
Comparison between satellite and ground data 
with UAV-based information to analyse vineyard spatio-temporal variability 

Laura Pastonchi, Salvatore Filippo Di Gennaro*, Piero Toscano and Alessandro Matese

Institute of BioEconomy, National Research Council (CNR-IBE), Via G. Caproni, 8, 50145 6 Florence, Italy

*Corresponding author: salvatorefilippo.digennaro@cnr.it

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs
and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability.
Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful
investigation tools for vineyard site specific management. These remote sensing techniques are mainly exploited to
get the Normalized Difference Vegetation Index (NDVI), which is useful for describing the morpho-vegetational
characteristics of vineyards. This study was conducted in a vineyard in Tuscany (Italy) during the 2017, 2018 and
2019 seasons. Ground data were acquired to detect some agronomic variables such as yield (kg/vine), total soluble
solids (TSS), and pruning weight (kg/vine). Remote sensed multispectral images acquired by UAV and
Sentinel 2 (S2) satellite platform were used to assess the analysis of the vegetative variability. The UAV NDVI was
extracted using both a mixed pixels approach (both vine and inter-row) and from pure canopy pixels. In addition to
these UAV layers, the vine thickness was extracted. The aim of this study was to evaluate both classical Ordinary
Least Square (OLS) and spatial statistical methods (Moran Index-MI and BILISA) to assess their performance in a
multi-temporal comparison between satellite and ground data with UAV information. Good correlations were
detected between S2 NDVI and UAV NDVI mixed pixels through both methods (R2 = 0.80 and MI = 0.75).
Regarding ground data, UAV layers showed low and negative association with TSS (MI = - 0.34 was the lowest
value) whereas better spatial autocorrelations with positive values were detected between UAV layers and both yield
(MI ranged from 0.42 to 0.52) and pruning weight (MI ranged from 0.45 to 0.64). The spatial analysis made by MI
and BILISA methodologies added more information to this study, clearly showing that both UAV and Sentinel-2
satellite allowed the vigour spatial variability within the vineyard to be detected correctly, overcoming the classical
comparison methods by adding the spatial effect. MI and BILISA play a key role in identifying spatial patterns and
could be successfully exploited by agricultural stakeholders.

unmanned aerial vehicle (UAV), Sentinel-2 data, precision viticulture, Moran’s index (MI), local indicators of
spatial autocorrelation (LISA), vineyard variability
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INTRODUCTION

In the last years, the agriculture community has
entered the world of technology, which is an
increasingly indispensable resource in crop
management. The need for ever more precise
information aimed at supporting stakeholder’s
decisions, led to the use of remote sensing (RS)
data, which are timely, synoptic, cost-efficient
and repetitive information for crop management
purposes (Atzberger, 2013; Di Gennaro et al.,
2019; Di Gennaro et al., 2020). The application
of these technologies and methodologies for
vineyard site specific management represents the
core of precision viticulture (PV) (Matese and Di
Gennaro, 2015). Improving vineyard yield and
grape quality through a proper knowledge of the
vineyard spatial variability and thereby reducing
costs and environmental impact is one of the
current challenges for vine growers (Song et al.,
2014; Silvestroni et al., 2018; Khaliq et al.,
2019). This crop has a very wide international
diffusion since it can be cultivated in very
different conditions due to a great number of
varieties with different behaviour and numerous
training systems. In particular, this crop has a
macroscopic ecophysiological response to
pedomorphological and climatic conditions that
often vary within the same vineyard (Matese and
Di Gennaro, 2015). These peculiarities make
remote sensing a fast and useful solution for
spatio-temporal monitoring (Borgogno-Mondino
et al., 2018). The most common remote sensing
platforms used in viticulture are Unmanned
Aerial Vehicles (UAV), airborne sensors and
satellites, which can be equipped with different
types of optical sensors to analyse plant response
in a wide spectral range, such as RGB, multi-
and hyper-spectral, thermal infrared and LiDAR
(Hall et al., 2002; Mathews and Jensen, 2012;
Matese and Di Gennaro, 2015; Pádua et al.,
2019; Sozzi et al., 2020). Among these remote
sensing platforms, airborne, but above all UAV,
are characterized by low operational costs,
excellently timed and flexible surveys and high
ground spatial resolution (even a few
centimetres) providing detailed information of
vine features within the field (Matese et al.,
2015; Jay et al., 2019; Pichon et al., 2019; Sozzi
et al., 2020). However, these two systems allow
information to be obtained on limited areas and
require long and specialized post-processing that
can be difficult for the farmers to interpret
(Candiago et al., 2015, Sozzi et al., 2020).
Although satellites are affected by cloud cover,
they are a fundamental tool for long-term and

extensive crop monitoring. Nowadays, a large
range of satellite sensors regularly provide free
datasets, thus promoting satellite technology for
many agricultural applications (Atzberger, 2013;
Yang et al., 2017; He et al., 2018; Khaliq et al.,
2019).

