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Bayesian inference analysis of the uncertainty iiniced to

the evaluation of potential flood damage in urban areas

C. M. Fontanazza, G. Freni and V. Notara

ABSTRACT

Flood damage in urbanized watersheds may be assessed by combining the flood depth-damage

curves and the outputs of urban flood models. The complexity of the physical processes that must be

simulated and the limited amount of data available for model calibration may lead to high uncertainty

in the model results and consequently in damage estimation. Moreover depth-damage functions are

usually affected by significant uncertainty related to the collected data and to the simplified structure

of the regression law that is used. The present paper carries out the analysis of the uncertainty

connected to the flood damage estimate obtained combining the use of hydraulic models and

depth-damage curves. A Bayesian inference analysis was proposed along with a probabilistic

approach for the parameters estimating. The analysis demonstrated that the Bayesian approach is

very effective considering that the available databases are usually short.
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INTRODUCTION

Local fiooding is a recurrent problem for many urban areas
in the world. Flood impact can be very high because urban
areas are densely populated and contain essenfial infrastruc-
tures: even a small-scale fiood event could cause
considerable damage and urbanisafion in fiood-prone
areas increases the hydraulic risk. Moreover, the frequency
and the magnitude of flooding damage may rise in the
future as consequence of the climate change (EEA et al.
2oo8). For a given frequency, the evaluation of the potenfial
flood damage in a urban watershed is an essential prerequi-
site to support decision makers in planning reliable
measures for flooding mitigation and/or prevention.

In the last decades, several procedures have been devel-
oped for quanfifying the expected fiood damage in a urban
watershed: some methodologies are based on a-priori esti-
mation of the potential damage and are founded on the
value of exposed goods (Oliveri & Santoro 2000); others
propose the interpolation of the real damage data recorded
during historical flooding events (Meyer & Messner 2006;
Nascimento et al. 2006; Freni et al. 2010a). The expected
flood damage is more often evaluated by means of depth-
damage funcfions (Apel et al. 2006; Dawson et al. 2008; de
Moel and Aerts 2on) that usually express the total economic

damage on public and private properties (e.g., buildings,
cars, roads) as a function of inundation depth. Depth-
damage functions are usually obtained from systematically
applied survey procedures, but they can also be derived
from the analysis of insurance claims or historical flood
data. They should be strictly applied for the analysis of the
urban watershed for the data collected even if, in practical
applications, the extrapolafion to similar urban areas is a
common practice (Apel et al. 2006). The applicafion of
advanced hydraulic models, able to simulate flooding
volume propagation, may be useful allov^dng the extrapol-
ation of the available data both in time (simulafing
flooding events for which damage data are not available)
and in space (transferring the analysis to un-gauged urban
areas).

Several procedures propose assessing flood damage in
urbanized watersheds by combining the flood depth-
damage curves and the outputs of urban flood models ( Jonk-
man et al. 2008; Prince & Vojinovic 2008; Freni et al. 2010a).
However, hydraulic models only permit a conceptualised
representation of the real drainage system and of the
physical processes occurring during surface flooding propa-
gafion (Beven & Binley 1992; Aronica et al. 2005; Gupta
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et al. 2005; Fontanazza et al. 2011). Even if hydraulic models
have been recently improved for simulating flood propa-
gation in urban watersheds, the complexity of the physical
processes that must be simulated and the limited amount
of data available for model calibration may lead to high
uncertainty in model results (Leandro et al. 2009; Lipime-
Kouyi et al. 2009; Maksimovic et al. 2009).

Depth-damage functions are also affected by significant
uncertainty related to the simplified structure of the
regression law adopted and to the reliability of the collected
data: flooding data can be affected by measurement errors
and they are often spatially aggregated because parts of the
system are not accessible during flooding (Freni et al.
2006). As consequence, flood damage predictions are
usually affected by a degree of intrinsic uncertainty that
cannot be realistically removed (Dotto et al. 2009). The
investigation of the sources and magnitude of the uncer-
tainty related to flood damage assessment is needed to
provide a useful tool for flooding mitigation planning.
Decision makers can use such analysis in order to acquire
additional knowledge aimed at better understanding poten-
tial flood processes and damage (Manson et al. 2002).

