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Introduction
Dense and complex microbial communities reside in the gastro-

intestinal tract of domestic animals, which can be composed of 
bacteria, protozoa, fungi, archaea, and viruses. Extensive research has 
been dedicated during the last 30years to characterization of digestive 
microbial composition and functional diversity, which has directed to 
a better understanding of the major involvement of the gut microbiota 
to animal nutrition and health. Amongst the valuable effects, gastro-
intestinal tract microbial communities are aimed to digestion and 
fermentation of plant polymers, which is of specific significance in 
herbivorous animals. Moreover, the indigenous gut microbiota is 
accountable for the synthesis of vitamins, bioconversion of toxic 
compounds to non-toxic residues, stimulation of the immune system, 
maintenance of gut peristalsis and intestinal mucosal integrity and 
plays a barrier role against colonization by pathogens.1

In this context, the possibility to use feed supplements to achieve 
better animal health, welfare and productivity through manipulation 
of the gut micro biota ecosystem has gained considerable attention in 
the last three decades. The main effects of these additives, pro biotics 
on top of others, are a facilitated resistance to pathogenic bacteria 
colonization and enhanced host mucosa immunity, thus causing a 
reduced pathogen load, an improved health status of the animals2,3 
and a reduced risk of food-borne pathogens in foods.

What is a probiotics?

Over the years, probiotic in the world has been used in a number 
of different ways. The use of probiotics in farm animals dates back 
75years, but in the 1960s, for the first time it was demonstrated that 

Lactobacillus was able to significantly stimulate growth on pigs.4 
Chow5 reported the concept that food could be provided as medicine.5 
This concept was first conceived thousands of years ago by Hippocrates 
(Greek philosopher and father of medicine), who once wrote: ‘Let 
food be thy medicine, and medicine be thy food’. Nonetheless, during 
current times, the notion of food having medicinal value has been 
reborn as ‘functional foods’.5 In the general term “functional foods”, 
probiotics have quickly gained attention in the field of self-care 
and complementary medicine.6 Modern consumers in the world are 
progressively paying more attention to their personal health in order 
to preventing and/or curing illness through daily foods. Microbes 
have been used in food and alcoholic fermentations since many years, 
but most recently have undergone scientific scrutiny to examine their 
possible health benefits. The word “probiotic” comes from the Greek 
words “pro” and “biotic,” meaning “for the life”,7 and has been defined 
as “a live microbial feed supplement which beneficially affects the host 
animal by improving its intestinal microbial balance”.8 Probiotics are 
microbial cell preparations or components of microbial cells that have 
a beneficial effect on the health and well-being of the host.9 Probiotics 
are not necessary to be viable, as nonviable forms have also been 
proved to provide health effects.10 It is thought to reduce potentially 
harmful bacteria from the intestine and to improve microbial balances 
in intestine and exert positive health effects on the host.8‒11 Today, the 
term “probiotic” refers to “live microorganisms which, administered 
in adequate amounts, confer a beneficial physiological effect on the 
host,” according to the Food and Agriculture Organization and World 
Health Organization.12

The protective flora naturally present in the gut is very stable; 
however, it can be influenced by some dietary and environmental 
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Abstract

The practice of probiotics in farm animals’ health and production has increased 
significantly over the last 15years. Probiotics are defined as live microorganisms 
that can confer a health benefit for the host when administered in appropriate and 
regular quantities. The isolation and identification of microorganisms is the first 
step in the selection of potential probiotics from gut, feces and milk of respective 
animals. The present molecular techniques mainly genomic and proteomic-knowledge 
based are employed to identify, characterize probiotics. The ability to examine fully 
sequenced genomes has accelerated the application of genetic approaches to elucidate 
the functional roles in the selection of new and specific probiotics. Identification of 
suitable probiotics may prove to be the next step to decrease the risk of intestinal 
diseases and reduce specific microbial disorders, as well as demonstrating their role 
in the production performance of animals, safety and wholesomeness of animals’ meat 
evidencing consumer’s protection. The mechanisms of action of probiotics include 
the inhibition of pathogen growth by competition for nutritional sources and adhesion 
sites, secretion of antimicrobial substances and toxin inactivation. Consequently, the 
primary interest in the application of probiotics has been in the prevention and treatment 
of gastrointestinal infections and antibiotic-associated animals’ diarrheal diseases. 
In this review, the most important benefits of probiotics upon the gastrointestinal 
microbial ecosystem in monogastric animals (equines, pigs, veal calf and poultry) 
are described, as well as their implications in terms of animal nutrition and health. 
Additional knowledge on the possible mechanisms of action is also provided. 

Keywords: probiotics, competitive exclusion, pig, poultry, veal calf, horse

Journal of Dairy, Veterinary & Animal Research 

Review Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.15406/jdvar.2015.02.00041&domain=pdf


The beneficial role of Probiotics in monogastric animal nutrition and health 117
Copyright:

©2015 ASML et al.

Citation: ASML A, Agazzi A, Invernizzi G, et al. The beneficial role of Probiotics in monogastric animal nutrition and health. J Dairy Vet Anim Res. 
2015;2(4):116‒132. DOI: 10.15406/jdvar.2015.02.00041

factors such as hygiene conditions, antibiotic therapy and stress 
factors.8 In the wild state, young animal picks up its gut flora mainly 
from its mother by direct or indirect routes. However, modern methods 
of animal rearing often restrict the access that the infant has to the 
mother and prevents it acquiring the full complement of characteristic 
microbes. But, probiotic and competitive exclusion microorganisms 
would protect the newborn young animal against infection (Figure 
1). Competitive exclusion cultures are composed of a mixture of 
non-pathogenic bacteria (probiotic culture) typically found in the 
gastrointestinal tract of the animal which are administered only in 
a single dose to the neonatal animal, such as the day-old chick or 
a newborn piglet, demonstrating the impact of the gut microbiota 
on gut function and disease resistance13,14 and also that they can 
help to reestablish the gastrointestinal tract flora after antimicrobial 
treatment.15 Because of the susceptibility of newborn animals to 
infection, this practice is also of commercial importance. By using 
this model, a number of probiotics13,16‒19 have been shown to prevent 
colonization and shedding of Salmonella and Campylobacter at farm 
level to control food borne diseases.

