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Abstracts 

Evolutionary Polynomial Regression (EPR) is a recently developed hybrid regression method that com-

bines the best features of conventional numerical regression techniques with the genetic program-

ming/symbolic regression technique. The original version of EPR works with formulae based on true or 

pseudo-polynomial expressions using a single-objective genetic algorithm. Therefore, to obtain a set of 

formulae with a variable number of pseudo-polynomial coefficients, the sequential search is performed in 

the formulae space. This paper presents an improved EPR strategy that uses a multi-objective genetic 

algorithm instead. The paper demonstrates that multi-objective approach is a more feasible instrument for 

data analysis and model selection. Moreover, the paper shows that EPR can also allow for simple uncer-

tainty analysis (since it returns polynomial structures that are linear with respect to the estimated coeffi-

cients). The methodology is tested and the results are reported in a case study relating groundwater level 

predictions to total monthly rainfall. 

 
 
Introduction to EPR 

Numerical regression is the most powerful and commonly applied form of regression that provides a solu-

tion to the problem of finding the best model to fit the observed data (e.g. fitting a line/curve through a set 

of points). However, the form of a function (linear, exponential, logarithmic, etc) has to be selected before 

the fitting commences. On the other hand, genetic programming uses a simple, but very powerful artificial 

intelligence tactics for computer learning inspired by natural evolution to find the appropriate mathemati-

cal model to fit a set of points. The computer produces and evolves a whole population of functional ex-

pressions based on how closely each of them fit the data. The automated induction of mathematical 

models (descriptions) of data using genetic programming (Koza, 1992) is commonly referred to as sym-

bolic regression (Babovic and Keijzer, 2000). Evolutionary Polynomial Regression (EPR) is a recently 
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developed hybrid regression method by Giustolisi and Savic (2006; 2004) that integrates the best fea-

tures of numerical regression (Draper and Smith, 1998) with genetic programming (Koza, 1992). 

 
 
EPR Strategy 

The following vector form is the base for the development of EPR (Giustolisi and Savic,2006),  

[ ]1 1 0 1 1

Tj T
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where 

YNx1(θθθθ,Z) is the least squares estimate vector of N target values; 

θθθθ1xd is the vector of d=m+1 parameters aj, j=1:m, and a0; and 

ZNxd is a matrix formed by I, unitary column vector for bias a0, and m vectors of variables Zj
 that for a fixed 

j are a product of the independent predictor vectors of variables/inputs, X = <X1 X2 D Xk>. 

The key idea of the EPR is to start from Eq. (1) and search first for the best form of the function, i.e. a 

combination of vectors of independent variables (inputs), XS=1:k, and then to perform least-squares re-

gression to find the adjustable parameters θθθθ for each combination of inputs. To avoid the pitfalls of hill-

climbing search methodologies, a global search algorithm is implemented for both the best set of input 

combinations and related exponents simultaneously, according to the user-defined cost function.  

The matrix of inputs X is given as: 
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where the k-th column of X represents the candidate variables for the j-th term of Eq. (1). Therefore, the j-

th term of Eq. (1) could be written as 
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where, Zj
 is the j-th column vector whose elements are products of candidate independent inputs and ES 

is a matrix of exponents. Therefore, the problem is to find the matrix ESmxk of exponents whose elements 

can assume values within user-defined bounds. 

For example, if a vector of candidate exponents for columns (inputs) in X is chosen to be EX=[-1, 0,1] and 

m=4 (the number of terms, bias excluded) and k=3 (the number of candidate independent vari-

ables/inputs), the polynomial regression problem is to find a matrix of exponents ES4x3. An example of 

such a matrix is given here 

 

4 3

1 0 1

0 1 1

1 0 0

1 1 0

m k× = ×

− 
 − =
 
 
 

ES  (4) 

 
When this matrix is substituted into Eq. (3) the following set of expressions is obtained 
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 (5) 

Therefore, based on the matrix given in Eq. (4), the expression of Eq. (1) is given as 

3 2
0 1 1 2 2 3 3 4 4 0 1 2 3 1 4 1 2

1 3

a a a a a a a a a a= + + + + = + + + +
X X

Y Z Z Z Z X X X
X X

 (6) 

The adjustable parameters aj could now be computed by means of the linear Least Squares (LS) method 

using the minimisation of the sum of squared errors (SSE) as cost function. Note that each row of ES de-

termines the exponents of the candidate variables of j
t
-th term in Eq. (1). Each of the exponents in ES 

corresponds to a value from the user-defined vector EX. This allows the transformation of the symbolic 

regression problem into one of finding the best ES, i.e., the best structure of the EPR equation, e.g. in Eq. 

(6). 