The present paper investigated the uncertainty in flood-
damage evaluation related to the use of both hydraulic
models and depth-damage curves. An uncertainty evalu-
ation method based on a Bayesian inference analysis was
proposed along with a probabilistic approach to model par-
ameter estimation. Flooding data are collected on a
recursive basis, event after event: each time new data
become available, the flooding database can be updated
increasing its dimension and allovtdng for potential
reduction of uncertainty. This procedure fits perfectly with
the Bayesian paradigm that is able to update uncertainty
estimation and parameter probability distributions once
new information is added to the model. For this reason a
Bayesian approach was chosen. The implementation of a
Bayesian statistical approach helps to evaluate the statistical
confidence intervals that represent the uncertainty linked to
the estimation of flooding damage, unfortunately, the
application of Bayesian analysis relies on initial subjective
hypotheses that may aftect the final results requiring prelimi-
nary verification (Freni et al. 2010b). Therefore, the
objectives of the present paper were:

• to evaluate the robustness of the Bayesian approach in
terms of progressive reduction of uncertainty once new
data become available;

• to investigate the impact of initial subjective user assump-
tions on the reliability of the analysis.

The analysis was applied to a real case study: the 'Centro
Storico' watershed of the city of Palermo (Italy), a highly
urbanized area affected by local surface flooding due to
the drainage system insufficiency that even occurs for
high-frequency rainfalls.

MATERIALS AND METHODS

The Bayesian inference analysis

The analysis and the evaluation of the uncertainty involved
in urban drainage modelling has recently attracted the atten-
tion of researchers (Willems 2008; Kleidorf er et al. 2009).
Several approaches have been developed to deal with par-
ameter and modelling uncertainty adopting classical
Bayesian probability theory. This theory is lmown to have
a strong theoretical basis and to provide a unified approach
compared with those statistical and deterministic methods
(Howson & Urbach 1991).

The Bayesian techniques (Kuczera & Parent 1998;
Kavetski et al. 2006a, b) allow for both parameter estimation
and uncertainty analysis by providing a posterior distri-
butions for parameter values in that the true value should
be enclosed. In the present paper, the Bayesian approach
was applied to analyse of both the uncertainty related to
hydraulic model parameters and to the depth-damage
curve coefficients.

The Bayesian method relies on the assessment of uncer-
tainty in the model parameters in terms of probability. The
uncertainty of a generic model parameter, 6, is evaluated
from a prior probability distribution, P{6), that represents
the inference on, 6, based on historical data or the expert
prior opinion about the possible true values of 0, before
looking at new data (Freni et al. 2010b). This prior infor-
mation is updated by means of new observed values, D, to
obtain the posterior information according to the Bayes' the-
orem (Bayes 1763), which can be expressed as:

p{e\D) =
P{D\0)P{d)

¡P{D\0)P{e)de (1)

where is P{0\D) the posterior distribution of the parameter
0, P{0) is the prior knowledge of the conditional prob-
ability for the measured data, and P{D\6) is the
likelihood function of the model. The likelihood function
can be written in the multiplicative form by imposing that
the residuals between the modelled and observed values
are distributed according to a normal distribution with
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null average and variance a^:

(2)

where Y, is fhe modelling response corresponding fo fhe
w2-th available measure D, of a certain variable (i.e. flood-
ing depth, volumes, damage, etc.) at a specific system
area.

The posterior disfribufion (Equation (1)) describes fhe
uncertainty of 6 after observing the new dafa, D (Fernandes
et al. 2Oio). Posferior disfribufions are populafed by running
Monte Carlo simulations using parameter values randomly
drawn from prior distributions. The formulation of a likeli-
hood function and the definition of fhe prior probability
disfribufion are fwo crucial choices of fhis method made
in subjective way. The former has to be related to the
hypothesis made abouf fhe disfribution of residuals befween
modelled and observed values. A common pracfice assumes
that residuals are normally disfribufed (Willems 2008; Freni
et al. 2010b). In fhis paper, a Box-Cox fransformafion (Box &
Cox 1964,1982) was used to ensure fhis hypofhesis because
fhe resulfs of Bayesian inference may be unreliable if the
residuals are distributed in a different way (Yang et al.
2008). Furthermore, Bayesian approaches may nof be objec-
tive if the choice of prior parameter distributions are not
made on physical observations. In fhe presenf paper, prior
paramefer disfribufions were sef to be uniform because no
prior knowledge was initially considered.