Remote sensing in PV is mainly used for
reflectance spectroscopy, an optical technique
based on reflectance measurements of the incident
electromagnetic radiation at different
wavelengths, in particular in the visible, near
infrared and thermal infrared regions (Matese and
Di Gennaro, 2015). This data allows considerable
information to be obtained, useful for describing
the morpho-vegetational characteristics of
vineyards (Johnson, 2003; Santesteban et al.,
2013; Matese et al., 2019). This information
includes a wide set of spectral vegetation indices
based on different electromagnetic bands, useful
for describing plant physiology (Magney et al.,
2017; Pádua et al., 2019). The well-known
Normalized Difference Vegetation Index (NDVI)
(Rouse et al., 1973) is one of the most widely
used. It makes use of the different responses of
vegetation to the visible (red) and near infrared
(NIR) spectral bands that are closely related to
crop vegetative and productive features (Romboli
et al., 2017; Khaliq et al., 2019). The presence of
grass cover, bare soil or shadows may strongly
affect the computation of spectral indices, leading
to a wrong crop status evaluation. In order to
solve this issue, some algorithms focused on
pixels classification have been developed to
perform pure canopy pixels extraction by means
of crop-specific masks (Atzberger, 2013; Peña et
al., 2013; Pérez-Ortiz et al., 2015; Senthilnath et
al., 2017; Cinat et al., 2019; Khaliq et al., 2019).

The high heterogeneity of vineyards can have
different impacts on vine physiological response,
with direct consequences on grape quality and
yield. It is therefore clear that vineyards need
specific agronomic management according to the
spatial variability within the field (Proffitt et al.,
2006). The use of statistical methods, which take
into account the spatial structure of vineyards to
compare ground measurements with information
derived from remotely-sensed data, could be a
robust and powerful tool to evaluate the practical
implications of vineyard variability, and
represents a valuable trigger to increase the
spread of PV techniques (Matese et al., 2019).
Many studies base their data comparison on
either visual evaluation or classical Ordinary
Least Square (OLS) regression (Baluja et al.,
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2012; Yang and Everitt, 2012); however, both
approaches have several shortcomings, as visual
inspection can suffer from subjectivity errors,
and the OLS is not well-suited to spatially
structured data because OLS scores can be
biased and their significance inflated (Matese et
al., 2019). There is a need to use other methods
more suitable for this kind of study. Within the
geostatistics solutions, there are two methods
that take into account autocorrelation,
represented by the Moran Index (MI, Moran,
1950), and the Bivariate Local Indicators of
Spatial Autocorrelation based methods (BILISA,
Anselin, 1995). These spatial dependence
statistics are more objective means of
quantifying a pattern in terms of patchiness
(Miller et al., 2007). The MI measures the global
correlation between data in the comparison
process; instead, BILISA focuses on degree of
spatial clustering and dispersion between two
different variables in nearby locations (Anselin
and Rey, 2014). Currently, there are not many
studies that apply these statistical approaches to
data analysis for agricultural purposes; there is
also a lack of research concerning local spatial
autocorrelation indices used to evaluate the
spatio-temporal patterns in fields (Matese et al.,
2019).

The purpose of this study is thus to use the
aforementioned classical and spatial statistical
methods (OLS, MI and BILISA) to evaluate their
performance in the comparison between satellite

and ground data with information acquired from
a UAV platform. The aim is to identify a
methodology able to overcome the limits of the
classical statistical approach and provide
objective means of quantifying the variability
within a vineyard. This analysis was conducted
for 2017, 2018 and 2019 seasons in an
experimental vineyard located in an area of
excellence of Tuscan viticulture (Italy): the
Chianti Classico. Ground data were acquired
during the harvest periods in order to detect
some agronomic variables. Through UAV flights
and S2 satellite, multispectral images were
obtained (S2 images were acquired by selecting
those closest to the UAV flight date) and the
NDVI was calculated. In addition to these
layers, the vine thickness was extracted from
UAV data. The statistical framework was thus
used to assess, within a multi-temporal context,
the degree of similarity of these different
datasets, providing a clear demonstration of how
remote sensing can be exploited by winegrowers
for crop management.

