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Support Vector Machines are kernel machines useful for classification and regression problems.

In this paper, they are used for non-linear regression of environmental data. From a structural

point of view, Support Vector Machines are particular Artificial Neural Networks and their training

paradigm has some positive implications. In fact, the original training approach is useful to

overcome the curse of dimensionality and too strict assumptions on statistics of the errors in

data. Support Vector Machines and Radial Basis Function Regularised Networks are presented

within a common structural framework for non-linear regression in order to emphasise the

training strategy for support vector machines and to better explain the multi-objective approach

in support vector machines’ construction.

A support vector machine’s performance depends on the kernel parameter, input selection and

e-tube optimal dimension. These will be used as decision variables for the evolutionary strategy

based on a Genetic Algorithm, which exhibits the number of support vectors, for the capacity of

machine, and the fitness to a validation subset, for the model accuracy in mapping the underlying

physical phenomena, as objective functions. The strategy is tested on a case study dealing with

groundwater modelling, based on time series (past measured rainfalls and levels) for level

predictions at variable time horizons.
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ACRONYMS

ANN artificial neural network

ARX autoregressive with exogeneous regressor type

(model’s input)

CoD coefficient of determination

EC-SVM evolutionary chaotic support vector machine

ES evolutionary strategy

GA genetic algorithm

LP linear programming

MO multi-objective genetic algorithm

MO-SVM multi-objective support vector machine

NARX input–output artificial neural network having

the ARX regressor

NRMSE normalised root mean squared error

NSGA non-dominated sorting in genetic algorithm

OPTIMOGA optimized multi-objective genetic algorithm

OPTISOGA optimized single-objective genetic algorithm

PAES Pareto archived evolutionary strategy

QP quadratic programming

RBFRN radial basis function regularised network

SO single-objective genetic algorithm

SO-SVM single-objective support vector machine

SPEA strength Pareto evolutionary algorithm

SSE sum of squared errors

SV support vector

SVD singular value decomposition

SVM support vector machine

VEGA vector evaluated genetic algorithm

VC Vapnik & Chervonenkis dimension
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NOTATION

avg(Hexp) average value of measured levels

b parameter of the kernel

C constraint for the second layer weights

(kW2k2 , C) in QP training

D Tikhonov regularisation parameter

f filter factors in regularisation strategy of

training

G matrix of the SVM

H groundwater level

Ĥ groundwater level returned by the model

Hexp measured value of groundwater level

Ht-i, Pt-i past groundwater level and past total

monthly

rainfall in the SVM’s input (components)

h number of hidden neurons

hVC VC dimension

Kj transfer function of the hidden neurons

k cutting point in the diagram of singular

values in LP training

L function to measure of the closeness to

training data in SVM

N number of data

na number of past outputs y or H in the model’s

ARX input

nb number of past inputs x or P in the model’s

ARX input

nk time unit delay of event’s input x with

respect to the event’s output y

P total monthly rainfall

ui, vi left and right singular vectors corresponding

to each singular value si

W1, W2, W matrix of the first and second layer weights

Y vector of the event’s output in the

evaluation subset

ŷðtÞ model’s prediction at time t

a, ap Lagrangian multipliers of the QP strategy

of training

e insensitive level of Vapnik’s error function

or tolerance in LP training

h levelof confidence inapproximating function

in SVM

wARX(t) model regressor or model’s input at time t

S matrix of dilatations in radial construction

si ith singular value from SVD of G

V capacity of the machine in SVM

k k2 Euclidean norm

INTRODUCTION

Artificial Neural Network (ANN) construction is the key

issue to get a feasible regressive model in a generalisation

scenario. It is well known that ANN construction implies two

main troubles (Haykin 1999; Kecman 2000; Giustolisi &

Laucelli 2005): (1) the curse of dimensionality and (2)

overfitting to training data.

The curse of dimensionality is the exponential increas-

ing of the parameter (weight) number with increasing the

dimension of the input space in order to perform a function

approximation preserving a constant level of accuracy. At

the same time, the events of the training set become sparse

(statistically speaking), increasing the dimension of the

model’s input space too.

A further issue relates to the ANNs’ flexibility in

mapping training events, which causes overfitting. This is

ANNs’ use to fit training events too strictly due to the huge

number of weights. This trouble increases when the curse of

dimensionality occurs (sparseness of the events of the

training set) because over-fitted ANNs are candidates to

produce poor predictions for those events that are far from

the training ones in the model’s input space.

There are several techniques to avoid overfitting

(Giustolisi & Laucelli 2005), which are generally based on

limiting fitness to training data. From the curse of dimension-

ality viewpoint, Support Vector Machines (SVMs), based on

the Vapnik & Chervonenkis (1971) learning paradigm

(Vapnik 1995; Haykin 1999; Kecman 2000), are a special

improvement of ANN modelling. SVMs overcome the curse

of dimensionality and related overfitting troubles using

Vapnik’s 1-insensitive error function that allows the selection

of the hidden neuron number for a given accuracy of the

model. Thus, the capacity of the SVM kernel machine is

driven by the complexity of data, unlike in the ANNs where

the capacity of the machine is a priori assumed throughout

the selection of the hidden neuron number.

Therefore, SVM construction requires the selection of:

(i) the regressor or model’s input as in general regressive
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input–output artificial neural networks (Haykin 1999;

Giustolisi 2000); (ii) 1 of the linear insensitive cost function,

which works similarly to the selection of the hidden neuron

number in classical regressive ANNs; and (iii) the parameter

of the kernel (transfer function of the hidden neurons).