Figure 1 Schematic representation of the concept of probiotic, modified 
from.8,20‒23

The microbial species recently being used in probiotics 
mixtures are many and varied. The major microbial groups such 
as Bacteroides, Clostridium, Bifidobacterium, Eubacterium, 
Lactobacillus, Enterobacteriaceae, Streptococcus, Fusobacterium, 
Peptostreptococcus and Propionibacterium are used in monogastric 
animals (such as pig, chicken, rabbit and man). On the other hand, in 
polygastric animals, (such as cow, sheep and lamb), the rumen is the 
most vital microbial ecosystem with the majority of fiber-degrading 
groups belonging to Fibrobacter, Ruminococcus, Butyrivibrio 
and Bacteroides together with major groups such as Prevotella, 
Selenomonas, Streptococcus, Lactobacillus and Megasphaera. 
Moreover, the rumen maintains some anaerobic fungi, ciliate 
protozoa and a large number of methanogens to keep normal rumen 
microenvironment.24 A list of the probiotic species used in studies 
or in livestock feeding and health is shown in Table 1. Mammals’ 
age, diet, health and pathological status might be influenced by the 
percentage of individual/various microbial groups.25,26 Normally, 
herbivores, carnivores and omnivores are respectively characterized 
by a high, low and intermediate number of bacterial phyla.27 

To ensure successful application, probiotics must have important 
characteristics such as resistance to gastrointestinal conditions (gastric 
acid and bile), ability to adhere to the gastrointestinal mucosa and 
competitive exclusion of pathogens.52 The expected health-promoting 
characteristics and safely criteria of probiotics are shown in Table 2. 

Historical use of probiotics

The Bible and the sacred books of Hinduism mentioning about 

the origin of cultured dairy products dates back to the dawn of 
civilization. Climatic conditions sure effect for the development of 
many of the traditional soured milk or cultured dairy products such 
as kefir, koumiss, leben and dahi.56 Many of these products are still 
extensively consumed, had frequently been used therapeutically 
before the existence of bacteria was recognized.57 The basic concept 
of “probiotics” appeared long time ago when they were consumed, 
either as natural components of food, or as fermented foods. The 
interest in intestinal microbiology and dietary use of probiotics 
began in the late 1800s and early 1900s. The growing interest was 
also motivated by Escherich’s isolation of Escherichia coli in the 
late 1800s, as well as active research on the benefits of feeding 
lactic acid bacteria and lactose near the turn of the 20th century.58 
The Nobel laureate Elie Metchnikoff noticed the high life expectancy 
of Bulgarians who consumed yogurt. In 1907, he reported that the 
indigenous bacteria were harmful and that ingestion of lactic acid 
bacteria in yogurt had a positive influence on health.59,60 He named the 
microorganism significant for the fermentation Bacillus bulgaricus, 
later classified as Lactobacillus bulgaricus that was used for the 
prevention of human scours and gastrointestinal diseases as early as 
the 1920s. At the same period, a French pediatrician, Henry Tissier, 
studied that infants suffering with diarrhea had a small number of Y 
shaped gram-positive bacteria in their stools, while healthy infant’s 
stools contain a dominant number of these “bifid” bacteria. He even 
recommended, in a report to the Biology Society, to make children 
presenting with diarrhea drinking “1 to 2 Bordeaux glasses of a pure 
culture of Bacillus acidi paralactici, or even better of a symbiosis of 
this species with Bacillus bifidus, to accelerate the building up of a 
preventing flora”. 

The word probiotic was first mentioned by Lilly & Stillwell in 
1965, as opposite to the word antibiotic, to qualify “a microbial 
substance able to stimulate the growth of another microorganism”. 
Subsequently, the concept of microbial origin was introduced, 
redefining probiotics as “living micro-organisms with beneficial 
effects on the host, by modifying the equilibrium of its gut 
microbiota”. During the following decades until the 1960s and 1970s, 
there was little implication in probiotics when they were rediscovered 
for mammalian nutrition mainly human and animal. The primary 
potent probiotic products for animal nutrition that accomplished to the 
exact requirements for feed additives did not emerge on the European 
market until the mid-1980s.53 Over a century, Eastern Europeans and 
Asians used probiotics invariably containing lactic acid bacteria and 
Bifidobacteria as a natural remedy to prevent and treat infections 
of the urogenital, intestinal tracts and skin in humans and animals 
as yogurt and drinks. The results of numerous in vitro and in vivo 
studies¸ in animal models and clinical trials have proven the potential 
of these probiotics to prevent many diseases and disturbances of the 
intestinal microbiota that could increase susceptibility to infection.59,60

Global probiotics market

Interest and demand for probiotics are increased all over the world, 
driven by promising new products in the market and by consumers 
looking for safe therapeutic and preventive health benefits. The major 
factors driving the growth of the global probiotic market include 
growing health consciousness of the population and the availability 
of probiotics in the form of dietary supplements. In 1999, the Agri-
food trade in Europe boasted a 48% increase in turnover with 
probiotic products.61 Indeed, the global use of probiotic ingredients, 
supplements and food is seen as a rapidly expanding market. Global 
sales of probiotic ingredients, supplements and foods amounted to 
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USD 21.6billion in 2010 and USD 24.23billion in 2011. Based on a 
new market statement available by Transparency Market Research, 
“Probiotics Market (Dietary Supplements, Animal Feed, Foods & 
Beverages): Global Industry Analysis, Market Size, Share, Trends, 
Analysis, Growth and Forecast”, the global market of probiotic is 
anticipated to achieve USD 31.1billion by 2015 as well as a compound 
annual growth rate (CAGR) of 7.6% over the previous 5year period. 

It will be predictable to reach USD 44.9billion in 2018. Asia-Pacific 
and Europe lead the global probiotics market owning to its demand, 
whereas Asia-Pacific is also expected to be the most promising market 
in the near future.62 Asia-Pacific is the probiotics market leader, with 
an anticipated to reach CAGR of 7.0% from 2013 to 2018. In Asia-
Pacific, China and Japan lead the market income for probiotics. Also 
India and other regions are showing significant growth. 