The effecfiveness of Bayesian approach in reducing
uncerfainfy when new dafa become available was fesfed
dividing fhe exisfing database in three equal parts in order
fo carry ouf fhree subsequent Bayesian updafes simulafing
fhe acquisifion of new dafa once new fiooding evenfs
happen. The analysis of uncerfainfy affecfing depth-
damage was based on a previous sfudy and here simply
transferred in order to focus fhe atfenfion on fhe reliabilify
of the Bayesian approach (Freni et al. 2010a).

The mathematical model

In the last years, mafhemafical models have been improved
in order fo provide reliable tools for estimafing fiood
volumes, depths, velocities on catchment surface, and fhe
resulfanf effecfs of a fiood on fhe inhabitanfs (Hsu et al.
2000; Merz et al. 2004; Effrich et al. 2005; Schmitt et al.
2005; Carr & Smith 2006; Chen et al. 2007; Hunter et al.
2008; Leandro et al. 2009). In the presenf paper, an urban

drainage model based on the SWMM applicafion (Huber
& Dickinson 1988) was adopfed fo simulafe urban drai-
nage-system behaviour. A distributed 'non-linear reservoir'
model was used fo simulafe surface runoff and fake into
account both surface storage and infiltration (Rossman
2009). A dual drainage approach was employed to simulate
surface fiood propagafion (Djorgevic et al. 1999; Leandro
et al. 2009) where underground and surface drainage sys-
fems (sfreefs, pedestrian lawns, etc.) are schematised in a
unique network made by fwo sefs of channels fhaf are dyna-
mically interconnecfed by sewer manholes. Flow into
tinderground pipes and surface channels were simulafed
by solving fhe complete 1-D De Sainf Venant (DSV)
equations. Flood velocity and surface baclcwafer propa-
gafion were analysed by means of complefe DSV
equafions. Defails abouf fhe adopfed model can be found
in Freni et al. (2010a). This approach can be used fo examine
a wide range of problems: from frequenf and limifed local
flooding to global system surcharge with high discharges
and water levels on streets. Table 1 shows the variafion
range of fhe model paramefers for which the prior uniform
disfribufion was applied. The variafion range of each par-
amefer was fixed from fhe calibrafion values obfained in
previous applicafion of fhe model to fhe same case sfudy
(Fonfanazza et al. 2on).

The case study

The 'Cenfro Sforico' catchmenf of fhe cify of Palermo (Ifaly)
is fhe oldest part of the cify and if is sfrongly urbanized
(Figure 1). The urban cafchmenf is about 2.5 km^ with
abouf 88% of impervious areas, mainly buildings, roads
and squares, and wifh few pervious areas, mosfly

Tabie 1 I Variation range and unit of measure of each parameter

Parameters Min.

Impervious area surface storage

Pervious area surface storage

Impervious area Manning's roughness

Pervious area Manning's roughness

Max infiltration rate (Horton)

Saturated soil infiltration rate
(Horton)

Underground drainage system
Manning's roughness

Surface channels Manning's
roughness

mm

mm

-

-

mm/h

mm/h

-

—

0.5

3.5

0.020

0.025

62.0

12.2

0.014

0.021

2.0

8.5

0.033

0.050

117.2

22.7

0.025

0.034
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Figure 1 I The 'Centro Storico' catchment, with flooded areas.

fragmented into public parks and many courtyards in man-
sion and religious buildings spread along the main roads.
The most common land uses are residential dwellings.
Many monuments and other estates having a cultural or
artistic significance (theatres, churches, monasteries, etc.)
were erected in this area that is one of the largest historical
city centre in Europe. The whole catchment is drained by a
very old sewer system of about 118 years in age and with a
total length of about 56 km. It receives both storm and waste
water from the upstream less urbanized watersheds as well.
Local surface flooding due to the system insufficiency often
occur even for high-frequency rainfalls. More than 40 flood-
ing events affected several areas of the watershed from the
1993 to the 2008 (Figure 1). The historical rainfall events
causing flooding were recorded by the Parco d'Orléans
rain gauge (RG), located in this area and operative with a
temporal resolution of 1 minute since 1993.