The use of the aforementioned variables as decision

variables in a population-based optimisation strategy (here

the Genetic Algorithm (GA) paradigm is used) may be a

way of constructing an optimal SVM. It is possible to set

up the strategy in a single-objective scenario as recently

done by Yu et al. (2004) or in a multi-objective scenario as

reported in this work. In this paper a two-objective

strategy is used and compared with a single-objective

approach.

The key idea for the multi-objective approach is to

minimise the “final” hidden neuron number (the number of

support vectors for the SVM) and at the same time

maximising the fitness to a validation set as presented in

the remainder. In the single-objective approach, the fitness

to a validation set is maximised alone.

The selection of a cross-validation strategy (estimation

and validation subsets for construction and a test set of

“unseen data” for statistically computing generalisation

performance) is used to make feasible the strategy. On the

one hand, the perfect mapping (maximum fitness to

training data) is always obtained when 1 is equal to zero.

This corresponds to supporting the mapping with the

maximum number of vectors (hidden neurons) that equals

the number of training data. On the other hand, we are

interested in optimising the decision variables, looking at

the generalisation performance. Thus, maximising the

fitness to a validation set and minimising the capacity of

the machine may be considered a cross-validation strategy

in a multi-objective scenario based on evolutionary

computing.

SVM STRUCTURE AND TRAINING

In this paper, we will use radial construction for SVM

(Haykin 1999; Giustolisi 2004; Giustolisi & Laucelli 2005).

Therefore, the initial mathematical structure of the SVM for

regression is (assumed a radial construction):

ŷðt;W;KÞ ¼
Xh¼N

j¼1

Kj kw
ARX

ðtÞ2 W1jk2;
X� �

�W2j

� �
þ W20 ð1Þ

where ŷðtÞ is the model’s prediction or output at time t, W1

and W2 are the first and second layer weights, wARX(t) is the

model’s regressor or model’s input at time t whose

components are the past event’s inputs and outputs (ARX

regressor) and h ¼ N is the number of hidden neurons equal

to the number of training data. We will use the notation

ARX(na, nb, nk) to address a regressor made up by na past

outputs y and nb past inputs x that are nk-time-unit-delayed

with respect to the output (see Figure 1).

From the kernel point of view, in Equation (1) S is a

matrix of dilatations (usually a common dilatation par-

ameter among the kernels is used instead of S), W1 are the

centres of the kernel function and k k2 is the Euclidean

norm.

Finally, the first-layer bias usually does not exist in the

radial construction, being implicit in the kernel function,

and the second layer bias is assumed equal to zero

(W2o ¼ 0). A useful matrix form for Equation (1) is

presented:

ŷðt;W;KÞ ¼ K
X

;W1;w
ARX

� �
£W2 ¼ G £W2 ð2Þ

Equation (2) will be useful in the remainder of the paper.

For understanding the structure of the SVMs and their

on-line prediction features in the context of ANNs, the

differences with input–output ANNs having the ARX

regressor as the model’s input (NARX) (Haykin 1999;

Giustolisi & Laucelli 2005; Giustolisi 2004) are emphasised:

 

....

....
–y(t–1)

(t,W,K)ŷ

W1 2W

K1

1bias

Kj

KN W20

–y(t–na)

SVM-RBFRN

(t–nk)x

x(t–nb–nk+1)

(t )( ). )(K
02

, 2jj=1
ˆ –W1j W W2

h=N
ARXy(t,W,K) ϕ= +Σ Σ

j

Figure 1 | SVM or RBFRN structure.
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1. For SVMs the initial number of hidden neurons h is

equal to the number of training data N, as in Equation

(1), while for NARXs h , N and it is better if h ! N

(Giustolisi & Laucelli 2005).

2. For SVMs the first layer weights W1 (centres of the kernel

function in radial construction) for each component of the

regressor is fixed from the ARX regression matrix of the

training data, while for NARXs they are estimated together

with W2 during the training process.

3. For SVMs the second layer weights W2 are evaluated as

a linear optimisation problem assuming the so-called

Vapnik 1-insensitive loss (error) function generating a

1-tube the regression function must lie within, after a

successful learning. Note for NARXs the training

process usually relates to a non-linear least square

optimisation (Haykin 1999; Giustolisi & Laucelli 2005).

4. For SVMs the initial and final number of hidden neurons

differ because of the training paradigm. Assumed 1 . 0,

some weights of the second layer are equal to zero

(sparse solution) after learning. The non-zero weights

correspond one-to-one to data points that are outside or

on the bound of the e-tube “supporting” the regression,

while the other data points (weights equal to zero) are

inside the e-tube and they do not support the regression

(error function is equal to zero, see Figure 2). For NARXs

the number of neurons does not usually change before

training.

Moreover, a comparison between Radial Basis Function

Regularised Networks (RBFRNs) and SVM training

algorithms is given to better understand the features of

SVMs. In fact, RBFRNs and SVMs are both formalised by

Equation (1) from a structural point of view. They differ

for the training error function: for the RBFRNs the

smooth mapping does not produce a sparse solution,

while for the SVMs the tolerant mapping generate a

sparse solution.