MATERIALS AND METHODS

1. Study area and ground measurements

The research took place in an experimental
vineyard planted in 2008 and located in
Castellina in Chianti within the Chianti Classico
denomination, which is an area of excellence of
Tuscan viticulture (Italy) (Figure 1). Sangiovese
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FIGURE 1. Experimental design and ground sampling points within different vigour zones. White dots
represent sampling vines.
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(Vitis vinifera L.) vines were trained to a vertical
shoot-positioned trellis system with spur-pruned
single cordon. Vine spacing is 2.2 m × 0.8 m
(inter-row and intra-row, respectively), rows are
NW-SE oriented and the vineyard is on a slight
southerly slope at 355 m above sea level. Pest,
soil and canopy management were performed
following the farm practices.

Six flight campaigns (referred as F1-F6,
Figure 1) were performed during 2017, 2018 and
2019 seasons, and ground truth data, related to
productive and vegetative parameters, was
collected at the end of each season through
destructive sampling in three vigour zones
representative of vineyard vegetative variability
(Figure 1).

A preliminary vineyard vigour assessment was
done using Sentinel 2 imagery. NDVI maps
obtained from S2 surveys at the beginning of
June 2017 allowed to delineate a zone with high
vigour (HV-green circle) and another with low
vigour (LV-red circle) in the north and middle
part of the vineyard respectively, whereas a
heterogeneous area with mixed vigour (MV-
orange circle), due to the co-presence of high
and low vigour vines, in the south part of the
field. NDVI maps obtained with the first UAV
flight (F1) campaign confirmed the presence of
those vigour zones. At the end of each season,
18 sampling vines were selected within each
vigour zone, for a total of 54 vines. Yield
(kg/vine) and total soluble solids (TSS) (°Brix)
were measured for each vine using a field scale
and a hand-held optical refractometer
respectively. Pruning weight in terms of total
shoot fresh mass (kg/vine), has been used as a
proxy of vine vigour. This was determined in the
field for each vine during the dormant period at
the end of the growing seasons.

2. UAV data acquisition and processing

During each flight campaign, multispectral
images were acquired through an open-source
UAV platform, consisting of a modified multi-
rotor Mikrokopter (HiSystems GmbH,
Moomerland, Germany), described in detail in
Matese and Di Gennaro (2018). The flight
altitude, identified to ensure an optimal
characterization of vineyards, is 50 m (AGL),
providing 3.5 cm/pixel ground resolution. The
UAV was equipped with a Tetracam ADC Snap
multispectral camera (Tetracam, Inc.,
Gainesville, FL, USA), which is able to acquire

data in the green (520–600 nm), red
(630–690 nm), and near infrared (760-900 nm)
bands. Camera settings were set to a fixed
exposure with automatic trigger at 2 s frequency.
Additional characteristics of this camera are
described in Matese et al. (2016). The
multispectral images were then mosaicked using
Agisoft Metashape Professional v.1.6.0 (Agisoft
LLC, St. Petersburg, Russia). This Structure
from Motion (SfM) processing software has
allowed a dense cloud of the vineyard to be
obtained, and then a high-resolution NRG
orthomosaic (Nir, Red, Green), a multilayer
raster as defined in Cinat et al. (2019)
(Figure 2a), and a Digital Surface Model (DSM)
(Figure 2b). These two latter products were
uploaded in Matlab v.2016 (MathWorks Inc.,
Natick, MA, USA), in which several steps were
performed to obtain three different maps
indicative of the variability in the vineyard:
NDVI unfiltered (mixed pixels, i.e. both vine and
inter-row), NDVI filtered (vine-only pixels) and
vine thickness, which is the section width of vine
rows. First of all, a filtering procedure of pure
canopy pixels was done by removing inter-row
and mixed pixels. The basis of this procedure
was that vine rows have a greater height from the
ground and can easily be discriminated by Otsu’s
global thresholding, an algorithm that allows two
different zones to be detected: vine rows and
ground (Matese et al., 2016). This step produced
a NRG mask layer with the same size and pixel
resolution as DSM (Figure 2c), where each pixel
was classified as canopy or not canopy (soil and
shadows). The digital numbers (DN) of the NRG
orthomosaics were then converted to reflectance
through a radiometric calibration with the
radiance detected by the sensor (Kelcey and
Lucieer, 2012) on three OptoPolymer
(OptoPolymer – Werner Sanftenberg, Munich,
Germany) homogeneous and Lambertian
reference panels (95 %, 50 % and 5 %
reflectance). These panels were present on each
flight. Subsequently, a rectangular polygon grid
was defined as a function of spacing values of
the vineyard (Figure 1), ensuring that each
polygon included three plants. Therefore, the
grid for the experimental site is 2.2 x 2.4 m
(Figure 2d). Finally, for each polygon, the
radiometric information of all the mixed pixels
was used to obtain the NDVI unfiltered data
(Figure 2e). The NDVI filtered layer was instead
obtained following the same approach but using
a filtered mask to extract only the canopy pixels
(Figure 2f). That mask was also used to extract
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the third UAV product related to vine thickness,
which was computed from the DSM following
the 2.5D approach described in a previous paper
(Di Gennaro and Matese, 2020) (Figure 2g). As
next step of this workflow, a punctual shapefile
for each flight containing the average values of
the three parameters calculated for each three
vines grid (NDVI unfiltered, NDVI filtered and
vine thickness) was created. Lastly, in order to
compare the UAV products with ground
sampling measurements (yield, TSS and pruning
weight), the August UAV data (chosen as
available in all the years) was joined to the
ground sampling vines data in order to use this
punctual shapefile in GeoDa software (Anselin et
al., 2010).