A wide database of flooded areas, water depths and
volumes, durations and damaged properties was collected
by querying fire brigades and insurance companies (Freni
et al. 2oioa): fire brigades report details on each flooded
area including information on flooded properties, aerial

extension and volume of flooding, possible cause of flooding
(surface runoff, drainage surcharge, pipe failure, etc.); insur-
ance companies, on the other hand, match flooded property
data with requested and delivered compensation. Table 2
shows the values of mean water depths and flooding
frequencies.

Table 2 Frequency and mean flooding depth at different locations in the analysed

catchment

Flooded

area

1

2

3

4

5

6

7

8

Mean
flooding
depth [cm]

145.71

61.16

39.96

44.21

57.82

31.00

23.21

45.27

Average
return
period
[yrsl

0.54

0.56

0.68

0.56

0.56

0.56

0.68

0.59

Fiooded

area

9

10

11

12

13

14

15

Mean

flooding

depth [cm]

42.89

19.27

27.72

53.18

42.18

32.07

23.62

Average
return
period
[yrs]

0.56

0.71

0.56

0.54

0.54

0.56

1.50
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The available historical flood data were divided in three
subsets of equal consistency (14 flooding events for each
group) in order to run three different Bayesian calibration
and uncertainty analysis phases (Jin et al. 2010): the first
subset contains flooding data collected from January 1994
to April 1999; the second from May 1999 to January 2003;
and the third fi-om February 2003 to the end of 2008. The
first and the second subsets were used for the assessment
of the prior loiowledge when the second and the third sub-
sets were analysed, respectively.

METHODOLOGY APPLICATION AND RESULTS
ANALYSIS

The aim of the analysis was the evaluation of the capability
of the Bayesian method to provide an initial reliable judg-
ment on the acceptability of the model, even if available
data are scarce, and to evaluate the reduction in uncertainty
once new data becomes available.

Starting from the prior uniform knowledge about par-
ameters, the first Bayesian uncertainty analysis was carried
out on the first data subset. Posterior parameter distributions

and expected damage uncertainty were obtained by 1.000
Monte Carlo Simulations (MCSs) in which random par-
ameter sets, extracted from prior distributions, were used
to simulate flooding propagation for all the events of the
subset. The results of the model were used to estimate flood-
ing damage in all the 15 flooded areas of the case study
according to the procedure described in Freni et al.
(2010a). The total damage was estimated for all MCSs in
order to evaluate the likelihood function (Equation (2)).
The consequent posterior parameter distribution was
obtained by applying Equation (1).

Uncertainty hands around the total measured damage
were obtained by ranking the simulated damage values, pro-
vided by MCSs, with regard to the likelihood function P
(Die) and selecting the 5% and the 95% quantiles. If
the measured damage values are included in the band, the
adopted modelling approach can be accepted and the
width of the band can be considered as the magnitude of
uncertainty related to damage estimation.

Figure 2 shows the uncertainty band of expected
damage after the Bayesian update based on the first data
subset and the posterior distributions of the two most influ-
ential hydraulic parameters (impervious area Manning's

(a) 1
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Surface Channel Manning's roughness coefficient
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Figure 2 I (a) uncertainty bands of expected damage, (b-d) prior and posterior distributions for some parameters after tiie first Bayesian update; dasined lines are the uncertainty bands,

biaci< iine is the caiibrated estimation of fiooding damage, dots are measured damage data; biack histograms represent prior parameter distributions; white histograms rep-

resent posterior parameter distributions.



1674 C, M, Fontanazza etal. \ Bayesian inference analysis Water Science & Technology | 66.8 | 2012

roughness and surface channel Manning's roughness) and
of a non-infiuenfial parameter (saturated soil infiltrafion
rate).

The uncertainty band is wide and includes measured data
thus allowing for the acceptance of the modelling hypotheses
for the analysis of expected damage (Figure 2(a)). The
difterences between posterior and prior parameter distri-
bufions are evident for the two most influential parameters
showing the ability of the model to drain information from
data used for the analysis (Figures 2(b) and 2(c)). The two par-
ameters have an evident peak thus the Bayesian analysis can
be easily used for model calibrafion as well. Figure 2(d) shows
that the posterior distribufion of a non-infiuenfial parameter
is almost unchanged after the analysis of the first data
subset thus demonstrating that the model is insensifive to
that parameter.