In fact, the second layer weights for RBFRNs are from

W2 ¼
W2

arg min
XN
t¼1

yðtÞ2 y_ðt;W2;KÞ
� �2

þD�kW2k2

" #
ð3Þ

where the first term is a measure of the closeness to the

training data as the sum of squared errors (SSE) and the

second term is a control for the model complexity related to

Tikhonov’s (1963) parameter D similar to C in the SVMs

(Haykin 1999; Kecman 2000; Giustolisi 2004). The regular-

isation term smoothes the solution in the sense that similar

inputs correspond to similar outputs. In this scenario, the

training of RBFRNs is a determined (N £ N) linear

problem whose solution is regularized by D. Therefore

(Giustolisi 2004)

W2 ¼
XN
i¼1

fi�
uT
i £G

si

 !
�vi fi ¼

s 2
i

s 2
i þD

, 1 ð4Þ

where fi are the filter factors related to the parameter D, si

are the singular values of G from its Singular Value

Decomposition (SVD), and ui and vi are the columns of

the left and right singular vectors corresponding to each

singular value.

Note that the regularisation implies the well-condition-

ing of the mathematical inverse problem of finding W2,

which may be ill-conditioned, G being a square matrix of

high order. Note that RBFRNs perform as an interpolation

of training data that is controlled, in its roughness/smooth-

ness, by D.

Classical training for SVMs

The SVMs training paradigm uses the Vapnik & Chervo-

nenkis (1971) dimension concept, VC, and the second layer

weights are from (Vapnik 1995; Haykin 1999; Kecman 2000)

W2 ¼
W2

arg min LðyðtÞ2 y_ðt;W2;KÞÞ þVðN;hVC ;hÞ
� �

ð5Þ
Figure 2 | Vapnik’s error function for SVMs.
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where L is a function measuring the closeness to the

training data and V is the so-called capacity of the machine

dependent on the VC dimension hVC, the number of

training data N and the level of confidence in the

approximating function h. Equation (5) is similar to

Equation (3), but the SVM training strategy is to minimise

the approximation fidelity to training data and, at the same

time, the kernel machine capacity. The machine capacity

increases with VC dimension, which depends on the

number of support vectors, and decreases with the number

of training data. For function L the selection of Vapnik’s

e-insensitive loss function

Lð1Þ ¼ yðtÞ2 y_ðt;W2;KÞ
�� ��

1

¼
0 if yðtÞ2 y_ðt;W2;KÞ # 1

yðtÞ2 y_ðt;W2;KÞ
�� ��2 1 otherwise

8<
:

ð6Þ

is more robust towards outliers and non-Gaussian noise of

training data and implies a sparse solution (Haykin 1999;

Kecman 2000).

In this scenario, the training of SVMs is a linear

problem that becomes a Quadratic Programming (QP)

problem (Vapnik 1995; Haykin 1999; Kecman 2000) if the

second layer weights are subjected to the inequality

kW2k2 , C as the term for controlling machine capacity.

Therefore, the solution of

½a;a*� ¼
a;a*

arg max

2
1

2

a

a*

2
4

3
5T

£
G 2G

2G G

2
4

3
5 £

a

a*

2
4

3
5þ

12 yðtÞ

1þ yðtÞ

2
4

3
5 £

a

a*

2
4

3
5

0
B@

1
CA

subjected to 0 # a;a* # C

subjected to
X

a ¼
X

a* explicit bias given

ð7Þ

where a are the Lagrangian multipliers, provides the second

layer weights as

W2 ¼ a2 a* ð8Þ

A couple of issues are stressed: (i) RBFRNs are trained

performing a solution regularisation (Tikhonov 1963), then

tuning between smoothing and approximation errors, while

the key feature of the SVMs is in performing a subset

selection of non-linear-dependent columns of the matrix G

relying on the tolerance 1; and (ii) SVMs work accurately

with a small set of training data, but solving QP with

increasing N is quite difficult and memory consuming.

For this reason, several authors introduced decompo-

sition-based methods to solve QP or a Linear Programming

(LP) approach (Smola et al. 1999; Kecman 2000) that should

be more robust and faster, in particular increasing the size

of the problem. Finally, the way of selecting user-specified

parameters 1 and C is not supported by a comprehensive

theory.

In this work, an alternative strategy to QP, based on

1-norm minimisation (Giustolisi 2004), is used. It is based

on a different way of finding the subset of weights W2 with

respect to the tolerance e using the SVD of G, as reported in

the next section. The advantages of this alternative are: (i) it

requires just one parameter to tune (1) that is strictly related

to the number of support vectors, and (ii) it is fast for small

and medium sized problems, a fast SVD algorithm being

necessary, like that implemented in the MATLAB environ-

ment (Golub & Van Loan 1993), and a fast and efficient

solver for a LP problem (Barrodale & Roberts 1973).

Training by 1-norm of weights estimation

To find the second layer weights of the SVM, the problem

minkW2k1 subject to minkGk £W22 Yk2

Gk ¼
Pk

i¼1 ui�si�v
T
i

ð9Þ

is solved (Giustolisi 2004), where Y is the sequence of the

target data and k is the cutting point in singular values si of

G (Figure 3). Solving the problem in Equation (9) returns a

sparse solution, as well as in QP training of SVMs. Thus

some weights W2 are set to zero according to the mapping

tolerance 1. The parameter which controls the mapping

approximation is 1 ¼ s(k)/smax (see Figure 3). The novel

feature is that k corresponds to the hidden neuron number

(non-zero W2) (Giustolisi 2004).