The global search for the best form of Eq. (6) is performed by means of a standard GA (Holland, 1975, 

Goldberg, 1989). The GA is an algorithmic model of Darwinian evolution that begins with the creation of a 

set of solutions referred to as a population of individuals. Parameters being optimised are coded using 
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‘chromosomes’, i.e., a set of character strings that are analogous to the chromosomes found in DNA. 

Standard GAs use a binary alphabet (characters may be 0’s or 1’s) to form chromosomes. Instead, inte-

ger GA coding is used here to determine the location of the candidate exponents of EX in the matrix ES. 

For example the positions in EX=[-1,0,1] correspond to the following string for the matrix of Eq. (4) and 

the expression of Eq. (6): 

[1 2 3, 2 3 1, 3 2 2, 3 3 2]   (7) 

Additionally, it is clear that the presence of at least one zero in EX assures the ability to exclude some of 

inputs and/or input combinations from the regression equation. The following GA parameters were also 

used in the current EPR implementation: multiple-point crossover; single point mutation and; termination 

criterion as a function of the length of the chromosome, the maximum number of polynomial terms j and 

the number of inputs k in the matrix X (Giustolisi and Savic, 2006). 

 

Least Squares Solution by SVD 

Computing aj in Eq. (6) is an inverse problem that corresponds to solving an over-determined linear sys-

tem as a LS problem. This problem is traditionally solved by Gaussian elimination. However, an evolu-

tionary search procedure may generate candidate solutions (e.g. a combination of exponents of X) that 

correspond to an ill-conditioned inverse problem. This often means that the rectangular matrix ZNxd: 

( )
1 2

1 1 1 1 1
... m

� � � � � m � d× × × × × + = ×
 =  Z I Z Z Z  (8) 

may not be of full rank (if a solution contains a column of zeros) or the columns Zj are linearly dependent. 

This could pose serious problems to Gaussian elimination and a more robust solver is therefore needed. 

Parameter estimation of aj (or θθθθ) in EPR is performed by means of the Singular Value Decomposition 

(SVD) of the matrix Z. This approach makes the process of finding the solution to the LS problem more 

robust, although in general the SVD is slower than Gaussian elimination (Golub and Van Loan, 1993). 

Finally, the Moore-Penrose pseudo-inverse (Golub and Van Loan, 1993) as regularization method can 

be used (when Z is not full rank the solution is that corresponding to the minimum value of the 

Euclidean norm). 
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Extension of EPR 

EPR allows pseudo-polynomial expressions as in Eq. (1), allowing structures such as 
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 (9) 

where Ŷ is the vector of model predictions. 

Thus, EPR’s model space may be extended by the structures in Eqs. (9), which remain based on pseudo-

polynomial regression as in Eq. (1). User-specified functions f reported in Eqs. (9) may be natural loga-

rithmic, exponential, tangent hyperbolic, etc. Note that the last structure in Eqs. (9) requires the assump-

tion of an invertible function g, because of the subsequent stage of parameter estimation. The term 

‘pseudo-polynomial expressions’ is used here because the parameters of any of the expressions in (9) 

can be computed as for a linear problem and/or for true polynomial expressions. Moreover, Eqs. (9) are 

transformed into the form of Eq. (1) during evolutionary search. Finally, the inclusion of exponential and 

logarithmic functions in the general expression of Eqs. (9) allows EPR to explore a large space of formu-

lae where the analyst’s understanding of the physical process warrants their inclusion. However, if such 

functions are not naturally describing the phenomenon being modelled EPR search would find exponent 

values for such inputs to be equal to zero. 

As earlier said, parameters aj are estimated by a least squares (LS) method integrated in the EPR proce-

dure (Giustolisi and Savic, 2006). The LS guarantees a two ways relationship between the pseudo-

polynomial structure and its coefficients. In addition to the usual LS search, the user can force the LS to 

search for structures that contain positive coefficients only (aj>0). This is particularly useful in modelling 

systems where there is a high probability that the negative coefficient values (aj<0) are selected to bal-

ance the particular realization of errors related to the finite training data set (Giustolisi et al., 2007). 
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Uncertainty Analysis in EPR 

The models returned by EPR contain some constant values, each one determined for that single model. 

Those constant values (i.e. model parameters) are estimated by the LS approach, as already explained 

above. This implies that, for a given data set, a confidence interval can be computed to assess the uncer-

tainty, i.e. reliability of the particular parameter estimate aj. These uncertainties are computed here by 

using the asymptotic covariance method (Ljung, 1999). The use of this method is possible because all the 

models obtained by EPR are linear with respect to the unknown pseudo-polynomial coefficients (non-

linearity is contained in each monomial model expression i.e. in the combinations of inputs). This fact is of 

particular relevance, since the uncertainty analysis of parameters here presented has been undertaken 

as if the models were linear, and this is made possible by the particular structure of the EPR models. As-

suming that the residuals of the models are normally distributed with zero mean and variance λ0, and that 