Figure 3 shows the results of the second Bayesian
update. The analysis began from the parameter posterior
distributions obtained in the analysis of the first data
subset. These distributions were used as prior knowledge
for the second Bayesian update in order to evaluate the
behaviour of Bayesian analysis when new data become
available. Figure 3 (a) shows that uncertainty band,
obtained by ranking the simulated damage values pro-
vided by MCSs, is smaller than in the previous step thus
showing a reduction in modelling uncertainty due to the

availability of new data. The reduction in the average
uncertainty band width is about 40%. All available data
are still included in the band thus showing that the
additional data increased model robustness without
affecting its reliability. Posterior distributions of influential
parameters are modified during the analysis exalting
the peaks and increasing the probability that the
parameter values fall around the calibration value
(Figure 3(b) and 3(c)). The effect of non-influential par-
ameter (Figure 3(d)) is still low thus confirming the
model insensitivity to that parameter.

The final Bayesian update phase (Figure 4(a)) shows a
further reducfion in the uncertainty band width (-12% in
the average) with only 3% of data falling outside of the
band. This confirms the applicability of the model consider-
ing that the residual probability left out of the 5% and 95%
bands is 10% (Beven & Binley 1992). Parameter distribufions
are further few modified by the introduction of new data in
the analysis as well (Figure 4(b) and 4(c)).

The comparison of Figures 3 and 4 demonstrates that
distributions are now stabilised. The subjectivity in the
choice of the initial parameter distributions has no
more effect on the analysis after the second update and
this result comforts the decision makers about the
reliability of the analysis when the initial information is
scarce.
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Figure 3 I (a) Uncertainty bands of expected damage, (b-d) prior and posterior distributions for some parameters after the second Bayesian update: dashed lines are the uncertainty

bands, black line is the calibrated estimation of flooding damage, dots are measured damage data; black histograms represent prior parameter distributions; white histograms

represent posterior parameters distributions.
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Figure 4 I (a) Uncertainty bands of expected damage, (b-d) prior and posterior distributions for some parameters after the third Bayesian update; dashed lines are the uncertainty bands,

black line is the calibrated estimation of flooding damage, dots are measured damage data; black histograms represent prior parameter distributions; white histograms rep-

resent posterior parameters distributions.

CONCLUSIONS

The present paper shows the application of Bayesian uncer-
tainty analysis to flooding damage evaluation. The approach
was applied in three subsequent update phases in order to
evaluate the impact of new available data in uncertainty esti-
mation. The analysis demonstrated that Bayesian approach
is effective in the definition of modelling uncertainty and
in the guide of calibration process. This method is also
suited for the applications, like the analysis of urban flood-
ing, in which data are scarce and become progressively
available when new flooding events occur. Damage esti-
mation uncertainty is progressively reduced when new
data are used in the analysis and model parameters cali-
bration can be progressively more precise once new data
updates are provided. The Bayesian approach is able to high-
light non-influential parameters that can be neglected during
model calibration process.

The subjectivity given by the selection of prior knowl-
edge has an impact on the process limited to the first
update phase; once the first posterior distribution is
obtained, the process is no longer affected by the definition
of the prior parameter distribution. This shows the effective-
ness of Bayesian paradigm in the analysis of flooding
damage: the decision makers can start the analysis vidth
a small database about the system and the approach reflects
the reliability of available data by providing large

uncertainty bands and almost uniform parameter distri-
butions. When new data become available, the analysis
can be updated and, if data quality is good, the uncertainty
is reduced and parameter distributions shrink around the
calibration values. The marginal effect of new data is pro-
gressively reduced and uncertainty band width should tend
to an asymptotic value related to the unavoidable uncer-
tainty due to measurement error and the model simplified
hypotheses.

The present paper provides an interesting method to
allow the application of numerical models for flooding
analysis in cases where small amounts of data are available.
In such cases, the proposed approach allows the estimation
of the uncertainty connected with flooding analysis, guides
the network manager in the collection of data and provides
information of the reliability of data that is progressively
added to the analysis. The manager has not to wait the
end of monitoring campaign to obtain some initial results
and he can evaluate the advantages provided by data collec-
tion campaigns.

The same analysis can be used in the decision phase
because modifications to the network or to the catchment
can be evaluated both in terms of expected flooding
damage reduction and in terms of uncertainty so that the
manager has the possibility to prefer more robust solutions
(uncertainty about the possible damage reduction is lower)
than more performing ones.
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