From a mathematical viewpoint, this is a piecewise-

polynomial truncated singular value decomposition tech-

nique (Hansen & Mosegaard 1996) performing a subset

selection for columns in G (which singularly correspond to

hidden neurons) according to the tolerance 1, which is a

linear independence constraint for columns (Giustolisi

2004). It is important that the truncating point k controls
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the hidden neuron number as well as the tolerance of

Vapnik’s e-insensitive error function (Vapnik 1995).

USING MULTI-OBJECTIVE GENETIC ALGORITHM

FOR SVM

Evolutionary computing for designing SVMs was already

used for chaotic SVM (EC-SVM) by Yu et al. (2004). They

used a single-objective population-based optimisation strat-

egy. The decision variables were: (i) the time delay and the

embedded dimension for the input definition and (ii) C, 1

and s (of the Gaussian kernel) for the SVM. The single

objective was the fitness to the test set.

In this work, a similar strategy introducing something

different is used:

† two radial basis kernels have been tested and compared:

Kj kw2 W1jk2;
Pn o

¼ e2b�kw2W1jk2 Gaussian function

Kj kw2 W1jk2;
Pn o

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�kw2W1jk2þ1

p Inverse Multiquadratic function

ð10Þ

† Both single-objective and multi-objective strategies have

been used and compared.

† The regressor is not from chaos theory, but it is

composed by na candidate past outputs and nb candi-

date past inputs. The coding of the related decision

variable is a binary string (0 or 1 specifies the existence of

each component in the regressor).

† The SVM parameters are e and b of the two radial basis

kernels in Equation (10).

† For the multi-objective strategy, the maximisation of the

fitness to a validation subset and the minimisation of the

VC dimension (by means of the number of support

vectors) has been performed.

† For the single-objective strategy, the maximisation of the

fitness to a validation subset has been made.

† A multi-objective or single-objective genetic algorithm

strategy has been used as a population-based optimizer.

† Training of the SVM is performed by a novel 1-norm

based strategy claiming just for one parameter to be

tuned.

This paper will demonstrate that there are some advantages

in using multiple objectives in spite of a single objective. The

so-called Pareto front of non-dominated SVMs allows the

user to visualise the bests models both from structural

parsimony (minimisation of the VC dimension) and fitness

from a validation subset viewpoint (i.e. no one of the non-

dominated SVMs is, at the same time, better than the others

both from parsimony and fitness viewpoints). The Pareto

front of the best SVMs improves the testing phase (the

model selection phase), providing a more robust user

confidence about the generalisation performance of the

model that otherwise is only statistically based (see the rest

of the paper).

BACKGROUND OF MULTI-OBJECTIVE STATEGY

IN GA

GAs have been initially used in performing single-objective

optimisation (SOGA) by means of one objective function

Figure 3 | Diagram of singular values of G and truncating point k.
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to feature a particular property of each individual.

However, many real-world problems involve simultaneous

optimisation of multiple objectives (Savic 2002). Multi-

objective optimisation is very different from single-objective

optimisation. In single-objective optimisation one attempts

to obtain the best design or decision which is usually the

global minimum or the global maximum, depending on

whether the optimisation problem is that of minimisation or

maximisation. In the case of multiple objectives there may

not exist one solution which is the best global minimum or

maximum with respect to all objectives. Therefore, since

none of the solutions in the non-dominated set is absolutely

better than any other, any one of them is an acceptable

solution. The choice of one solution over another requires a

knowledge of the problem and a number of problem-related

factors. Thus, one solution chosen by a designer may not be

acceptable to another designer or in a changed environ-

ment. Therefore, in multi-objective optimisation problems,

it may be useful to have knowledge about alternative Pareto

optimal solutions (Savic 2002).

One way to solve multi-objective problems is to scale

the vector of objectives into one objective by averaging the

objectives with a weight vector. This process allows a

simpler optimisation algorithm to be used, but the obtained

solution largely depends on the weight vector used in the

scaling process. An early GA application of multi-objective

optimisation by Schaffer (1984) opened a new avenue of

research in this field. His algorithm, the Vector Evaluated

Genetic Algorithm (VEGA), gave encouraging results. In

this approach appropriate fractions of the next generation,

or subpopulation, are selected separately according to each

of the objectives. Usual crossover and mutation are applied

after shuffling all subpopulations together. Non-dominated

individuals are identified by monitoring the population as it

evolves. It was later noted by some authors (Fonseca &

Fleming 1998) that shuffling subpopulations together corre-

sponds to averaging the fitness components associated with

each of the objectives. Since Shaffer (1984) used a

proportional fitness assignment, the resulting expected

fitness corresponds to a variability weighted linear combi-

nation of the objectives analysed.

Later on, a method of ranking and fitness assignment,

based on the Pareto optimality concept, was proposed by

Goldberg (1989). In this method the population is divided

into several subpopulations according to the assignment of

a rank number, i.e. in each generation each subpopulation is

assigned a rank number, which represent a fitness indicator.

Another multi-objective strategy is introduced by

Fonseca & Fleming (1993) and is called MOGA. In this

approach, there is an individual’s rank corresponding to the

number of individuals in the current population by which it

is dominated. In this scheme, the non-dominated individ-

uals are assigned the same rank, while the dominated

individuals are penalised according to the population

density in the corresponding region of the trade-off surface

(Savic 2002).