3. Sentinel-2 data acquisition and processing

The Sentinel-2 multispectral images were
downloaded from the official Copernicus Open
Access Hub (www. scihub.copernicus.eu). Within
this online database, cloud-free images were
chosen according to their proximity to the UAV
flight dates. These completely free data are 100 x
100 km2 images, with a spatial resolution of
10 m, constituted by orthorectified Bottom-Of-
Atmosphere (BOA) reflectance. The spectral
bands B4 (635-695 nm) and B8 (727-957 nm),
related to red and near infrared regions
respectively, were extracted to obtain NDVI

raster images with a 10 m pixel resolution
(Figure 2h). As an operational choice, the S2
spatial resolution was chosen as reference
resolution for the satellite and UAV datasets.
Thus, the three UAV products (NDVI unfiltered,
NDVI filtered and vine thickness) were joined to
the 10 m S2 NDVI map through QGIS software
(Quantum GIS,  http://www.qgis.org/), using the
mean values per 10 m grid. Such an averaging
methodology is commonly implemented for this
type of analysis (Matese et al., 2015; Di
Gennaro et al., 2019; Sozzi et al., 2020). A final
shapefile containing the four aforementioned
values was thus obtained for each of the six
surveys. Those shapefiles were then cut
according to the vineyard profile, taking care to
remove mixed border pixels.

4. Statistical analysis 

For each flight campaign, the three UAV maps
(NDVI unfiltered, NDVI filtered and vine
thickness) were compared to S2 NDVI values
using either classical or spatial statistical
approaches, whereas the comparison between
UAV layers and ground data was made only with
the spatial analysis. This latter, unlike the
classical method, considers the structure and
geospatial variability present within the
vineyard. All these comparisons were made
using the GeoDa software.
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FIGURE 2. Products of multispectral images processing: a) NRG orthomosaic, b) Digital Surface Model
(DSM), c) NRG mask layer, d) polygon grid, e) NDVI unfiltered data, f) NDVI filtered, 
g) vine thickness, h) S2 NDVI.



OLS regression was the classical method used to
compare the obtained maps in terms of R2, and
F-statistic was used to check the accuracy of the
regression model. The adopted spatial methods
are the statistical index I, developed by Moran
(Moran, 1950), Moran’s Index (MI), and Local
Indicators of Spatial Association (LISA),
developed by Anselin (Anselin, 1995), and based
on the MI. Moran’s Index is a measure of global
spatial autocorrelation of the data within the
whole analyzed area. Its value ranges from −1 to
+1, where a positive autocorrelation means that
there are similar values in nearby areas
(clustered pattern); a negative spatial
autocorrelation implies dissimilar values at
nearby locations (disperse pattern) and the zero
value (MI = 0) indicates the absence of spatial
autocorrelation (random pattern). Univariate MI
is the correlation between a variable X and the
“spatial lag” of X, formed by averaging all
values of X for the neighbouring polygons.
Bivariate MI is, instead, a correlation between a
variable X and a different variable in nearby
areas. The fundamental difference is that, in the
bivariate case, the spatial lag pertains to a
different variable. 