Table 1 Some microbial species of potential use as livestock probiotics with their benefits

Microorganisms Animals Reference Common Benefits

Pig

E. faecalis
E. faecium
Bacillus cereus
B. subtilis
B. licheniformis
L. johnsonii
L. reuteri
L. acidophilus
S. cerevisiae

28
29
30
31
31
32
31,33
33
34

Improve colostrum quality, milk quality and 
quantity
Increase litter size and vitality
Increase piglet weight
Reduce risk of diarrhea
Improve feed efficiency, diet digestibility and 
meat quality
Limit constipation
Decrease stress

Poultry

L. animalis
L. fermentum
L. salivarius
L. acidophilus
S. faecium
L. reuteri
E. faecium
S. cerevisiae
Bacillussp

35
35
36,37
38
38
39
19
40
40

Increase body weight gain
Reduce mortality
Increase carcass quality decreasing contamination
Increase bone quality

Veal Calf

S. cerevisiae
L. acidophilus
B. pseudolongum
L. animalis
L. paracasei

41
42
42
43
43

Promote weight gain and optimal maturation of rumen microbiota limiting acidosis
Increase feed efficiency, milk yield, quality and digestive safety at weaning
Reduce risk of pathogen colonization and limit shedding of human pathogens

Horse

Lactobacillus pentosus
L. rhamnosus
L. acidophilus
L. plantarum
L. casei
S. boulardii
S. cerevisiae

44
45
46
47
48
49
50,51

Improve diet digestibility, milk quality and quantity
Limit diarrhea
Avoid hindgut disorders (acidosis, colic)
Limit stress
(Transportation, race etc.)

Table 2 Expected characteristics of ideal probiotics6,53‒55

1. To have a confirmed favorable effect on the host demonstrating ability to exert at least one scientifically-supported health-promoting property.

2. To be non-pathogenic, non-toxic and free of significant adverse side effects on targeted species.

3. To have a precise taxonomic recognition.

4. To be a normal inhabitant and modify intestinal microbiota of the targeted species.

5. To be able to survive, colonize and being metabolically active in the targeted site, which implies:

1)	Resistance to gastric juice and bile

2)	Persistence in the gastrointestinal tract

3)	Adhesion to gastrointestinal tract epithelium or mucus

4)	 Competition with the resident microbiota
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6. To secrete molecules that are:

a)	 Freely diffusible, membrane permeable being intercepted by specific receptors at the cell surface.

b)	 Metabolic and pure signaling molecules which stimulate concurrently precise structural, metabolic and signaling activities.

c)	 Bacteria/bacteria and microbe/host cross talk (Quorum Sensing including toxin antitoxin systems controlling programmed apoptosis and cell 
death).

7. To be genetically stable.

8. To be amenable and stable during industrial processing, storage and delivery.

9. To be viable at high populations.

10. To be able to restore pre-antibiotic baseline flora.

11. To be able to deliver therapeutics.

12. To be able to enhance animal performance decreasing carcass contamination and ammonia and urea excretion in animals.

Table Continued..

Europe market is alternative for probiotic products, with consumer 
consciousness levels much greater than in North America; European 
probiotic demand is predictable to rise at a CAGR of about 6.7% from 
2013 to 2018. In European market, Germany and the UK are the most 
demandable markets, with projected CAGR of over 6% each from 
2013 to 2018. The North American probiotics markets and emerging 
countries such as Brazil also show increase potential for demand 
growth. Based on the application, the probiotics market is classified 
into food and beverages, dietary supplements and animal feed that 
are further divided into segments. Probiotic foods & beverages are 
the dominant segments the global market and are expected to grow 
at a CAGR of 6.8% from 2013 to 2018. Probiotic demand for food 
& beverage segment is estimated to reach USD 37.9 billion in 2018. 
Following food and beverages, the market for dietary supplements 
and animal feed are also witnessing significant growth, growing at 
a CAGR of 6.8% from 2013 to 2018. With respect to application 
segments, probiotics are widely used in dairy, non-dairy, cereals, 
baked products, fermented meat products, dry foods and others. 
Dairy products are the largest application market for probiotic foods. 
Probiotic demand for dairy products is estimated to reach USD 
32.2billion in 2018, growing at a CAGR of 6.8% from 2013 to 2018. 
Probiotics have also emerged as a critical part of the animal feed 
industry with a demand for estimated to cross USD 3billion by 2018.62

Fundamental criteria for selection of ideal probiotics 
in animal industry

Functional, safety and technological characteristics have 
to be taken into account in the selection process of probiotic 
microorganisms. There are many microorganisms to be considered as 
potential probiotics, but only a few numbers of microorganisms are 
able to satisfy the necessary criteria. The probiotic bacteria must fulfill 
the following functional aspects, such as to be normal inhabitant of 
the gut, and to be able to persist in the gastrointestinal tract, surviving 
the digestive stresses, immunomodulation and the competition 
against other micro-organisms; finally, to have antagonistic and 
antimutagenic properties.63‒67 Moreover, probiotics must reach 
the site of their main activity in the digestive tract unharmed to be 
efficacious. In the main target species this is the small intestine for 
monogastric animals together with the crop for poultry and the rumen 
for ruminants. Since factors such as pH, the transit time of the digest a 
and the concentration of active substances in the feed can influence the 
growth of probiotics,66,67 their growth or germination in the digestive 
tract must be evaluated in feeding trials using diets which are relevant 
under practical conditions. This can be measured indirectly via 

performance parameters but, better, directly by counting the living 
probiotic microorganisms in the various intestinal segments.