Zitzler & Thiele (1998) proposed an elitist multi-

criterion evolutionary algorithm, called the Strength Pareto

Evolutionary Algorithm (SPEA). Starting from the initial

generation, they create an archive population containing

the non-dominated solutions discovered. At each gener-

ation, the archive population and the current population

are combined and ranked according to a fitness criterion

based on the number of solutions they dominate; the

dominated solutions are assigned by fitness, which is worse

than the worst non-dominated solution one. Moreover, a

deterministic clustering is used to ensure diversity among

the non-dominated solutions.

Knowles & Corne (1999) proposed a simple multi-

objective evolutionary algorithm using a single parent–

single child evolutionary algorithm. In this strategy, binary

strings and bitwise mutation are used to create children in

replacement of real parameters. It is called the Pareto

Archived Evolutionary Strategy (PAES).

Deb et al. (2002a) introduced a fast and elitist multi-

objective genetic algorithm based on evolution of the non-

dominated sorting in genetic algorithm (NSGA) presented

by Srinivas & Deb (1995) and called NSGA-II. In this

algorithm, to sort a population of assigned size according to

the level of non-domination, each solution must be

compared with every other solution in the population to

find if it is dominated. Solutions of the first non-dominated

front are stored in the first Pareto front, solutions of the

second front on the second Pareto front and so on. The new

population is constituted by solutions on the first Pareto

front, if they are less than the initial population size:

solutions from the next front are taken according to their

ranks.
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BRIEF DESCRIPTION OF OPTIMOGA

Giustolisi et al. (2004) recently proposed an algorithm for

multi-objective genetic algorithms (MOGA). It optimises

both the exploration of the objective space and the

exploitation of the best-computable front of non-dominated

solutions. As reported in Giustolisi et al. (2004), the

algorithm emphasises the explorative and spreading atti-

tudes of an evolutionary strategy, optimising the manage-

ment of the population size and, in particular, the rank

assignment of the solutions in the objective space. After-

wards, once the exploration of the objective space becomes

secondary to the convergence towards the trade-off surface

of the objective functions, the population of solutions and

the genetic operators are managed in order to push a sort of

local optimisation. On this premise, this algorithm has been

called an optimized multi-objective genetic algorithm

(OPIMOGA). Furthermore, the OPTIMOGA can be easily

turned into a single-objective GA, which is then referred to

as OPTISOGA. The OPTIMOGA/OPTISOGA is able to

deal with differently codified numerical problems, which

encompass binary, integer and real variables.

As for all evolutionary strategies (ESs), and generate-and-

test algorithms in general, the OPTIMOGA draws its strength

from two sources: exploration and exploitation. The explora-

tion and exploitation are regarded as opposite contributions

to establish the proper level of selective pressure and diversity

throughout the search process. The exploration is meant as

the phase in which a population of possible solutions is

evolved through the objective space in order to create a front

of non-dominated solutions. In this phase, the key issue is to

prevent solutions from leaving zones of the objective space

unexplored, rather than encouraging a wide spreading of the

solutions into the objective space. The exploitation is meant

as the phase in which the population converges towards the

theoretical Pareto front and its fine coverage, corresponding

to as close as possible a reproduction of the theoretical front,

is sought. Usually, explorative properties are attributed to

genetic operators such as recombination and mutation, while

exploitative ones to selection. In all ESs, the latter is referred

to as the mechanism that considers the quality (fitness) of

individuals to make a choice as to who to favour for

reproductive purposes. When exploration and exploitation

are unbalanced, either the search stalls around unpromising

areas of the objective space or it prematurely converges to

some local optima. The OPIMOGA algorithm adopts an

explorative strategy in the first stage and an exploitative

approach once the Pareto front is achieved. At the same time

an archive of non-dominated solutions is created. In the

second stage an exploitation strategy is pursued: the entire

population belonging to the Pareto front is evolved, up to a

maximum size. However, when the maximum size is reached,

the archive of solutions starts to grow in size, storing the non-

dominated solutions. Note that the archive can be involved in

the evolution, i.e. solutions from the archive can be used to

support the exploitation of the Pareto front. Therefore, the

archive is dynamically managed, since it is both upgraded at

each evolutionary loop and the solutions that it stores can be

used to create the next mating pool. On this premise, we

emphasise that the OPTIMOGA is typified by a few

parameters; we mean that the user is not required to

specifically tune the GAs settings. Furthermore, it is experi-

enced during the development of the OPTIMOGA that the

algorithm is not sensible to the variation of its settings. For

instance the same initial population size, together with the

same crossover and mutation rate, proved to be fitted to

different problems. In this scenario, the key issue is avoiding

as far as possible the introduction of deterministic procedures

in a stochastic search, which is driven by the fitness. The

effectiveness of the newly proposed procedure has been

assessed on six widely used continuous test problems, namely

DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5 and DTLZ6

(Deb et al. 2002b).

THE CASE STUDY

A case study concerned with modelling the relationship

between rainfalls P (event’s input x) and groundwater levels

H (event’s output y) by SVMs for an aquifer located in the

southeast of Italy is presented (Ricchetti & Polemio 1996).

Background to data

Figure 4 shows the location of the well from which the level

data used for the application of multi-objective/single-

objective support vector machine (MO/SO-SVM) were

sampled. The available data collections are: (1) a rainfall
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time series and (2) a groundwater level time series. Each

one of these data collections consists of 528 data points.