Both the Univariate and Bivariate Moran’s
Indexes have been used in this work. Local
Indicators of Spatial Association (LISA)
measures local spatial autocorrelation: the
statistic is calculated for each areal unit present
in the whole area, based on neighbouring units
with which it shares a border. The result
provides maps of local clusters with similar
behaviour in the spatial arrangement of a given
variable. The Bivariate LISA (BILISA) focuses
on spatial clustering and spatial dispersion

between features of a variable and another
different variable in nearby locations (Anselin
and Rey, 2014).

To perform these analyses, first of all, spatial
weights were necessary because they allow the
“nearness” or “proximity” between observations
to be measured. GeoDa software gives the
possibility to manage the spatial weights and, in
this paper, the queen contiguity approach with
the first-order of neighbours in a 3×3 matrix was
chosen (Figure 3a). The results of BILISA
consist of a cluster map, significance map, and
the Moran scatter plot. The four quadrants in the
Moran scatter plot (Figure 3b) correspond to four
types of local spatial autocorrelation (Figure 3c):
Q1= high–high (HH), where high values are
positively correlated with high values in the
neighbourhoods; Q2 = low–high (LH), in which
low values are negatively correlated with nearby
high values; Q3 = low–low (LL), where low
values are positively correlated with other low
values, and Q4 = high–low (H-L), where high
values are negatively correlated with low values
in the neighbourhoods. 

For this work, a spatial randomization approach
that consists of from 99 random permutations
allows to test whether the spatial correlation was
significantly different from what would be
expected in the case of spatial randomness.
Significant spatial correlation, in this case, is
detected between variables obtaining a Bivariate
Moran’s Index > 0 or < 0, and the null
hypothesis of no autocorrelation is rejected due
to Z score > +2.576 or < -2.576.
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FIGURE 3. Example of GeoDa processing products: a)  queen contiguity approach; b) Moran scatter
plot; c) BILISA cluster map.



RESULTS

1. Classical statistical analysis-OLS

The R2 values of the OLS regressions obtained
for remote sensing datasets indicate generally
good correlations between S2 NDVI and the
three UAV layers (NDVI unfiltered, NDVI
filtered and thickness, Table 1). Indeed, R2
ranges between the minimum value detected for
S2 NDVI vs UAV NDVI filtered of
2018 - F4 dataset (R2 = 0.53), and the maximum
correlation obtained for S2 NDVI vs UAV NDVI
both unfiltered and filtered of the same F5 fight
in the 2019 season (R2 = 0.80). Except in this
latter case, where two equal values   were found,
in Table 1 it is shown that the R2 values
associated of UAV NDVI unfiltered are always
greater than those of the UAV NDVI filtered.
The F-statistic used to check the validity of
regression models always showed significant
results (p-value < 0.001).

2. Spatial statistical analysis

2.1 Univariate and Bivariate MI

The GeoDa software allowed definition of the
correlation of both a single variable with a
neighbourhood of the same variable
(Univariate MI), and between two different

variables in nearby areas (Bivariate MI).
Through the first analysis (Table 2), the most
clustered pattern (MI = 0.78) was detected in the
2018 season (F3 flight) for the UAV NDVI
unfiltered, whereas the lowest MI value,
indicative of a more random pattern, was
identified for the UAV thickness of 2017-F2
flight dataset (MI = 0.39).

The comparisons between S2 and UAV data
obtained using the Bivariate MI (Table 3)
showed good correlations with positive trends;
indeed, the lowest value was MI = 0.43
identified for 2017 season - F2 through the
comparison of S2 NDVI with UAV thickness.
The best correlation, indicative of a high spatial
autocorrelation, appeared in 2018-F3 between
S2 NDVI and UAV NDVI unfiltered (MI =
0.75). All these comparisons were significant
because the Z-score value was always > +2.576
(for positive correlations). Regarding the
comparison between S2 NDVI and UAV NDVI
both unfiltered and filtered, it is possible to
observe that in some cases the MI of S2 NDVI
vs UAV NDVI filtered was greater than that
obtained through the comparison between S2
NDVI and UAV NDVI unfiltered (Table 3).

The other comparisons performed through the
Bivariate MI among ground parameters and
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TABLE 1. Quantitative comparison between Sentinel-2 NDVI and UAV layers (NDVI unfiltered, NDVI
filtered and thickness) obtained with OLS. 