θθθθN is the estimate of the “true” parameter vector θθθθ0 in the N-dimensional data set, the covariance matrix 

PN can be calculated as follows: 

1
T

0�
λ

−
= ×  P XX XX  (10) 

where the j-th column of matrix XX for e.g. case 0 in Eqs. (9) is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ),1 ,k ,k 1 ,2k

1 k 1 k
.. ..

j j j j

j
f f

+
= ⋅ ⋅ ⋅ ⋅ ⋅

ES ES ES ES
XX X X X X  (11) 

Variance λ0 can be estimated as follows (Ljung,1999): 

( ) ( )0

1 ˆ ˆ
T

�
� d

λ λ≅ = − × −
−

Y Y Y Y   (12) 

where Y is the vector of target values and d=dim(θ) is the dimension of the vector of parameters. Note 

that expression (12) returns an unbiased estimate of λ0. Once the covariance matrix of θθθθN has been com-

puted, it is possible to sample θθθθ by using e.g. the Latin Hypercube of size M constituted by the multivari-

ate normal distribution with mean vector θθθθN and covariance matrix PN. In EPR, the value of M is usually 

assumed equal to 50. Once the M estimates of θθθθ0 are available, it is possible to compute the M different 

model predictions at a given time step. The maximum and minimum predictions for each data point are 

computed in order to define a sort of uncertainty band that is the confidence interval for the prediction. An 

average value of the interval width (uncertainty band) is then evaluated and that value is used as a model 
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uncertainty performance indicator. In addition, further control can be imposed on the aj coefficient values 

as in Giustolisi and Savic (2006). This is related to the coefficients uncertainty during the search. Indeed, 

it may be argued that a low coefficient value with respect to the variance of estimates corresponds to the 

terms that begin to describe the noise rather than the underlying function of the phenomena being ana-

lysed. Therefore, the distribution of estimated pseudo-polynomial coefficients is used to eliminate those 

parameters whose value is not sufficiently larger than zero (Giustolisi and Savic, 2004; 2006). It is again 

assumed that the parameter variation follows the Gaussian probability density function N(aj0,PN). Hence, 

the following expression is used (Giustolisi and Savic, 2006): 

0 j j j j 0 0j j ja P a P aγ γ− ≅ − ≤ ⇒ =   (13) 

where the square root of Pjj denotes the standard deviation of the estimated constant aj (calculated from 

the diagonal elements of the covariance matrix PN) and γ is the standard score (from the Standard Normal 

Table). Eq. (13) states that if, for example, the modulus of the estimated constant aj is lower than 

3.2905Pjj (which corresponds to a confidence level of 99.9%), the corresponding constant value is as-

sumed to be equal to zero. 

 

Single vs. Multi Objective GA based EPR 

Although the original EPR methodology proved effective (Giustolisi and Savic, 2004; 2006), it was using 

the single-objective genetic algorithm (SOGA) (Goldberg, 1989) strategy for exploring the formulae 

space. In fact, this exploration was achieved by assuming first the maximum number of terms m in the 

pseudo-polynomial expressions shown in Eq. (1) and then sequentially exploring the formulae space hav-

ing one, two, D, m terms. To speed up the convergence, the initial population of each EPR search was 

(optionally) seeded with the formulae obtained in the previous search (e.g. the population for formulae 

having j terms was seeded with the best formulae having j-1 terms). However, the SOGA-based EPR 

methodology has the following drawbacks: (1) its performance is exponentially decreasing with the in-

creasing number of polynomial terms m (also because increasing j means more GA runs); (2) the results 

are often difficult to interpret. In fact, the set of models identified could be either ranked according to their 

fitness to data or according to their structural complexity. However, ranking models according to their 

structural complexity requires some subjective judgment, and consequently this process is often biased 
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by the analyst’s experience rather than being purely based on some mathematical criteria (Young et al., 

1996) that in our case are the objectives; (3) when searching for the formulae with j terms, those having 

less terms belong to the space of formulae with j terms as a degenerative case. However these “degen-

erative formulae” could have a better accuracy than the previously found ones (i.e., for lower values of 

index j), but discarded because at run j there could be less parsimonious formulae that fit data better. To 

overcome these drawbacks, it is possible to use a multi-objective genetic algorithm (Goldberg, 1989) 

(MOGA) strategy in EPR. In fact, assuming m pseudo-polynomial terms and considering that all pseudo-

polynomials that have less than m terms belong to the formulae space of m terms as a degenerative 

case, it is possible to explore the space of m-term formulae using the following two (conflicting) objec-

tives: (1) maximization of the model accuracy and (2) minimization of the number of polynomial coeffi-

cients in the formulae. This problem can be solved using the MOGA approach based on the Pareto domi-

nance criterion (Pareto, 1896). Using this criterion makes the EPR search faster because search for all 

models (j=1,2,+,m) is performed simultaneously. Moreover, the models obtained in this way are already 

ranked according to the: (1) number of terms obtained (i.e. parsimony) and (2) accuracy achieved (i.e. 