The rainfall data series consists of monthly cumulative

heights measured in cm. The groundwater series consists of

the average monthly values of the piezometric head of water

referred to the average sea level: the mouth of the well is

located at 35.92 m a.s.l. (above sea level). Both the rainfall

and groundwater data series cover a 44-year period:

between January 1953 to December 1996. Figures 5 and 6

show the time plot of rainfall and groundwater levels,

respectively.

PRELIMINARY ASPECTS OF MODELLING

Before modelling, both time series were split into two

subsets: the first made up of 300 samples, called the training

set, and the second made up of 228 samples, called the test

set. Furthermore, the training set was split in two other

subsets: the first made up of 216 samples (75%), called the

evaluation subset, and the second made up of 84 samples

(25%), called the validation subset.

The evaluation subset was used for weight estimation

and the validation subset was used for fitness evaluation for

Figure 4 | Location of the sampling well.
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Figure 5 | Rainfall time plot of available data.
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a population-based (OPTIMOGA or OPTISOGA) strategy.

The test set is considered in a latter phase, when the

optimiser has already generated the set of best models

(SVMs). In this phase it is important to test the generalis-

ation capabilities of the models, i.e. to assess how these

models perform when fed with an input data set different from

that used to identify them (unseen data). Thus, the model’s

performance was evaluated using the coefficient of determi-

nation (CoD) computed on the test set. The CoD is defined as

CoD ¼ 1 2
N

X
H
_

2Hexp

� �2

N

X
Hexp 2 avg Hexp

� �� �2 ¼ 1 2m�SSE

¼ 1 2 ðNRMSEÞ2

m ¼
N

N

X
Hexp 2 avg Hexp

� �� �2 :

ð11Þ

where N is the number of samples, Ĥ is the value of

groundwater level returned by the model, Hexp is the

measured value of groundwater level and finally avg(Hexp)

represents the average value of measured groundwater levels

evaluated on the N samples. We should emphasise from

Equation (11) that CoD, SSE and NRMSE (normalized root

mean squared error) are strictly correlated (note that the

value m does not depend on the particular model), belonging

to the same membership for fitness evaluation.

The approach can support any objective function (Hall

2001) given by the user. In fact, while for SVM the error

function for parameter estimation is that reported in

Equation (6) or Figure 2, the fitness evaluation for a

population-based (OPTIMOGA or OPTISOGA) strategy by

the validation set and the performance evaluated by the test

set for model selection are user-defined according to the

specific purpose of the model.

Regarding the MO/SO-SVM technique, the software

was implemented in the MATLAB environment. The

features used to perform MO/SO-SVM construction were:

† training of the SVMs by 1-norm paradigm for weight

estimation,

† two different kernels, see Equations (10): inverse multi-

quadratic function and Gaussian function,

† one decision variable b for both the kernels, see

Equations (10),

† one decision variable e for the training paradigm,

† maximum na and nb þ nk, respectively, equal to 4 and

13 (note that nk derives from selection of the lowest

index of the P components); thus the candidate inputs

were Ht21, Ht22, Ht23, Ht24, Pt, Pt21, Pt22, Pt23, Pt24,

Pt25, Pt26, Pt27, Pt28, Pt29, Pt210, Pt211, Pt212,

† linear scaling of the time series in the range [0 1] when

used in the SVM,

† OPTIMOGA search for the Pareto front considering

minimisation of 1-CoD (computed by the validation

subset) and the number of support vectors,

† OPTISOGA search for the best SVM by minimising 1-

CoD (computed by the validation subset).

Regarding the OPTIMOGA/OPTISOGA, their main

features were:

† GA mixing binary strings for the model’s input com-

ponent selection and integer strings for coding the two

real numbers (b and 1),

† 2 # b # 1025 and 1 , 1 , 1025 bounds for real decision

variables,

† multi-point crossover with probability rate equal to 0.4,

† single-point mutation with probability rate equal to 0.1,

† maximum population in evolution equal to 40 individuals,

† generation number equal to 500.

Finally, from a practical viewpoint it is important to report

that a MO/GA-SVM strategy implemented in the MATLAB

environment took about 80–100 min (depending on the

kernel: Gaussian or inverse multi-quadratic) for 500

generation runs using a PC with an Intel Pentium IV,

2600 MHz processor and Windows XP operating system.
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Figure 6 | Groundwater level time plot of available data.
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RESULTS AND COMPARISONS

Table 1 reports the results (actually more than one run was

performed, obtaining similar results) concerning the

implementation of two kernels (Gaussian and inverse

multi-quadratic) and the MOGA and SOGA population-

based strategy.

In order to obtain a more reliable estimate of the CoD

evaluated on the test set ([1 month; 3 months; 6 months; 9

months; 12 months] ahead predictions as in Table 1), data

were resampled 1000 times according to a bootstrap scheme

(Efron 1979). Therefore, the CoD values in Table 1 are

average values. Moreover, the CoD of the naive model equal

to [0.920, 0.583, 0.226, 0.032, -0.136] for 1 month, 3 months,

6 months, 9 months and 12 months ahead predictions was

computed as a benchmark for values in Table 1.