Safety aspects include specifications such as origin (healthy 
respective animals’ gastrointestinal tract), absence of any pathogenicity, 
nondigestive upsets, and transmissible antibiotic resistance gene. 
Probiotics, specifically Bifidobacteria and Lactobacilli, have a long 
history of safety with their use in fermented food and milk. Moreover, 
these bacteria especially Lactobacilli, are regularly encountered in 
nature: plants, animals, and in humans as a commensal microbiota. 
Lactobacilli, Bifidobacteria, Lactococci, and yeasts are classified 
in the category of organisms Generally Regarded as Safe (GRAS). 
On the other hand, a few cases of infections have been occurred in 
immunocompromised patients.68 Not all the probiotics used belong to 
this GRAS category such as Enterobacteria or Enterococci, but some 
strains of Enterobacteria or Enterococci are used as probiotics.69 

Satisfactory technological criteria are also important for selection 
of probiotics in food and feed production along with safety and 
functional criteria. The food and feed manufacture, distribution, and 
storage reduced viability of probiotic bacteria. Lactic acid bacteria 
do not form spores as natural residents of the intestine. They are 
therefore, in ordinary dried form, unprotected against the chemical and 
physical stresses, for example during pelleting. It is hence necessary 
either to use them only for feed types which place little technical 
stress on the microorganisms (for example in milk replacers) or to 
protect them specifically against mechanical and heat impacts during 
feed manufacturing, transport and storage. Lactic acid bacteria may be 
give a protective coating using special technological procedures such 
as microencapsulation or microsphering, thus ensuring that these non-
spore bacteria are able to reach the site of action intact and become 
active. The stability of the coating is determined by the quality of the 
process.6 On the other hand, for Bacillus spores is their natural stable 
form that allows them to survive in their original habitat, the soil, 
protected from extreme heat, cold and mechanical strain, without any 
loss in their vital potential. Various cell walls protect the nucleus from 
external stresses. This natural protection enables the Bacillus products 
to withstand massive strains during feed production and storage, such 
as high temperatures, pressure, shear forces or oxidation impacts.70‒72 
Therefore, Bacillus spores are suitable for all types of feeds. In 
addition, their vitality is not compromised by low pH values in the 
stomachs of monogastric animals. Spore quality and stability of the 
Bacillus products and their ability to germinate are influenced by the 
fermentation conditions during production. In case of yeast culture, 
yeasts are living fungi and are made dormant by drying. Since their 
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external surface is more stable and less permeable in this state, yeasts 
survive many processes of feed production and storage undamaged. 
Then the presence of sufficient moisture and warmth in the digestive 
tract allows them to regain their metabolic activity. Also sensory 
characteristics such as unpleasant flavors or textures are important 
criteria to select probiotics.73 

The proposed tentative ways for selection of probiotics as 
biocontrol agents in the animal industry are illustrated in Figure 2. 

There are many in vitro assays established for the pre-selection of 
probiotic strains.74‒76 In vitro assays could give idea to the selection 
of the competitiveness of the most promising strains which was 
evaluated in vivo for monitoring of their persistence in animal model.36 
Furthermore, potential probiotics must exert its beneficial effects (e.g. 
enhanced nutrition, stimulation/suppression of immune responses 
and resistance to antibiotics) in the respective animal. Lastly, the 
probiotic must be viable under normal storage conditions as well as 
technologically suitable for industrial processes (e.g. lyophilized).

Figure 2 Diagram for selection of probiotics in the animal industry, modified from.36,74‒83
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Selected mechanisms of action of probiotics on mam-
mals

The mode of action of probiotics is not always well understood 
due to different probiotics strains may have various functions and 
survivability throughout the gut affecting the mammalian host in 
different ways.84

Effects of probiotics can be classified in: 

A.	 Interaction between probiotic-microbe-gut epithelium: Ad-
hesion to mucosal epithelial cells, stimulation of mucus secre-
tion, prevention of adhesion of pathogens as probiotics block-
ing intestinal receptors, thereby excluding pathogens, entero-
toxins and hampering proliferation of pathogens, competition 
with pathogens for important nutrients, secretion of antimicro-
bial and antitoxin substances that affects establishment and or 
replication of pathogens in the gastrointestinal tract.84,85

B.	 Interaction between probiotic-immune system: Im-
mune-modulation by innate as well as systemic ways, enhanc-
ing and reinforcing gut integrity and gut barrier function, even-
tually decreasing secretory and inflammatory molecules against 
microbial infection.84 The general mechanisms by which probi-
otics may have an effect can be divided into various categories: 
adhesion activity to gut mucosal epithelium, antitoxic effect, 
modulation of immune system, production of antimicrobial 
substances and competitive exclusion between probiotics and 
pathogenic bacteria. 

The advances on the knowledge of these mechanisms of action are 
detailed below.

Adhesion activity to gut mucosal epithelium: Adhesion property 
to the intestinal mucosa is the main selection criteria for new and 
existing probiotics strains for colonization, leading to the interaction 
between probiotics strains and host that is also related to the ability of 
strains to modulate the immune system.86‒92 For many authors asses 
the adhesive ability of probiotics and good correlations have been 
established in various intestinal mucosa models system.93‒99 Intestinal 
epithelial cells and mucus interact with lactic acid bacteria by showing 
different surface determinants from lactic acid bacteria. The principal 
component of mucous is mucin (complex glycoprotein mixture) that 
is secreted from intestinal epithelial cells. Mucin inhibits the adhesion 
of pathogenic bacteria.89,100 Anti-adhesiveness property by probiotics 
might be due to degradation of carbohydrate receptors by glycoprotein 
mixture, establishing a biofilm, production of receptor analogues 
and the induction of biosurfactants. Moreover, mucous gel is also 
composed of lipids, free proteins, immunoglobulins and salts.101 

The specific interaction indicated a possible interaction association 
between the surface proteins of probiotic bacteria and the competitive 
exclusion of pathogens from the mucus.102‒104 The most prominent 
mucus-targeting adhesin is a mucus-binding protein. Mucus-binding 
protein of Lactobacillus reuteri are either anchored to the membrane 
through a lipid moiety or embedded in the cell wall.105‒109 Another kind 
of protein like mucous adhesion-promoting protein A from L. Reuteri 
and L. Fermentum mediate binding of these probiotics with mucus, 
specifically MUC2 and MUC3 mucins from L. Plantarum, inhibit the 
adherence of enteropathogenic E. Coli by enhanced mucous layers 
and glycocalyx overlying the intestinal epithelium as well as the oc-
cupation of microbial binding sites leading to protection against inva-
sion by pathogens.102,110‒112 Also adhesion of pathogenic Salmonella, 
Clostridium and E. Coli strains to pig intestinal mucus might be de-

creased in the presence of MUC3 from probiotic Bifidobacterium lac-
tis Bb12 and/or Lactobacillus rhamnosus LGG.113,114 Furthermore, our 
results on the adhesivity of B. Coagulans using the INT407 intestinal 
cell line81 and other authors previously115 have indicated its ability to 
strongly adhere to intestinal epithelium. 

