the performances of MILP approach in terms of
maneuvering delta-v and accuracy are shown. More specifically,
three test cases are presented to demonstrate the effectiveness
of the constraint formulations discussed in Secs. III.A–III.D.
The set of constraints for each test case is listed in Table 3. The
last two columns of the table report the number of real/integer
variables and the inequalities required to enforce the definition
of those variables and impose the constraints discussed in
Secs. III.A–III.D. More explicitly, they indicate the dimension of
matrixH in Eq. (34). Here, a full reconfiguration maneuver lasting

Fig. 8 ΔvTot over the number of subintervals.

Fig. 9 Computing time over the number of subintervals.

Fig. 10 Control profile withNd � 50 (left) andNd � 666 (right).

Fig. 11 Velocity (left) and mean values of the maneuvers’ amplitude
(right) along the y axis over the number of subintervals.

Fig. 12 Velocity (left) and mean values of the maneuvers’ amplitude
(right) along the z axis over the number of subintervals.
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16 chief orbital periods is considered, assuming the initial and
desired relative configuration summarized in Table 1 (i.e.,
acΔδαdes � �0;−5.115x103; 329.5;−272.2; 734; 624.7�T m). Note
that the effect of J2 perturbation is taken into account (i.e., the
dynamics model described in Sec. II.A is employed to derive the
MILP-based control strategy). A uniform time mesh with 240
elements is considered (i.e., a single subinterval lasts 6.73 min). In
addition, the magnitude of the acceleration vector is assumed to
vary between fmin � 3 × 10−5 m∕s2 and fmax � 3 × 10−4 m∕s2.
Considering a mass of 100 kg for both spacecraft, the preceding
acceleration values are compatible with different classes of low-
thrust propulsion system, ranging from Hall-effect propulsion
system to radio-frequency ion thrusters [35,36]. Moreover, the
deputy onboard thrusters are oriented in such a way to guarantee a
thrust along both directions of all axes of RTN reference frame.
This assumption entails the duration of subinterval to be compliant
with the time response of the thrusters. In fact, the change of
direction of the thrust vector is achieved by modulating the
amplitude of the control acceleration.

1. Test Case 1

In this scenario, the MILP solution is derived considering only the
boundary constraints (see Sec. III.B). In light of this, matrix H in
Eq. (34) has the dimension �21Nd � 12� × 12Nd and includes the
inequalities reported in Eqs. (39–41) and Eqs. (51–54), whereazs the
optimizer state vector is xMILP � �η; τ�T , with η and τ defined in
Eq. (35). Hence, the formulation involves 6Nd binary variables and
6Nd real variables.
Figure 13 illustrates the acceleration control profile along y and z

directions of the deputy RTN reference frame, consisting of 45
thruster firings. This scheme requires a total delta-v of 1.219 m∕s. It
is worth mentioning that CPLEX solves theMILP problem in 0.91 s.
Figure 14 shows the mean ROE state variation over the

maneuvering interval according to Eq. (68). At the end of the
maneuvering interval, the final desired position is achieved with
the value of relative accuracies, ϵΔδαr�t� with r � 1; : : : 6, listed in
Table 4. Note that, because the variation of the semimajor axis is null
(i.e., jΔδadesj � 0), the corresponding accuracy ϵΔδa�T� is scaled
with respect to jΔδex;desj, that is the smallest variation among the
ROE components. The total accuracy defined as

ϵTot � ac;0

���������������������������������������������������������������������������������������������������������������������������������������������������������������������
�ϵΔδa�T��2 � �ϵΔδλ�T��2 � �ϵΔδex �T��2 � �ϵΔδey�T��2 � �ϵΔδix�T��2 � �ϵΔδiy �T��2

q
(86)

is equal to 8.705 × 10−3 m.
Ultimately, Fig. 15 illustrates the evolution of the relative position in

the chief RTN reference frame, along with its projection on the x–y
plane (Fig. 15a), x–z plane (Fig. 15c), and y–z plane (Fig. 15b). In the
figure also the firing intervals are depicted, with the green markers
representing the in-plane maneuvers and the cyan ones the cross-track
maneuvers. The initial and the desired relative positions are indicated
by the red andmagentamarkers, respectively. It isworth remarking that
the phasing characteristics of e∕i vectors (see Table 1) does not
guarantee a passively safe transfer trajectory, as confirmed by the
deputy trajectory shown in Fig. 15d. In this figure, the gray box
indicates a 700 m screening volume centered at the chief satellite
position. As a consequence, the path constraints have to be included in
the MILP formulation to obtain a collision-free maneuvering strategy.