model fitness to training data). Following this reasoning, further improvement to EPR is to use the MOGA 

strategy to optimise for the number of formulae inputs (Xi are the vectors) as well. Therefore, the enlarged 

objectives for the EPR search are as follows: (1) maximisation of the model accuracy, (2) minimisation of 

the number of polynomial coefficients and (3) minimisation of the number of inputs (e.g. the number of 

times each Xi appears in the model). Note that EPR can determine the Pareto front consisting of best 

formulae (maximum of m terms) considering both parsimony (number of constants and variables) and 

accuracy in a single formulae space exploration. This makes EPR results easily interpretable because the 

formulae are ranked according to the parsimony and accuracy objectives. Moreover, the overall Pareto 

front gives insight into the model selection phase. Finally, the GA used for the evolutionary stage of EPR 

is OPTIMOGA. Further details on OPTIMOGA can be found in Giustolisi et al. (2004). 

 

EPR as a System Identification Tool 

From a system identification point of view (Ljung, 1999), EPR is a non-linear global stepwise regression 

approach providing symbolic formulae for the models. The stepwise regression feature of EPR originates 
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from the Draper and Smith (1998) method aimed at selecting attributes for linear models considering the 

objective of fitting a model to data. Thus, the space of “linear solutions” is explored by changing the model 

input according to a set of rules and by evaluating model agreement with data. EPR generalizes the origi-

nal stepwise regression method by considering non-linear structures, which are pseudo-polynomials as 

above described. This means that the polynomial nature of the model assures a two ways relationship 

between each model structure and its parameters and, consequently, the parameter estimation phase is 

cast as a linear inverse problem. Furthermore, the exploration of the solution space is performed using an 

evolutionary computing approach. Therefore, from an optimization standpoint, EPR can be classified as a 

global search method, working on a combinatorial problem which often does not have a unique solution 

(i.e., search space 2 dimensions is defined as a multimodal surface). This approach results in the evolu-

tionary exploration of the solution space constrained to the non-linear models (the linear model is as spe-

cial case) having a pseudo-polynomial structure and assuring linearity with respect to parameter estima-

tion.  

In comparison to other data-driven technique EPR could also be seen as an attempt to overcome some 

reported drawbacks of genetic programming (Koza, 1992; Babovic and Keijzer, 2000), as described in 

Giustolisi and Savic (2006). From a regressive standpoint, EPR has the following beneficial features not 

found in other data-driven techniques: 

o a small number of constants to be estimated (helps avoiding over-fitting problems, especially for 

small data sets);  

o a linear parameters estimation (assuring the unique solution is found when the inverse problem is 

well-conditioned);  

o an automatic model construction (avoiding the need to preselect the functional form and the num-

ber of parameters in the model) and; 

o a transparent form of the regression characteristics makes model selection easier, i.e., the multi-

objective feature allows selection not only based on fitting statistics. 

Similarly, when compared to classical regression techniques, for example input-output artificial neural 

networks (ANNs), it is possible to emphasize the following EPR features: 
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o EPR can perform both linear and non-linear analyses in a single algorithm run, whereas ANNs 

are either linear or non-linear depending on the transfer function user selected for the hidden 

neurons. 

o EPR does not require the assumption on the model structure (components of the input vector for 

each pseudo-polynomial term, the number of pseudo-polynomial terms, nor the function model 

structure). ANNs generally require the prior selection of the input vector, of the number of hidden 

neurons and of their unique transfer function. 

o EPR uncertainty analysis is easy to perform due to model linearity with respect to parameter es-

timation. ANNs parameter (weight) estimation is an inverse non-linear problem, making it difficult 

to deal with. 

o EPR provides a Pareto set of the best models trading off parsimony against model fit (to training 

data). ANNs provide one, best-fit model considering an objective function used for parameter 

estimation. However, ANN can be developed by means of a multi-objective strategy, as shown 

by Giustolisi and Simeone (2006).  

These features will be discussed in more detail in the following case study. 

 

Case Study 

The aim of the case study is to demonstrate capabilities of EPR as analysis tool. The case study should 

demonstrate that EPR is particularly helpful as a decision support tool for data modelling and analysis.  

Thus, EPR is tested on a case study aimed at determining the dynamic relationship between rainfall 

depth and water table depth for a shallow unconfined aquifer located in southeast Italy. 