!Flight UAV NDVI Unfiltered UAV NDVI Filtered UAV Thickness

2017 - F1 0.66*** 0.64*** 0.65***

2017 - F2 0.61*** 0.60*** 0.54***

2018 - F3 0.75*** 0.61*** 0.61***

2018 - F4 0.59*** 0.53*** 0.55***

2019 - F5 0.80*** 0.80*** 0.78***

2019 - F6 0.63*** 0.61*** 0.65***

Significance code: *** = p-value < 0.001.

TABLE 2. Univariate MI of remotely-sensed dataset.

!Flight S2 NDVI UAV NDVI Unfiltered UAV NDVI Filtered UAV Thickness

2017 - F1 0.72 0.49 0.50 0.54

2017 - F2 0.56 0.68 0.60 0.39

2018 - F3 0.77 0.78 0.69 0.73

2018 - F4 0.59 0.49 0.69 0.45

2019 - F5 0.71 0.62 0.72 0.60

2019 - F6 0.69 0.48 0.62 0.52



UAV layers of August 2017, 2018, and 2019 are
shown in Table 4. Low correlations, with a
negative trend, are present between TSS and all
the UAV layers.

Indeed, the maximum value is MI = -0.51 (TSS
vs UAV NDVI filtered, year 2017-UAV F2) and
the minimum is MI = -0.34 (TSS vs UAV NDVI
unfiltered, 2018-F4), which is the lowest value
detected among all comparisons. These low MI
are indicative of variables with dissimilar values
at nearby locations. Good correlations with
positive trends were detected between yield and
UAV data: the minimum is MI = 0.42, identified
both between yield and UAV NDVI unfiltered
(2018-F4), and between yield and UAV NDVI
thickness (2019-F5). The best spatial
autocorrelations were instead detected through
the comparisons carried out between pruning
weight and UAV dataset. The highest Bivariate
Moran Index, MI = 0.64 (Table 4), was
identified between pruning weight and UAV
NDVI unfiltered, calculated for the August 2017
flight (F2). All the aforementioned comparisons
are significant because the Z-score value is

always > +2.576 for positive correlations and 
< -2.576 for negative correlations.

2.2 BILISA cluster map comparison

The spatial association cluster maps obtained
using BILISA method both for a comparison
between S2 NDVI and the three UAV layers of
2017, 2018 and 2019 seasons, and between
ground information obtained within the three
vigour zones (see Figure 1) and UAV data of
August for the three years are shown in Figure 4
and Figures 5a, 5b, 5c. The obtained patterns
illustrate the relationship between S2 NDVI at a
given location and the average value at
neighbouring locations of the three UAV datasets
considered one at a time (Figure 4). The same
procedure has been then applied between ground
data and UAV datasets (Figures 5a, 5b, 5c). The
different colours correspond to the four types of
local spatial autocorrelation, as already indicated
in Figure 3 (Red: High-High; Dark Blue: Low-
Low; Light Blue: Low-High; Pink: High-Low). 

Regarding the first comparison (Figure 4), a
general trend over the years can be seen,
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TABLE 4. Quantitative comparison between ground data and UAV layers (NDVI unfiltered, NDVI
filtered and thickness) obtained with Bivariate MI.

TABLE 3. Quantitative comparison between Sentinel-2 NDVI and UAV layers (NDVI unfiltered, NDVI

MI Z-value MI Z-value MI Z-value
2017 - F1 0.54 10.86 0.55 11.14 0.59 11.76
2017 - F2 0.54 11.69 0.55 11.07 0.43 9.24
2018 - F3 0.75 15.41 0.68 14.90 0.68 14.82
2018 - F4 0.51 9.51 0.54 10.45 0.47 8.98
2019 - F5 0.63 11.41 0.69 11.47 0.64 11.28
2019 - F6 0.53 10.26 0.63 12.34 0.58 11.16