2. Test Case 2

To avoid the deputy spacecraft entering the chief safety zone, the
path constraints discussed in Sec. III.C are included in the MILP
formulation. Figure 16 shows the corresponding control acceleration
profile. As it is clear from the figure, the optimizer modifies only the
along-track control, mainly adding one thruster firing with respect to
test case 1 (i.e., finite-time maneuvers are 46). Moreover, it is worth

noting that the along-track finite-time maneuvers are spread around

uc � �1∕β��atan�Δδey∕Δδex� � kjπ − CuT�, where kj ∈ N, even
though they are not centered at the aforementioned value of mean

Table 3 Summary of constraint set for all test cases

Test case
Boundary condition

(Sec. III.B)
Path constraint
(Sec. III.C)

Additional constraints
(Sec. III.D)

Number of variables
(real/integer) Number of inequalities

1 × —— —— 6Nd∕6Nd 21Nd � 12

2 × × —— 6Nd∕12Nd 28Nd � 12

3 × × × 6Nd∕�20Nd − Ns � 1� 34Nd − 2Ns − Nt � 14

Fig. 13 Acceleration profile for test case 1.

Fig. 14 Relative error ϵΔδαr �t� for test case 1.

Table 4 Accuracies for test case 1

Accuracy metric Value

jϵΔδa�T�jac;0, m 1.230 × 10−3

jϵΔδλ�T�jac;0, m 8.375 × 10−3

jϵΔδex �T�jac;0, m 1.282 × 10−3

jϵΔδey �T�jac;0, m 1.054 × 10−3

jϵΔδix �T�jac;0, m 1.00 × 10−3

jϵΔδiy �T�jac;0, m 0.591 × 10−3
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argument of latitude. On the contrary, the cross-track maneuvers are
performed around uc � �1∕β��atan�Δδiy∕Δδix� � kjπ − CuT�; see
also Fig. 17a. The new proposed control strategy requires the same
delta-v of case 1. Figure 17 illustrates the deputy trajectory in the

chief RTN reference frame (see Fig. 17d) along with its views on x–y
(see Fig. 17a), z–y (see Fig. 17b), and z–x (see Fig. 17c) planes. All
points of the time mesh (blue circles) lie outside the defined safety

volume, proving the effectiveness of the proposed constraint

formulation. It is worth remarking that the minimum-fuel MILP

solution is computed using the linear dynamics model discussed in

Sec. II.A, whereas the depicted trajectory is obtained using high-

accuracy orbital propagator. This fact entails a slight displacement of

the mesh points from the real trajectory.
According to Eq. (68), Fig. 18 illustrates the relative error along the

reconfiguration maneuver interval. The derived control solution

allows the achievement of the desired formation configuration in

16 chief orbital periods, with a total final relative error of 8.705 ×
10−3 m [see Eq. (30)]. The details of relative error for each ROE

vector element are reported in Table 5. Comparing the results

reported in Fig. 18with those illustrated in Fig. 14, it turns out that the

in-plane components of the ROE vector are mainly affected by the

introduction of the path constraints. In fact, because of the slight

coupling between the in-plane and out-of-plane dynamics [see the

plant matrix ANC reported in Eq. (8)], changing the along-track

control profile must have an impact mainly on δa, δλ, δex, and δey.

Fig. 15 Relative motion trajectory (Fig. 15d) for test case 1: a) x–y, b) z–y, and c) z–x views of the trajectory.

Fig. 16 Acceleration profile for test case 2.

Fig. 17 Relative motion trajectory (Fig. 17d) for test case 2: a) x–y, b) z–y, and c) z–x views of the trajectory.
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Finally, it is worth pointing out that CPLEX provides the solution
in about 19.07 s. Then, the inclusion of path constraints penalizes the
computing performance of MILP algorithm.

3. Test Case 3

This test case includes the constraints presented in Sec. III.C,
along with the collision avoidance constraints defined in Sec. III.B.
Here, it is imposed that the control profile consists of 10 thrusters’
firings (i.e.,NI � 10) at most, and the propulsion system operates at
least for about 1∕3 of the chief orbital periods (i.e., Ns � 5, in
accordance with the number of subintervals chosen and the
maneuvering interval). Moreover, a minimum time separation
between two consecutive firings of 30 min is enforced by
setting Nt � 5.
Figure 19 shows the control profile obtained by the MILP solver.

Accordingly, both in-plane and out-of-plane profiles are modified
with respect to the test case 2, resulting in a 10 thrusters firing
reconfiguration strategy. It is worth observing that the inclusion
of the operational and time constraints slightly degrades the
performance of the reconfiguration strategy, leading to a total
delta-v of 1.225 m∕s.
Figure 20 shows the relative trajectory (see Fig. 20d) along with

its projections on the planes x–y (see Fig. 20a), y–z (see Fig. 20b),
and x–z (see Fig. 20c). As for test case 2, also in this simulation the
deputy trajectory lies outside the screening volume of the chief.
In addition, the along-track finite-time maneuvers occur in

Table 5 Accuracies for test case 2

Accuracy metric Value

jϵΔδa�T�jac;0, m 1.230 × 10−3

jϵΔδλ�T�jac;0, m 8.312 × 10−3

jϵΔδex �T�jac;0, m 1.088 × 10−3

jϵΔδey �T�jac;0, m 0.729 × 10−3

jϵΔδix �T�jac;0, m 1.04 × 10−3

jϵΔδiy �T�jac;0, m 0.514 × 10−3

Fig. 18 Relative error ϵΔδαr �t� for test case 2.