The shallow unconfined aquifer system of Brindisi is located in the northern part of the Salento Peninsula 

in Apulia, southeast Italy (Fig. 1). It serves as an opportune subject for investigation because it is a 

relatively simple hydrogeological structure that occupies a small area (about 200–300 km
2
) and 

comprises a shallow aquifer that is supplied only by direct rainfall, an ideal arrangement for scrutinizing 

the relationship between groundwater levels and rainfall (Giustolisi et al., 2008). For further details on 

Geological and hydrogeological framework of the groundwater see Giustolisi et al. (2008). 
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Phreatic Level and Raingauge Station 

In order to study the relationship between groundwater levels and rainfall amounts, the data that have 

been used are measured phreatic levels from the gauging station located near Brindisi and rainfall data 

from the Brindisi raingauge station. Both of these stations are operated by the National Hydrographical 

Service of Italy. Observations from the phreatic level gauging station are available for a relatively long 

period extending from 1952 to 1996, see Figure 2(b), while rainfall data have been recorded at Brindisi for 

an even longer duration, since the end of the 19
th

 century. Despite such an ample rainfall record, the 

authors have chosen to use only data corresponding to the observational period of groundwater levels. 

Figure 1 indicates the location of the well from which the groundwater level data used in the application of 

the multi-objective EPR were sampled. The available data collections are: (a) a rainfall time series and (b) 

a groundwater level time series. Each series incorporates 528 data points in which the rainfall series 

consists of monthly cumulative depths measured in cm and the groundwater series comprises average 

monthly values of the depth of the water’s free surface in the well (measured from the mouth of the well, 

which is located at 35.92 m above sea level). Both the rainfall and groundwater data series cover a 44-

year period: from January 1953 to December 1996. Figures 2(a) and (b) presents the time plots of rainfall 

and groundwater levels, respectively. The study area is distinguished by a typically Mediterranean 

climate, experiencing one dry period and one wet period each year. Preliminary studies reveal that 

replenishment of the groundwater system typically occurs in the first three months of the year while the 

rainy autumn months do not contribute to recharge since the water that infiltrates is needed to restore the 

water content associated with the field capacity of the soil. The greatest variations of the pluviometric 

regime occur in March and April, reaching a minimum during summer when evapotranspiration is more 

intense. Recharge is more vigorous passing from autumn towards spring for low intensity rainfall events. 

The contribution to infiltration of high intensity and short duration rainfall events is low as a consequence of 

soil permeability and of runoff and evapotranspiration processes. A long-term analysis reveals that, during 

the 40-year historical record considered, a remarkable decline in phreatic levels has occurred. 

 

Preliminary Modeling Aspects  
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Among the equations in (9), the structure named ‘case 2’ was chosen using m=3. Then, the family of 

models that will be explored is 
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where ŷ is the estimated output of the system/process; a0, a1, a2, a3, are the model constant values; xt-I 

and yt-i, are the model inputs and outputs, respectively. They are selected by the process considering the 

user-specified maximum number of inputs nb (the number of past inputs is nb-1) and outputs na.  They 

are process-selected as the exponent of “0” means that a particular input/output is eliminated. Thus, al-

though the general configuration of the structures is defined by the user (i.e., inputs, exponents and 

maximum expression length), EPR can return simplified structures according to the strategy it pursues. 

The space of candidate formulas can be explored by EPR according to two main strategies: (1) an SO 

search and (2) an MO approach.  Although the effectiveness of the SO approach in environmental model-

ing has been demonstrated (Giustolisi et al., 2007), it presents some drawbacks. The MO approach out-

performs that of SO, since it explores the space of candidate formulas by assuming just the maximum 

number of constants (aj). This case study focuses on the MO strategy (Giustolisi et al., 2008).  

The objectives assumed for this search are three: (1) the number of constants (aj), (2) the total number of 

inputs (Xk) represented in each formula and (3) the models’ fitness to data. 

The modelling phase was carried out according to the following assumptions: 

• both time series were split into two subsets: the first made up of 300 samples, called the training set, 

and the second made up of 228 samples, called the test set. The test set is considered in a latter 

phase, when EPR has already generated the set of best models. In this phase it is important to test 

the generalisation capabilities of the models, i.e. to assess how these models perform when fed with 

an input data set different from that used to identify them (unseen data). 

• The set of variables considered as candidate input to the models are: Ht-1 (na=1) as past value of the 

groundwater head, and Pt, Pt-1, Pt-2, Pt-3  (nb=4) as actual/past values of the rainfall depths. Subscripts 

denote the measurement time: for instance t-1 indicates the groundwater level observed one month 
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before the present (t) or model computed when the k-month ahead prediction is performed. These 

candidate inputs to the models have been selected according to the aquifer response to the rainfall 

perturbations (3-month delayed) reported in Ricchetti and Polemio (1996). Past output Ht-1 have been 

incorporated to reflect the persistence of piezometric head variation. 

• The possible model structures, see Eq. (14), are assumed to be pseudo-polynomial considering the 

natural logarithm as a candidate function to model the phenomena. 