UAV NDVI Unfiltered UAV NDVI Filtered UAV Thickness
!Flight

MI Z-value MI Z-value MI Z-value

2017 - F2 -0.40 -6.67 -0.51 -8.03 -0.39 -5.49

2018 - F4 -0.34 -5.33 -0.40 -6.06 -0.48 -6.75

2019 - F5 -0.44 -6.58 -0.45 -6.84 -0.46 -6.75

2017 - F2 0.52 8.29 0.52 8.13 0.52 7.05

2018 - F4 0.42 7.04 0.48 7.67 0.45 6.75

2019 - F5 0.46 6.59 0.41 6.14 0.42 6.56

2017 - F2 0.64 9.77 0.60 9.37 0.58 8.04

2018 - F4 0.58 8.56 0.61 8.69 0.45 7.05

2019 - F5 0.58 9.06 0.58 9.05 0.53 8.18

Yield

Pruning weight

Flight
UAV NDVI Unfiltered UAV NDVI Filtered UAV Thickness

TSS



characterized by an H-H association in the north
and south-eastern part of the field, while an L-L
association is always present in the central and
western part. This trend is not so defined in the
2017-F1 dataset (Figure 4 a, b, c) and 2018-F4
comparisons (Figure 4 l, m, n), because more 
H-L (pink colour) and L-H (light blue colour)
associations appeared between the analyzed
variables. It should be noted that, for flight n° 3
of the 2018 season, the transition between H-H
in the north and L-L in the south is clearer
(Figure 4 g, h, i).

When referring to the cluster maps between
ground data and UAV datasets, it was observed
that each agronomic variable has a similar trend
when compared with both UAV NDVI
unfiltered, UAV NDVI filtered and UAV
thickness of the three analyzed years (Figure 5a,
5b and 5c). A similar trend was also identified
for the comparisons related to yield and pruning
weight of the three years (Figure 5b and 5c). In
particular, they are characterized by H-H
correlations mainly within the high vigour area
of the field (north part), and L-L correlations
present in the other two parts (low vigour-central
area and medium vigour-south area). It is also
highlighted that in these last two areas, in some
sampling points, H-L, L-H and also a few H-H
correlations were found. Regarding the TSS
variable vs UAV layers (Figure 5a), H-L
correlation in the high vigour area, L-H in the
central part and mixed spatial association in the
south part of the field are present. For the 2018-
F4 dataset it is possible to observe that a fair
number of sampling points also showed H-H
correlations.

DISCUSSION

The purpose of this study was to evaluate both
classical and spatial statistical methods in a
multi-temporal comparison between satellite and
ground agronomic data with information
acquired from a UAV platform, identifying the
degree of similarity of these different datasets.
The UAV NDVI information was also divided
into unfiltered and filtered, this latter obtained
using a filtered mask to extract only the
information corresponding to the rows. This
choice allowed a comparison of the spectral
response of pure canopy pixels (filtered) and
mixed pixels (both vine and inter row pixels,
unfiltered) and the spectral information obtained
from the S2 platform.
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FIGURE 4. BILISA cluster maps between S2
NDVI and UAV layers.
The different colours correspond to four types of local
spatial autocorrelation (Red= High-High; Dark Blue= Low-
Low; Light Blue= Low-High; Pink= High-Low).
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FIGURE 5A. BILISA cluster map between TSS and UAV layers. 
The different colours correspond to four types of local spatial autocorrelation (Red= High-High; Dark Blue= Low-Low; Light
Blue= Low-High; Pink= High-Low). 



FIGURE 5B. BILISA cluster map between Yield and UAV layers. 
The different colours correspond to four types of local spatial autocorrelation (Red= High-High; Dark Blue= Low-Low; Light
Blue= Low-High; Pink= High-Low).
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FIGURE 5C. BILISA cluster map between Pruning Weight and UAV layers.
The different colours correspond to four types of local spatial autocorrelation (Red= High-High; Dark Blue= Low-Low; Light
Blue= Low-High; Pink= High-Low).



Through the classical Ordinary Least Square
(OLS) regression, the S2 NDVI maps compared
with UAV NDVI unfiltered, UAV NDVI filtered,
and UAV thickness showed generally good
correlation with a positive trend in all the
investigated seasons (2017, 2018, 2019); indeed,
R2 ranges from 0.53 to 0.80 (Table 1). The R²
values obtained in this study were comparable to
other works (Di Gennaro et al., 2019; Sozzi et
al., 2020), and the statistic used to check the
validity of regression models always showed
significant results (p-value < 0.001). The OLS
analysis also highlighted that the correlation
between S2 NDVI and UAV NDVI unfiltered is
almost always higher than the one obtained for
S2 NDVI vs UAV NDVI filtered, as reported by
Di Gennaro et al. (2019). This due to the same
mixed pixel composition from which the NDVI
index was calculated. Conversely, Sozzi et al.
(2020) reported a higher R2 value for S2 NDVI
vs UAV NDVI pure vine index but, observing
the regression model between S2 NDVI and
UAV NDVI mixed pixels, it showed a trend very
close to a 1:1 line; this is indicative of the fact
that these data are similar.