In contrast, other in vivo data suggested transient colonization, B. 
Coagulans being lost one week after administration.116 Therefore, dai-
ly administration of B. Coaugulans may be a prerequisite for efficacy. 
Moreover, a substantial population of growing vegetative cells in the 
gastrointestinal tract is not a prerequisite for the mode of action of 
Bacillus.117 The combination of probiotics and VSL3 showed to in-
crease the synthesis of cell surface mucins and to modify mucin gene 
expression in a method dependent on the adhesion of bacterial cells 
to the intestinal epithelium. Moreover, some probiotics cause qualita-
tive changes in intestinal mucins that help the prevention of pathogen 
binding.111,118 Many authors established that all probiotic strains and 
combinations tested showed capabilities to inhibit, displace and com-
pete with pathogens,91,96,114 but it is important to take into account the 
high specificity of these processes to be tested thoroughly by mean 
of molecular approaches for acid tolerance, bile resistance and adhe-
sion in mucus, cell lines, cells plus mucus in order to characterize the 
properties of the strains. Finally, human and animal clinical trials will 
be the definitive tool in order to select the best strain combinations 
functionality to prevent or treat infection by a specific pathogen. 

Antitoxic effect: Bacterial toxins may be the most important bacterial 
virulence factors to produce diarrhea in mammals. Certain probiotics 
are able to protect the host against toxins inducing diarrhea by the in-
hibition of their expression in pathogens. For example, Bifidobacteri-
um breve Yakult and Bifidobacterium pseudocatenulatum DSM20439 
inhibit expression of Shiga toxin in E. Coli O157:H7 strains in vitro 
and in mice model.119 This indicated that the high concentration of 
acetic acid produced by strain Yakult is responsible for the inhibition 
of Shiga toxin expression.120 Probiotic Clostridium butyricum strain 
MIYAIRI protected gnotobiotic mice from enterohaemorrhagic E. 
Coli O157: H7 Shiga toxin-induced infection throughout production 
of butyric and lactic acid. Butyric acid, in particular, decreases also 
viability of enterohaemorrhagic E. Coli after neutralization (pH7).121 
Furthermore, various probiotic Lactobacilli strains reduce Shiga tox-
in 2A expression via production of sub-bactericidal concentrations of 
organic acids for enterohaemorrhagic E. Coli O157:H7.122 Both in the 
murine ileal loop model and in cell culture assays it was found that 
the probiotic yeast Saccharomyces cerevisiae (S. boulardii) shows ef-
fective protection against Clostridium difficile toxin A (TcdA).119 This 
protective interference occurred between S. Boulardii with the Tc-
dA-induced inflammatory signal cascade activating Erk1/2 and JNK/
SAPK pathways.123,124 Additionally, S. boulardii is able to induce a 
specific anti-toxin A IgA immune response to destroy this toxin and 
secretes a protease that can hydrolyze TcdA and TcdB to inhibit their 
binding to their respective intestinal brush border receptors.125‒127 

Beside bacterial toxins, probiotics Lactobacillus rhamnosus GG 
and L. Rhamnosus strain LC-705 are able to bind mycotoxins includ-
ing aflatoxins. In rat model, L. Rhamnosus strain GG was able to mod-
ulate intestinal absorption and eventually increase fecal excretion of 
aflatoxin resulting in lowered toxicity expressed a sliver injury.128,129 
In cell culture assay, L. Rhamnosus GG decreased aflatoxin B1 uptake 
minimizing both membrane and DNA damage.130 Finally, designed 
probiotics carrying the receptor for the heat-labile enterotoxin of en-
terotoxigenic E. Coli or the receptor for cholera toxin showed good 
protection after enterotoxigenic E. Coli or Vibrio cholerae challenge 
in animal models. For some constructs formaldehyde-killed bacteria 
mediated also efficient protection as long as the frequency of applica-
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tion was increased.131

Modulation of immune system: Metabolites, cell wall components 
and DNA of probiotics can stimulate the immune system through 
interaction with epithelial and dendritic cells and with monocytes/
macrophages and lymphocytes either by innate or adaptive immune 
responses mechanism that might be local and limited to stimulation 
of gut immunity (stimulation of secretory IgA production for exam-
ple) or systemic immunity.119,132‒134 Peptidoglycan fragments or DNA 
(showed an anti-inflammatory reaction against DNA from pathogenic 
bacteria but mechanism of action is yet unknown) derived from probi-
otics135 as well as immune modulatory effects might be even achieved 
with dead bacteria in mammalian body system. Mainly host cell re-
ceptors in gut epithelial and gut-associated immune cells recognize 
probiotics products by adhesion phenomena; generally the gut-asso-
ciated immune system identifies intestinal microorganisms by pattern 
recognition receptors such as Toll-like receptors. Activation of the 
Toll-like receptors results trigger a signaling cascade lead to immune 
modulation (pro- and anti-inflammatory cytokine expression).136 Sig-
naling cascades in immune cells or in epithelial cells that are stimu-
lated by release of soluble factors, subsequently affect immune cells. 
Mainly gut M cells and dendritic cells play an important role to direct 
and indirect contact with probiotics to internalization of probiotics in 
the gut, and then present it to naïve T cells. This usually results to T 
cell activation and differentiation which eventually produced secre-
tory IgA in gut environment through plasma cells and also increased 
expression of IL-10 in dendritic cells, indicating the important role of 
dendritic cells in immune modulation by probiotics, for example L. 
Rhamnosus.137,138 