• The polynomial expressions consist of three terms at most, excluding the bias term (if selected by the 

procedure). 

• Each pseudo-monomial term is the product of the methodology-selected inputs to the power of the 

exponents selected by EPR in the pre-specified set { -1; 0; 1}. The exponent 0 allows the procedure to 

deselect the unnecessary inputs and the exponents {-1; 1} introduce an inverse-linear and linear ef-

fects to the input, respectively. Finally, the natural logarithm function introduces a smoothing effect to 

the input. 

• The LS estimate of the constant aj is constrained to positive values according to the approach by Law-

son and Hanson (1974). 

• Data are not scaled (e.g. in the range [0 1]). 

• The optimization parameters are: 1000 generations, initial population size 20 elements, probability of 

crossover 0.4 and probability of mutation 0.1. 

• The number of potential candidate solutions among which EPR searches is 2.06×10
14

. 

The main fitness indicator considered in this paper is the Coefficient of Determination (CoD). 

The set of non-dominated models identified by EPR defines a global scenario of possible model struc-

tures which is presented to the analyst who must then select the best candidate for the problem at hand. 

This final selection is guided by an analysis of the similarities and differences among formulae and 

through consideration of the trade-off between structural complexity and fitness level attained). Therefore, 

the user can identify those terms/inputs that are common among the models and assess which 

terms/inputs are discarded by the methodology when the structural complexity decreases as recently 

proposed by Giustolisi (2006) for support vector machines; by Giustolisi and Simeone (2006) for artificial 

neural networks and Giustolisi et al. (2008) for EPR itself. Moreover, this analysis permits identification of 
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terms that appear in one model only and such terms are likely to be weakly related to the physical phe-

nomenon, but rather to the specific error realization contained in data. 

 

Results 

In this section, the entire set of non-dominated EPR models is presented keeping in mind that the goal is 

to furnish a decision support strategy (Giustolisi, 2006; Giustolisi and Simeone, 2006; Giustolisi et al.; 

2008) and not strictly a model suitable for a unique case study. EPR identified 17 non-dominated models, 

described by the Eqs. (15) to (31), completing 1,000 generation runs in about 4 minutes using a notebook 

computer with a Pentium Intel M 1.10 GHz processor. 

31.43tH =   (15) 

10.92 +2.46t tH H −=   (16) 

1 10.93 +7.02 +2.13t t tH H P− −=   (17) 

( )1 1

1 1381.27 ln +73.27t t tH H H− −
− −=   (18) 

1 1 20.91 +5.95 +4.66 +2.49t t t tH H P P− − −=   (19) 

1 1 20.91 +239.69 +2.69t t t tH H P P− − −=   (20) 

1 1 2 30.90 +5.93 +179.08 +3.08t t t t tH H P P P− − − −=   (21) 

( )1 1

1 1 1 2377.05 ln +236.52 +72.72t t t t tH H H P P− −
− − − −=   (22) 

( )1 1

1 1 1 3381.95 ln +6.03 209.30 +73.17t t t t t tH H H P PP− −
− − − −= +   (23) 

( ) ( )1 1 1

1 1 1 2 2 3377.56 ln +77.48 ln 209.30 +72.76t t t t t t t tH H H P P P PP− − −
− − − − − −= +   (24) 

( )1 1

1 1 1 2 3376.31 ln +193.51 177.61 +72.60t t t t t t tH H H P P PP− −
− − − − −= +   (25) 

( ) ( )1 1 1

1 1 1 1 2 2 3378.71 ln +2437.06 ln 177.61 +72.89t t t t t t t t tH H H H P P P PP− − −
− − − − − − −= +   (26) 

( ) ( )1 1 1

1 1 1 2 2 3376.68 ln +64.53 ln 176.45 +72.62t t t t t t t tH H H P P P PP− − −
− − − − − −= +   (27) 

( ) ( ) ( )1 1 1 1

1 1 1 2 2 3 3378.24 ln +63.82 ln 57.78 ln +72.79t t t t t t t t tH H H P P P PP P− − − −
− − − − − − −= +   (28) 
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( ) ( ) ( )1 1 1 1

1 1 1 2 2 1 3 3377.46 ln +63.57 ln 1.86 ln +72.70t t t t t t t t t tH H H P P P H PP P− − − −
− − − − − − − −= +   (29) 

( ) ( ) ( )1 1 1 1

1 1 1 1 2 2 1 3 3378.41 ln +2001.35 ln 1.86 ln +72.81t t t t t t t t t t tH H H H P P P H PP P− − − −
− − − − − − − − −= +   (30) 

( ) ( ) ( )1 1 1 1 1

1 1 1 1 2 2 1 3 1 2 3377.73 ln +2131.35 ln 0.53 ln +72.73t t t t t t t t t t t t tH H H H P P P H PP H P P− − − − −
− − − − − − − − − − −= +   (31) 

Note that the set of 17 models found by EPR range from the simple model representation of the average 

value (Eq. 15), through to the linear models of Eqs. (16), (17) and (19), and then on to more complex con-

figurations. Table 1 reports the number of Xi used in the formulae (in the last three columns), the number 

of aj and the fitness indicator, CoD, computed on training set. 