In the comparison between MOGA and SOGA strat-

egies, no significant difference between their run-times was

observed. The results imply:

† For the Gaussian kernel the SOGA strategy provides a

SVM having 10 support vectors (10-SV machine) and for

this reason a lower tolerance 1 (i.e. higher accuracy with

respect to the estimation set) compared to the less

parsimonious SVM of the MOGA strategy. The model’s

input is equal to the 9-SV machine of the MOGA

strategy and the fitness to the validation subset (Obj Fun:

1-CoD) is comparable to the same 9-SV machine. The

performance on the test set is similar until 3-months

ahead predictions, becoming worse for the SOGA

approach and increasing the prediction horizon.

† for the inverse multi-quadratic kernel the SOGA strategy

provides a 14-SV machine and for this reason a lower

tolerance 1 (i.e. higher accuracy with respect to the

estimation set) compared to the less parsimonious SVM

of the MOGA strategy. The model’s input is very different

from all the SVMs of the MOGA strategy and much

longer. The fitness to the validation subset (Obj Fun:

1-CoD) is comparable to a 5-SV machine of the MOGA

strategy. The performance on test proves itself similar to

the best MOGA-SVMs, SOGA-SVM not being compara-

tively satisfactory for short-time predictions.

† SOGA generally provides a SVM that is less parsimonious

with respect to all the MOGA-SVMs, without offering

a better generalisation performance. The kernel parameter

result is similar in both the MOGA and SOGA approach.

Now, looking at the comparison between the performance

of the Gaussian and the inverse multi-quadratic kernels:

† The best Gaussian SVMs looks generally similar per-

forming on the test set (excluding in the analysis the

trivial 2-SV machines) compared to the best inverse

multi-quadratic SVMs, but the Gaussian kernels prove to

have a steadier generalisation performance across the

SVMs, making more parsimonious structures generally

available both in the SOGA and MOGA cases.

† When the Gaussian kernel is used, the model’s input

sometime involves the oldest past rainfall components

(i.e. Pt28, Pt29, Pt210, Pt212).

† When the Gaussian kernel is used, the model’s input (2-

SV machine excluded) always involves Ht21, Ht22, Pt,

Pt21, as closer past components, while when the inverse

multi-quadratic is used, there is never Ht22, and some-

times Ht23, Ht24 appear.

† The inverse multi-quadratic kernel always requires a

lower parameter b value than the Gaussian kernel.

DISCUSSION ON MODEL SELECTION

The model selection is a very important issue. In fact, the

decision to use or not to use a model after construction is a

critical choice for the user. What usually drives the selection

of the model in a single-objective strategy of parameter

design is the statistical performance evaluation on a test set

of data (unseen data) by means of user-selected objective

functions (Hall 2001). Unfortunately, this test can only

provide an estimation of the generalisation performance of

the model. This estimate may be biased by the finite length

of the test set, besides being corrupted by errors. Thus, the

single realisation of errors may bias the estimate because the

particular model fits it. On the other hand, the performance

required for a model is not necessarily the highest

considering the estimated prediction performance, but a

certain robustness of the selection is equally important

looking at the future use on new sets of data of the model

being selected. In this scenario, the multi-objective strategy

may be considered as a decision support tool for a more

robust selection of the SVM through considerations that are
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Table 1 | MO/SO-SVMs’ parameters and estimated performance on test set

Decision variables Obj Fun CoD on Test Set at different horizon predictions

b 1 Ht21 Ht22 Ht23 Ht24 Pt Pt21 Pt22 Pt23 Pt24 Pt25 Pt26 Pt27 Pt28 Pt29 Pt210 Pt211 Pt212 1-CoD SV 1month 3 months 6 months 9 months 12 months

Gaussian kernel (MOGA)

0.304 0.0088 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0.04123 9 0.94912 0.78738 0.68378 0.69183 0.68294

0.284 0.00774 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0.042118 8 0.95644 0.81192 0.71938 0.70099 0.67863

0.33888 0.0075 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0.042186 7 0.95211 0.79416 0.68982 0.69496 0.69771

0.31716 0.00695 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0.043941 6 0.9606 0.82868 0.71005 0.69239 0.6583

0.33668 0.0047 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0.045263 5 0.95661 0.81096 0.70038 0.68243 0.68719

0.27576 0.0077 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.056004 4 0.95669 0.81121 0.66295 0.56144 0.47617

0.2 0.00769 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.072711 3 0.94031 0.58288 0.067037 20.26703 20.55752

0.292 0.01677 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.116 2 0.91826 0.57311 0.22261 0.046933 20.08796

Gaussian kernel (SOGA)

0.26 0.00273 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0.04139 10 0.95481 0.79388 0.5835 0.39022 0.10487

Inverse multi-quadratic kernel (MOGA)

0.9798 0.0006 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0.043256 12 0.96385 0.81747 0.64014 0.48396 0.33785

0.1016 0.00054 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0.046488 7 0.9615 0.83485 0.71972 0.68166 0.64775

0.1656 0.00064 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0.047896 6 0.94283 0.69607 0.43122 0.30875 0.25809

0.18 0.00271 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0.052133 5 0.95217 0.79294 0.65577 0.6004 0.55701

0.072526 0.00157 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.063851 4 0.94206 0.69114 0.35779 0.16798 0.063839

0.060002 0.0015 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.080888 3 0.94529 0.78261 0.62353 0.53122 0.46672

0.1628 0.14248 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11603 2 0.91369 0.55293 0.19614 0.011989 20.12118

Inverse multi-quadratic kernel (SOGA)