In healthy mammals, Lactobacillus rhamnosus GG (LGG) trig-
gers the synthesis of the anti-inflammatory interleukin IL-10 which 
subsequently decrease the release of proinflammatory IFN-γ, IL-6 
and TNF-α from CD4+ T cells pre-stimulated with intestinal bacte-
ria.139Teichoic acid, a component of the gram-positive cell wall of L. 
Plantarum is involved in the anti-inflammatory activity through the 
involvement of Toll-like receptors-2 which highlighting the impor-
tance of Toll-like receptors for this probiotic actions.140 In our trials, 
the use of Pediococcus acidilactici in piglet significantly lowered in-
traepithelial T lymphocytes in the ileum (P=0.013) and numerically 
the number of CD8+intraepithelial T lymphocytes in the cecum.141 
These observations are likely to be in relation with the presence of 
catarrhal enteritis in controls, in both ileum and cecum. It is conceiv-
able that the intestinal mucosal barrier of P. Acidilactici treated piglets 
may be more efficient in contrasting the adhesion of bacterial patho-
gens than control piglets, at least in ileum. Our observation appears in 
ideal agreement with the results by Piva, Meola and Panciroli,142 who 
showed in an in vitro trial that Pediocin A did not display influences 
upon pig cecal microflora. It is conceivable that P. Acidilactici exerts 
in piglets its protective effects with regards to competition with poten-
tial pathogens, above all in the ileum (and only to a limited extent in 
cecum), possibly via the intervention of Toll-like receptors, which are 
essential for the control of intestinal host-microbial interactions and 
protection from the adhesion of microbial pathogens.141,143

Zonula occludens protein 1 and Zonula occludens protein 2 in 
the gut epithelium are two important proteins for preservation and 
maintenance of tight-junction function. Probiotics are able to protect 
the integrity of the mucosal gut barrier function against damages by 
the action of enteropathogenic Escherichia coli in a Toll-like recep-
tor-independent way. Probiotics are able to restore disrupted epithelial 
barrier by changing protein kinase C signaling resulting in an ampli-
fication of expression and redistribution of zonula occludens protein 

1 and zonula occludens protein 2 in cell culture and in mouse mod-
el.144 In broad spectrum, cellular signal transduction modulated by a 
number of probiotics that are capable to alter population of cytokine 
production. They can either block degradation of the inhibitor IκB or 
by interfering with proteasome function, which is, in turn activated 
through a peroxisome proliferator.145,146 Intestinal epithelial cell sur-
vival and growth maintain by probiotic Lactobacillus rhamnosus GG, 
which secrete two soluble proteins (designated p40 and p75). These 
proteins lead to inhibit TNF-α mediated apoptosis by activation of the 
anti-apoptotic factor Akt and protein kinase B and by inactivating the 
pro-apoptotic p38 mitogen-activating protein kinase signaling path-
way in epithelial cells.147,148 Lastly, probiotic strains could induce re-
lease of small proteins/peptides like defensins/cryptidins from Paneth 
cells that reinforce and stabilize gut barrier function.149,150

Antimicrobial substances: Probiotics may be able to act through the 
production of antimicrobial substances.119,151

Overall, lactic acid bacteria can be divided into two groups on the 
basis of production of the antimicrobial metabolites: 

a.	 Low molecular mass compounds (≤1000 Da) such as organic ac-
ids (acetic acid, lactic acid), nitrogen oxide, hydrogen peroxide 
and antimicrobial peptides (lantibiotics, lanthionin, heat stable 
non-lantibiotics and cyclic antimicrobial peptides) and reuterin 
which have a broad spectrum of action, and

b.	 Antimicrobial proteins, termed bacteriocins (≥1000 Da) such 
as lactacin B, plantaricin and nisin that have a relatively narrow 
specificity of action against closely related organisms and other 
gram-positive bacteria.152,153

Reuterin showed broad spectrum antimicrobial activities against 
gram-positive, gram-negative bacteria as well as against yeast, fungi, 
protozoa and viruses.154 Acetic acid and lactic acid secreted in the 
fermentative metabolism of carbohydrates by probiotics, have a strong 
bacteriocidal effect against pathogens.155 These organic acids are the 
main antimicrobial compounds that are responsible for the inhibitory 
activity of probiotics against pathogens.156‒158 The organic acid enters 
the bacterial cell in a undissociated form which dissociates inside its 
cytoplasm, subsequently resulting in a reduction of the intracellular 
pH that inhibits the growth of gram-negative bacteria due to their 
sensitivity to acidic conditions or the death of the pathogen due to 
the intracellular accumulation of the ionized form of the organic 
acid.156,158,159 Most of the research aimed to the characterization of 
bacteriocins or bacteriocin-like compounds focused on lactic acid 
bacteria, mainly Lactobacillus, Pediococcus and Enterococcus 
because of the diversity of these genera species and their potential 
applications as natural preservatives in foods153 and because of their 
activity against food borne pathogens like Listeria, Clostridium, 
Salmonella, Shigella, Escherichia, Helicobacter, Campylobacter 
and Candida.85,160‒163 For example, Abp118 like bacteriocin derived 
from Lactobacillus salivarius strain UCC118 is able to protect from 
infection against Listeria monocytogenes in mice model.164 In a study 
conducted by our research group, has demonstrated the capability of B. 
Coagulans to produce lactic and acetic acids in anaerobic conditions 
(42.27±2.18mmol1-1 and 46.50±4.88mmol1-1) respectively. Thus, 
our results suggest that B. Coagulans strains isolated directly from calf 
feces could be considered a new single species probiotic supplement 
which can aid the maintenance of gastrointestinal health.81

Narrow spectrum Bacteriocins and small antimicrobial proteins are 
derived from lactic acid bacteria. Specifically, lactacin B, plantaricin 
and nisin are produced from L. Acidophilus, L. Plantarum and 
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Lactococcus lactis respectively which are acting only against closely 
related bacteria.165 The most of bacteriocins kill susceptible bacteria 
through the damages of cells by membrane permeabilization or 
inhibition of cell wall synthesis by interference with essential bacterial 
enzymes.166 For instance, nisin forms a complex with lipid II (cell 
wall precursor of bacteria), preventing cell wall biosynthesis mainly 
in spore-forming bacilli. Eventually, formation of a pore occurs in the 
bacterial membrane due to the formation of complex aggregates and 
incorporates peptides.167 Finally, stronger antimicrobial activity of de-
conjugated bile acids is produced by probiotic bacteria. Functionally, 
de-conjugated bile acids show a stronger activity in comparison to 
bile salts synthetized by host organism. It is yet unclear and will need 
more investigation to clarify mechanisms by how probiotics protect 
themselves from their own bactericidal metabolites or if they are 
resistant to de-conjugated bile acids in mammalian gut at all.119 More 
research should be carried out in future on genetics, biochemistry and 
mechanism of action of probiotics due to the potential interest on novel 
approaches of these antimicrobial proteins and other antimicrobial 
metabolites in the field of pharmacotherapeutics developments. 