The performance for models generalization is evaluated in terms of CoD computed on the data test set 

and summarized in Table 1, also. A bootstrap procedure (Efron, 1979) was applied for the CoD of the test 

set in order to improve the robustness of its estimation. For this purpose, the data were re-sampled 1,000 

times; Table 1 provides the CoD values averaged on the 1,000 samples obtained for each class of predic-

tion (1-, 2-, 4-, 6-months and simulation). Simulation stands for prediction performed without using 

groundwater level measurements at all in the model. 

Furthermore, Table 1 reports the persistency model (Ht=Ht-1) predictions on test set (in the first row), 

which are an useful of models’ performance.  The average width of the uncertainty (as defined in the 

paragraph “Uncertainty Analysis in EPR”) band of the 1-month ahead prediction due to parameter estima-

tion is reported in the column after CoD performance on test set. 

 

Discussion 

EPR identified 17 non-dominated models with differing structural complexity and performance. For those 

models on-line predictions of the groundwater head at different time horizons are presented in Table 1. 

Those predictions related to the test set (unseen data) were never used for model construction. Note that, 

although the choice of the prediction horizons is motivated by management needs, a longer planning ho-

rizon, e.g. 6-infinity months (infinity means simulation) is reasonable for predicting the behaviour of the 

aquifer which in turn influences the management policies that can be adopted. On the other hand, shorter 

prediction horizons of 1-4 months can be useful for the adoption of emergency policies, for instance re-

lated to an anomalous dry period or excessive pumping. However, in a decision support strategy on 
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model selection, it is important not only to compare the performance of each model, but to consider their 

structural variations and the contiguities of inputs and pseudo-monomial terms. 

Then, we can observe that all models encompass the term Ht-1, which relates to the persistency of 

groundwater head variations. Eq. (16) reports the model found by EPR (Ht=0.92Ht-1+2.46), which is most 

similar to the complete persistency model (i.e., Ht=Ht-1). It is also important to note that the models (16), 

(17) and (19) are linear while other solutions are increasingly non-linear, i.e., ranging from one non-linear 

pseudo-monomial term to all of them being non-linear in a single formula. This demonstrates that the 

multi-objective strategy together with the particular EPR architecture (based on a sum of pseudo-

monomials), allows linear and non-linear analysis of data in a single run of the EPR tool.  

It could be also observed that the linear models generally perform well, if only slightly inferior to more 

complex non-linear models when short-time predictions (1-month and 2-months) are considered. How-

ever, non-linear complex models are better performing for long-term predictions and simulation. This indi-

cates that the underlying physical phenomenon is non-linear because by increasing the prediction horizon 

(until simulation, which does not use Ht-1 measurements for prediction) the stochastic processes influenc-

ing short-time predictions disappear. 

Furthermore, it is worth noting that with increased model complexity there are some pseudo-monomial 

terms appearing in a number of models. For example, Ht-1ln(Ht-1)
-1

 is always present in non-linear models 

and the terms Pt-1Pt-2 and PtPt-3 appear in most non-linear models. Those terms, slightly modified using 

the natural logarithm function, as in Pt-1Pt-2 ln(Pt-2)
-1 

and PtPt-3ln(Pt-3)
-1

, positively influence model perform-

ance, especially for long prediction horizons. The actual value of rainfall (Pt) is found to perform well for 

long-time predictions while the delayed rainfall, i.e., nk=1 (Pt-1), is present in the linear models.  

Considering model uncertainty, it is important to note that the average width of the uncertainty band for 1-

month ahead prediction on test set is within the range from 7 to 11cm and it does not depend on the 

model complexity (Table 1). This happens because all models are linear with respect to parameters. Fur-

thermore, they contain a small number of constants, thus allowing parameter estimation on a generally 

well-conditioned linear inverse problem. However, this type of uncertainty analysis should not be con-

fused with model stability (as a dynamical system), which is not guaranteed for non-linear models and in 

particular those with long prediction horizons. 
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Figures 3 and 4 report the model predictions using Eq. (28) on test set (unseen data), which is here se-

lected for demonstration purposes. Note that CoD related to that model results for simulation is estimated 

to be 0.686 (CoD of 1 is a perfectly fitting model) on the test set (see Table 1) and CoD for 6-months 

ahead prediction is 0.778. Such accuracy can be considered acceptable for stakeholders interested in 

planning the aquifer operation for next season or even longer term.  