0.20001 0.00035 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0.053713 14 0.94136 0.78662 0.68183 0.63319 0.58391
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not only statistically based. In fact, the Pareto front of the

best (most parsimonious and accurate) SVMs provides a

description of the SVMs’ family properties in modelling the

groundwater data, see Table 1. Looking at the Gaussian

kernel in Table 1, the model’s input presents some

similarities across the SVMs as well as b. In this way, the

user may observe from the Pareto front of the SVMs that

increasing the number of support vectors means the length

of the input increases, the oldest past rainfall components

Pt-8, Pt29, Pt210, Pt212 now being involved. Thus, there is a

sort of contiguity of the SVMs. Looking at the CoD

performance on the test set in Table 1, they increase in all

the prediction horizons from 2-SV to 6-SV machines. When

the number of SV ranges between 7 and 9 the performance

decreases for some line horizon predictions.

It is possible to observe that this situation corresponds

to the use of the new components Pt28, Pt29, Pt210, Pt212.

Thus, the decision support table indicate as candidates for

the SVM selection the 5-SV or 6-SV machines. The

difference between the two machines is in one hidden

neuron (support vector) and the introduction of the Pt29

component in the model’s input for the less parsimonious

SVM. This seems to slightly improve the estimation of the

prediction performance. For example, the author’s choice

is for the most parsimonious SVM, whose prediction

performance on the test set is depicted in Figure 7, thus

considering the pressure for simplicity as very important for

model robustness. Moreover Figure 7 shows that the

months from 470–480 are critical for SVM prediction.

This is due to the attitude of SVMs, and in general black-box

models, at interpolating or slightly extrapolating with

respect to training data. Clearly, the poorness in prediction

may be in the model construction or caused by test set

events far from the training ones. However, Figure 7 shows

that the selected model generally has good performance on

“unseen data” (test set) and never failing (consider that 228

data means 19 years of testing).

Therefore, the selected SVM is not the best performing

on the test set, but has a good trade-off between parsimony

and accuracy. Moreover, the fact that performance is

comparable from 6 months to 12 months indicates that

machine has picked up the “deterministic” relations

between the event’s input and output (Giustolisi 2000;

Giustolisi & Laucelli 2005).

In fact, the SVM may be seen as a two-component

model: the first component allows modelling of the

relationship between rainfalls and groundwater levels (it is

named deterministic, since it models a determinate input–

output relation), the latter component (named probabilistic)

models short-time effects due to the unknown or secondary

extra inputs and/or noise correlations in a statistical way, in

order to improve on-line groundwater level forecasting

using past measured data (Giustolisi 2000; Giustolisi &

Laucelli 2005).

The fact that occasionally the CoD of the 12-months

line horizon prediction is higher than the 9-months one is
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Figure 7 | Measured groundwater level vs predicted at different line horizons.
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theoretically not correct, but is caused by the estimation

scenario. Therefore, the prediction performance can be

assumed comparable and the prediction error constant

increasing the horizon forecasting. Thus, the deterministic

component is working well since for horizon predictions

longer than short time effects (modelled by the probabilistic

component) the prediction error should become constant as

well as in the physically based models.

Looking at the Gaussian kernel, the same use of the

Pareto front of SVMs for the inverse multi-quadratic kernel

shows that the structures are characterised by a variability

of b and model’s input.

The 5-SV and 7-SV machines look similar as input (the

same length but they differ for Ht23 and Pt210) and the best

performance on the test set. In this case, we may consider

the decision for SVM selection less supported (less robust)

because of the slight similarity in the structures of the Pareto

front than in the Gaussian kernel case. Moreover, the

selection between 5-SV and 7-SV machines is less unequi-

vocal because it may be driven by performance or

parsimony.

CONCLUSIONS

This paper proposes a multi-objective strategy, MO-SVM,

for automatic design of the support vector machines based

on a genetic algorithm. The strategy is compared with a

single-objective one performed in the same framework.

For the multi-objective strategy, the OPTIMOGA

optimiser found the Pareto front of non-dominated SVMs

considering maximisation of the fitness to a validation

subset and the minimisation of the VC dimension (by the

number of support vectors), while for the single-objective

strategy the fitness maximisation was performed. Further-

more, two classical kernels from the literature for the

transfer function of the hidden neurons were tested.

Regarding the kernels, the Gaussian function proves to

be more robust, compared to the inverse multi-quadratic

kernel, providing good steady performance in groundwater

modelling accuracy throughout the non-dominated SVMs.

The multi-objective strategy proves to be better than the

single-objective strategy because the Pareto front of SVMs are

found to be more parsimonious and, contemporarily, more

accurate in prediction performance (assuming different

prediction horizons) of the groundwater levels than the

single SVM (2-SV and 3-SV machines are not considered

in this).

Furthermore, the multi-objective strategy seems to be

more robust for SVM selection than the single-objective

one. Multi-objective makes it possible to look at the

similarities and contiguities of the structures belonging to

the Pareto front of the non-dominated SVMs as a decision

support tool. Besides, the decision for selection in the

single-objective strategy may be critically influenced by the

specific realisation of the errors in a “finite size” test set

when computing performance, being only statistically based

on the estimation of the generalisation performance.

Finally, the parameter 1 of Vapnik’s error function

seems to be related to the specific kernel adopted and not to

data noise. Mind that data do not change across the runs.
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