Competitive exclusion between probiotics and pathogenic 
bacteria: Various bacterial genera colonized and are developed 
in the mammalian gut, producing an almost permanent exclusion 
environment by one species of bacteria that more vigorously 
competes for receptor sites mainly in the membrane of goblet cells, 
enteroendocrine cells and enterocytes of the intestinal tract than 
another species. Competitive exclusion mechanism represents a 
status of physical barrier to the gut mucosa by creating a special 
integrity systems characterized by creation of a hostile microecology, 
elimination of available bacterial receptor sites, production and 
secretion of antimicrobial substances and selective metabolites, and 
competitive depletion of essential nutrients, preventing intestinal 
pathogens from becoming established.168‒171 The mechanisms used by 
one species of bacteria to exclude or reduce the growth of another 
species are varied due to strains variability of probiotics. 

The interaction between surface proteins and mucins due to 
specific adhesiveness properties may inhibit the colonization of 
pathogenic bacteria leading to antagonistic activity by some strains 
of probiotics against adhesion of gastrointestinal pathogens.85 Growth 
and multiplication of a broad range of pathogens, such as E. Coli, 
Salmonella, Helicobacter pylori, Listeria monocytogenes and 
Rotavirus can be inhibited by Lactobacilli and Bifidobacteria.172‒178 
Some authors proposed that competitive exclusion might be based on 
binding to the same glycoconjugate receptor sites in a competitive 
manner on the epithelial surface by probiotics and pathogenic 
bacteria.179‒181 More commonly, probiotic strains can prevent the 
attachment of pathogenic bacteria by steric hindrance at enterocyte 
pathogen receptors.181,182 In human mucosal material in vitro,112,183 
chicken184 and pig mucosal material in vivo21 demonstrated the effect 
of probiotic bacteria on the competitive exclusion of pathogens. 
A strongly adhering strain, L. Rhamnosus is able of preventing the 
internalization of enterohemorrhagic E. Coli in a human intestinal cell 
line.112 More recently, glyceraldehyde-3-phosphate dehydrogenase 
has an adhesion property that is expressed on the cell surface of L. 
Plantarum LA 318. Glyceraldehyde-3-phosphate dehydrogenase 
of Lactobacilli is capable to bind with human colonic mucins and 
enables to adhesion with Lactobacillus to compete with pathogens for 
a given binding site.185

Application of probiotics in livestock

Probiotics for pigs: Environmental stresses, mainly management 

methods, diet, etc. can affect swine production causing discrepancy 
in the intestinal diversity leading to a risk factor for pathogen infec-
tions.186 Weaning and post-weaning periods are the most stressful con-
ditions in commercial porcine production resulting in transient drop in 
feed intake, inhibition of growth performance, negative influence on 
the immune function and the intestinal microbiota equilibrium final-
ly leading to increased susceptibility to gut disorders, infections and 
diarrhea in the pigs.187 The increased level of probiotics use started 
after the full ban on in-feed antibiotics and the drastic reduction in the 
levels of incorporation of copper and zinc by the European Union.188 
The majority of the researches showed a health beneficial effect of 
probiotic applied in piglets; increasing the number of intestinal ben-
eficial bacteria, reducing the load of pathogenic bacteria, increased 
high activities of IgM, IgA against pathogens than control, enhanced 
defensive tools towards pathogenic invasion and increased villi mor-
phology and function. Yeasts (Saccharomyces boulardii) and bacteria 
(Lactobacillus spp., Enterococcus spp., Pediococcus spp., Bifidobac-
terium spp., Bacillus spp.) are the most common probiotics use for 
monogastric animals to targeting the hindgut (caecum, colon) which 
harbors an abundant and very diverse quantity of microbial population 
mainly composed of bacteria and archaea.1 

In gestating sows, the administration of probiotics have been 
reported to increase performance effects on feed intake and average 
live weight189 with at the same time a greater size and vitality of 
the neonatal piglets.190‒192 On the contrary, our study found that 
Saccharomyces cerevisiae spp. Boulardii supplementation to sows 
had no beneficial effects on gestating sow body weights and feed 
intakes but total piglets born and born alive were in a larger number 
than in control sows.193 Furthermore, performance benefits of 
piglets have also been reported after weaning, as for example with 
S. Boulardii.194 In this study, the yeast promoted a ‘healthy’ intestine 
by an early restoration of the intestinal mucosal thinning and would 
possibly improve the local resistance to infection. Significant longer 
villi and deeper crypts were found in the ileum of piglets receiving 
diets supplemented with the yeast Saccharomyces cerevisiae spp. 
Boulardii195 or Pediococcus acidilactici.141,196 The benefits for intestinal 
IgA secretion and reduction of translocation of enterotoxinogenic 
E. Coli also observed with S. Boulardii or P. Acidi lacticifed to 
piglets.197 Strain of Lactobacillus sobrius provided on modulation 
of IgA development, mutually with a reduced ileal prevalence of 
enterotoxigenic E. Coli has been established.198 

Bacillus species are also used as probiotics in some clinical trials 
in pigs. Inclusion of Bacillus subtilis strain in the feed resulted in a 
reduction of scours in weaned pigs challenged against K88-positive 
enterotoxigenic E. Coli as well as the spores of Bacillus licheniformis 
and B. Subtilis reduces the morbidity and the mortality in weaned 
piglets, improves the performance parameters of the fattening pigs and 
improves carcass quality.199,200 Furthermore, a combination of Bacillus 
subtilis and B. Licheniformis supplementation decreased gestating 
sows body weights, decreased incidence of diarrhea and mortality 
in piglets and improved litter weight at weaning and growth rate of 
young piglets.31 Moreover, the use of a B. Cereus based probiotic 
showed not only lower prevalence of diarrhea, but also that pigs 
needed to eat less food to attain the same weight gain.30 Amusingly, 
probiotic supplemented in pigs resulted in an improvement in meat 
color, marbling, tenderness, flavor and juiciness in Korean swine 
production.201 Moreover, more sensitive to gut colonization happened 
from birth to post-weaning piglets by pathogenic bacteria (E. Coli, 
Clostridium difficile, Clostridium perfringens, Salmonella, Listeria), 
parasites (Isospora, Cryptosporidium) or viruses (Coronavirus, 
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Rotavirus),which are responsible for growth reduction and diarrhea. 
During this episode, many studies have confirmed the efficacy of 
probiotics as well as therefore recommended to use probiotics in this 
period.198,202‒204 