Finally, the test set reported a period of drought lasting about 8 years starting from day #420 until about 

day #520. This window of data is useful for analysing predictions at different prediction horizons. For ex-

ample, Figure 3 shows that the one to two-month ahead predictions follow the groundwater level varia-

tions quite closely while the peaks are missed for the increased prediction horizon (4-months). Figure 4 

demonstrates, especially for the window of data [420; 520], that 6-month ahead prediction and simulation 

are useful in order to forecast the groundwater level variations for both seasonal and yearly time horizons. 

 

Conclusions 

The use of EPR as decision support strategy for data analysis and modelling is described. In particular, 

the procedure was applied to capture the dynamic relationship between groundwater heads (output) and 

rainfall depths (input). This application of EPR suggested the possible advantages of evolutionary multi-

objective modelling in general. These are: (1) the expressions cover a wide range of solutions which rep-

resent the best models for different structural complexities, (2) several important aspects in the analysis of 

the an environmental system are considered as evident in the analysis of the Pareto front of Eqs. and (3) 

the algorithm is more computationally efficient compared with the multiple single-objective runs for sepa-

rately analyzing fitness and complexity. These features allow the user to select from among a robust 

group of models, since a comprehensive set of possible structures can be developed for each purpose. 

Even if a single model is ultimately settled upon, a wide range of models can be helpful for understanding 

which terms/inputs are physically meaningful and which can comfortably be eschewed for the sake of 

model parsimony, while simultaneously striving for a degree of generality. 
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Figure 1. Location of the study aquifer [∗∗∗∗ sampling well; • raingauge station]. 
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Figure 2. (a) Rainfall time plot and (b) groundwater level time plot of available data. 

 

Rainfall (P): Time Plot

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 100 200 300 400 500

Time [data montly sampled]

T
o

ta
l 

r
a

in
fa

ll
 h

e
ig

h
t 

[m
] 

.

Training Set Test Set

Groundwater Level (H): Time Plot

29

30

31

32

33

34

35

36

0 100 200 300 400 500

Time [data montly sampled]

L
e
v

e
ls

 [
m

]

Training Set Test Set



To be cited as: Giustolisi, O. and Savic, D.A. (2009) Advances In Data-Driven Analyses and Modelling Using EPR-MOGA, J. of Hydroinformatics, 

Vol. 11, No. 3-4, pp. 225–236. 

 

21 

Figure 3. Groundwater head prediction at 1, 2, 4 months ahead computed on the test set using the model 

of Eq. (28). 
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Figure 4. Groundwater head prediction at 6 months ahead and simulation computed on the test set using 

the model of Eq. (28). 
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Table 1. EPR models: predictions and uncertainty analysis on test set; values on training set of the multi-

objective analysis. The bold character identifies the row corresponding to the selected Eq. (28). 

 Test set (Unseen data) Training set 

 
CoD 1-
month 

CoD 2-
months 

CoD 4-
months 

CoD 6-
months 

Simulation 
Uncertainty 

1-month 
CoD 

training 
# 

inputs 
# 

terms 

Ht=Ht-1 0.929 0.782 0.437 0.239 -0.718 / / / / 

Eq. (15) -0.718 -0.706 -0.711 -0.700 -0.700 0 0 0 1 

Eq. (16) 0.921 0.768 0.444 0.254 -0.757 0.072 0.85 1 2 

Eq. (17) 0.947 0.879 0.727 0.646 0.171 0.098 0.844 1 1 

Eq. (18) 0.928 0.782 0.472 0.287 -0.334 0.078 0.876 2 3 

Eq. (19) 0.951 0.882 0.768 0.707 0.314 0.109 0.855 2 2 

Eq. (20) 0.948 0.878 0.737 0.663 0.274 0.079 0.886 3 4 

Eq. (21) 0.951 0.881 0.756 0.696 0.355 0.098 0.883 3 3 

Eq. (22) 0.951 0.89 0.777 0.731 0.318 0.074 0.892 4 4 

Eq. (23) 0.958 0.905 0.802 0.756 0.537 0.101 0.886 4 3 

Eq. (24) 0.955 0.899 0.791 0.75 0.385 0.073 0.895 5 4 

Eq. (25) 0.96 0.904 0.808 0.774 0.592 0.096 0.888 5 3 

Eq. (26) 0.955 0.895 0.79 0.751 0.393 0.082 0.896 6 4 

Eq. (27) 0.961 0.909 0.816 0.779 0.636 0.094 0.888 6 3 

Eq. (28) 0.961 0.904 0.813 0.778 0.686 0.085 0.899 7 4 

Eq. (29) 0.96 0.908 0.815 0.779 0.685 0.086 0.9 8 4 

Eq. (30) 0.961 0.906 0.812 0.777 0.685 0.097 0.9 9 4 

Eq. (31) 0.96 0.906 0.81 0.77 0.632 0.093 0.9 10 4 

 