The use of a spatial statistical approach through
the Univariate Moran Index (Table 2) allowed
the spatial pattern of remotely-sensed variables
to be identified. This analysis showed that the
highest value, indicative of a clustered pattern,
was detected on June 26th, 2018 (F3 flight).
Every year, the analyzed vineyard is subjected to
vine trimming to make it more uniform. The
F3 flight, unlike others flights, was made only a
week after this practice: this made it possible to
identify, through the statistical analysis, a
strongly clustered pattern.

The Bivariate Moran Index was instead used to
identify the spatial autocorrelations between both
Sentinel-2 NDVI and ground-truth agronomic
parameters (TSS, yield and pruning weight) and
the three UAV layers. The highest correlation
was detected for the June 2018 dataset between
UAV NDVI unfiltered and Sentinel-2 NDVI
(MI = 0.75, Table 3). Unlike the OLS analysis,
the Bivariate MI showed, in some cases, that the
spatial autocorrelation detected for S2 NDVI vs
UAV NDVI filtered is greater than that obtained
through the comparison between S2 NDVI and
UAV NDVI unfiltered. Regarding ground data,
UAV layers showed low and negative association
with TSS values (Table 4), and the lowest
Bivariate MI of all the comparisons was detected
between TSS and UAV NDVI unfiltered of the

August 2018 dataset (MI = -0.34). This kind of
correlation between TSS and vine vigour can be
found in a previous study conducted by Fiorillo
et al. (2012). Better spatial autocorrelations were
detected through the comparisons carried out
between yield and UAV layers (MI ranged from
0.42 to 0.52), and between pruning weight and
UAV dataset (MI ranged from 0.45 to 0.64). All
these comparisons showed positive
autocorrelation, as highlighted by Romboli et al.
(2017). Analysis of the BILISA cluster maps
added more information to this study. Regarding
the maps obtained for S2 NDVI vs UAV layers
(Figure 4), a general trend was observed over the
years. High UAV NDVI (both unfiltered and
filtered) and UAV thickness were associated to
high S2 NDVI (H-H correlation) in the south-
eastern and northern parts of the field; this latter
zone is where high vigour (HV) was detected
through ground measurements (Figure 1). The
areas characterized by low satellite NDVI were
instead associated to low UAV layers values 
(L-L correlation) both in the central and western
parts of the field, which are the two zones where
low vigour (LV) and mixed vigour (MV) were
identified. The cluster maps obtained for
agronomic variables vs UAV data (Figures 5a,
5b, 5c) showed a similar trend for yield and
pruning weight. In particular, they were
characterized by H-H correlations with UAV
data mainly within the high vigour area of the
field whereas L-L correlations were present, as
expected, in the low and medium vigour parts.
Regarding the TSS variable vs UAV layers
(Figure 5a), opposite associations prevail (L-H
and H-L correlations) because, as shown in
Table 4, this parameter has a negative
association with UAV layers. These latter results
clearly highlighted that both UAV and Sentinel-2
can correctly detect the vigour spatial variability
within the vineyard. Through this study,
therefore, it has been demonstrated that
geostatistical analysis allows understanding the
vineyard zoning to better characterize the areas
with different qualitative and quantitative
production, which are some of the key points for
the terroir zoning. In fact, zoning enables the
conservation, when necessary, of homogeneous
areas or the differentiated management to create
or recreate homogeneous zones lost due to
unfavorable weather conditions or plant-soil
interactions that have changed over time. The
spatial analysis made by MI and BILISA
methodologies showed the strong spatial
heterogeneity overcoming the classical
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comparison methods by adding the spatial effect
(Matese et al., 2019).

CONCLUSION

One of the focal points for vine growers is the
need for specific agronomic management
according to a proper knowledge of spatial
variability and thereby reducing costs and
environmental impact. In this study, the use of
statistical methods that consider the spatial
structure of vineyards to compare satellite and
ground agronomic data with UAV data, has
proven to be a robust and powerful tool to
evaluate the practical implications of vineyard
variability. MI and BILISA play a key role in
identifying spatial patterns and could be
successfully applied to other agricultural and
environmental studies. Both Sentinel-2 images
and UAV derived information were shown to be
a relevant decision support for the stakeholders
to manage vineyard vigour by defining within-
field management zones. In particular, good
correlations were detected between S2 NDVI
and UAV NDVI unfiltered. However, it is
necessary to consider that the 10 m resolution of
S2 cannot be used for any vine-specific
application but only for larger scale purposes.
Finally, it is necessary to focus attention on the
current lack of studies concerning spatial
statistical approaches to data analysis for
agricultural purposes; it is on this point that
research should concentrate its future
developments.
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