Fig. 19 Acceleration profile for test case 3.

Fig. 20 Relative motion trajectory (Fig. 20d) for test case 3: a) x–y, b) z–y, and c) z–x views of the trajectory.

Fig. 21 Relative error ϵΔδαr �t� for test case 3.
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proximity of uc ��1∕β��atan�Δδey∕Δδex��kjπ−CuT�, whereas

the cross-track maneuvers are performed around the mean argument

of latitude uc � �1∕β��atan�Δδiy∕Δδix� � kjπ − CuT�, where

kj ∈ N.
Finally, Fig. 21 depicts the relative error corresponding, ϵΔδαr�t�

(with r � 1; : : : ; 6), over the maneuvering interval. As expected, all

components of the ROE vector changewith respect to test case 2 (see

Fig. 18) because the both in-plane and out-of-plane acceleration

profiles are modified. However, a final relative accuracy of order of

millimeter is achieved, as shown in Table 6.

It is worth noting that the computing time increases considerably,

reaching the value of 2.74 min. In fact, in this case the MILP

formulation involves 1916 integer variables more than test case 2 and

requires satisfying 1427 additional inequalities with respect to test

case 2.

V. Conclusions

This paper addressed the design of theminimum-fuelmaneuvering

strategy for the spacecraft formation reconfiguration in J2-perturbed
near-circular orbit. The reconfiguration problem has been formulated

as an optimal control problem, assuming that the maneuverable

spacecraft can perform only a series of constant finite-time

maneuvers to control the relative configuration (i.e., the control

acceleration profile is assumed to be a piecewise constant function

over the maneuvering interval).
The aforementioned optimal control problem has been formulated

as a mixed-integer linear programming (MILP) problem; the

maneuvering interval has been discretized to cancel the nonlinearities

related to the boundary conditions, and an additional set of

optimization parameters have been introduced to make the objective

function linear. Moreover, the collision avoidance and the

maneuvering time constraints dictated by mission operations have

been considered to make the MILP-based approach suited to handle

the requirements coming from a realistic flight scenario. The

simulation results have demonstrated the effectiveness of the MILP

framework for the design of the minimum-fuel reconfiguration

maneuver. When the MILP solution is added to the deputy nonlinear

dynamics, the final formation configuration is achieved with the

accuracy of order of millimeter.

Moreover, the analyses carried out have shown that the

computational performances of MILP solver are affected by

complexity of the problem, besides the number of optimization

variables and inequalities constraints. In fact, when the collision

avoidance and the additional time constraints are included in the

formulation, the solver finds a feasible control solution in more than

2 min. On the contrary, if only the limitations on the control

acceleration are taken into account, the MILP approach is able to

provide the control scheme in less than 30 s, regardless of the chosen

time mesh size.
Finally, the MILP-based approach presented in this paper is a

systematic method to derive the minimum-fuel maneuvering

scheme to reconfigure a two-satellite formation. Moreover, if

neither constraints on the spacecraft path or operational time

requirements need to be met, the proposed approach can be

implemented onboard.

Appendix: Control Influence Matrix

The elements of the control influence matrix ΓF [see Eq. (4)] are

γ13 � γ51 � γ52 � γ61 � γ62 � 0

γ11 �
2edsfd
ndηdac

; γ12 �
2�1� edcfd�

ndηdac

γ21 � −
ηdedcfd

adnd�1� ηd�
−

2η2d
adnd�1� edcfd�

γ22 � −
ηded��2� edcfd�sfd �

adnd�1� ηd��1� edcfd�
; γ23 � −

ηsθd�cic − cid�
adnd�1� edcfd�sid

γ31 �
ηdsθd
adnd

; γ32 �
ηd�2� edcfd�cθd � ηdexd

adnd�1� edcfd�

γ33 �
ηdeydsθd cot g�id�
adnd�1� edcfd�

; γ41 � −
ηdcθd
adnd

γ42 �
ηd�2� edcfd�sθd � ηdeyd

adnd�1� edcfd �
; γ43 � −

ηdexdsθd cot g�id�
adnd�1� edcfd�

γ53 �
ηdsθd

adnd�1� edcfd�
; γ63 �

ηdcθdsic
adnd�1� edcfd�sid

(A1)

where fd and θd � fd � ωd represent the deputy satellite’s true
anomaly and true argument of latitude, respectively. The symbols s�⋅�
and c�⋅� denote the sin�⋅� and cos�⋅� functions, respectively.
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