The adaptive immune system of pigs has been influenced by the 
ability of probiotics which demonstrated in several studies. Szabo et 
al.205 found that the administration of E. Faecium improved the course 
of infection in weaning piglets when challenged with Salmonella 
Typhimurium, increased the production of specific antibodies 
against Salmonella.205 The distribution of intestinal immune cells 
(granulocytes, mast cells, CD4+, CD8+, CD25+, IgA+ lymphocytes) 
and the mucosal expression of cytokines (IFN-γ, TNF-α, TGF-β, 
IL-10) by in vitro and in vivo studies on probiotic effects have been 
reported, but the effects of probiotics on those immune/defensive cells 
remain less clear.141,206‒210 Moreover, many probiotic preparations have 
been tested in several separate laboratories with diverse and sometimes 
contradictory results. One of the most common methods used for 
assessment of immune function is the evaluation of lymphocyte 
proliferation, the principal actor in intestinal local immunity, whose 
anatomic counterpart was the gut-associated lymphoid tissue. More 
intriguing was the response to L. Fermentum in weaned pigs that 
induced an increase in the pro-inflammatory cytokines IFN-γ and 
TNF-α in the ileum, and an increase in the percentage of CD4+ 
lymphocyte subset in blood.211

In comparison to poultry, competitive exclusion culture has not 
been studied thoroughly in pig. Known competitive exclusion culture 
from porcine reduced the mortality rate and reduced shedding of 
enterotoxigenic E. Coli in neonatal pigs21 as well as shed significantly 
lower pathogen numbers in neonatal pigs after challenge with 
Salmonella enteric serovar choleraesuis.20 Selected colicin-producing 
E. Coli targeting E. Coli K-88 isolated from environmental sources 
(cattle and swine feces and soil) demonstrated a significant valuable 
effect on performance, diarrhea in weaning piglets infected with E. 
Coli K88.83 On the other hand, Enterococcus faecium and E. faecalis 
are routinely using in many clinical trials although they have not 
been proposed for QPS status by EU.212 In healthy piglets and sows, 
E. Faecium NCIMB 10415 decreased the pathogenic bacteria load 
through an interdisciplinary research study.192,213

The clinical trials utilizing Lactobacillus strains are increasing 
due to their documented importance as frequent component of 
pig microbiota. L. Sobrius significantly decreased the levels of 
enterotoxigenic E. Coli in the piglets’ ileum when administered 
directly after weaning. Moreover, L. Sobrius improved daily weight 
gain in probiotic fed animals.198 L. Rhamnosus GG (LGG) fed in post-
weaning piglets was effective in ameliorating diarrhea induced by 
E. Coli K88 via modulation of intestinal microflora, enhancement of 
intestinal and systemic immune response.214

Bifidobacterium species are most widely useful as probiotics 
in humans, but combination with Lactobacillus are conducted 
particularly in pigs. Lactobacilli and Bifidobacteria administration 
reduced the incidence and severity of necrotizing enterocolitis and 
reduced colonization density of the potential pathogen Clostridum 
perfringens immediately after birth.215 Probiotic preparations including 
Bifidobacteriumlactis and Lactobacillus rhamnosus individually 
lowered adherence of Salmonella, E. Coli and Clostridum spp. to the 
intestinal mucosa in swine. Together the two organisms were more 
effective and reduced each other’s adherence.113 

Microorganisms reside in the gut able to influence the phenotypic 

characteristics of enteric neurons of enteric nervous system. Kamm 
et al.216 showed that dietary probiotics (Saccharomyces cerevisiae sp. 
boulardii) affect the chemical coding of swine myenteric neurons and 
Bar et al.,217 demonstrated that Escherichia coli Nissle 1917 affects 
the contractile activity of human isolated smooth muscle strips. Di 
Giancamillo el al.218 provided a quantitative evaluation of neuronal 
populations in the submucosal and myenteric plexuses of the pig 
ileum and cecum, and described specific changes in the neuronal 
and enteric glial cells in porcine treated with dietary P. Acidilactici, 
suggesting that changes in the intestinal microorganism community, 
like that linked to dietary probiotic administration, may conceptually 
support aspects related to enteric neuronal plasticity. 

Probiotics for poultry: In modern broiler production practices, 
there are many factors that can enhanced stressors (feed changes 
or imbalances, transportation, processing at the hatchery and high 
stocking densities) during post hatching period,219 which ultimately 
affect the colonization of the gastrointestinal tract by bacterial 
pathogens due to weaken immune system, posing a threat to birds 
health and food safety. Salmonella spp. Campylobacter jejuni and 
Clostridium perfringens have been show to infect chickens and 
hens increasing the risk of contamination through the food chain 
resulting in a harmful condition both for poultry and human.220‒222 So, 
probiotics act as a biological alternative in the preharvest control of 
Campylobacter, Salmonella, and Escherichia coli.53,223,224 

Probiotics could be a possible strategy to control pathogen shedding 
and thus successfully demonstrates the impact of the intestinal 
microbiota on intestinal function and disease resistance.14,21,225 In 
poultry production, the application of probiotics is strictly associated 
with the concept of competitive exclusion, where 1-d-old chicks can 
be sheltered from succeeding Salmonella infections by accelerating 
the establishment of a complex, protective microflora.226,227 Many 
efficient commercial competitive exclusion cultures are also available 
on the market against Campylobacter14 and Clostridium perfringens.228 
Zhang et al.229 indicated that cultures derived from free-range chickens 
on family poultry farms provided better competitive exclusion cultures 
in comparison to commercial farm chickens.229

The capability of probiotic strains to protect the growth of pathogens 
is believed to be important in preventing disease. Commercially 
lactic acid bacteria cultures have been widely used for their ability 
to reduce Salmonella infection in poultry and turkey production in 
many countries.230,231 In an all-inclusive research of 296 strains of 
lactic acid bacteria from the gut of 50 chicks, 77 of the strains were 
found to protect growth of enteropathogenic S. Enteritidis and E. 
Coli.36 Furthermore, the probiotic cultures modulated the microbial 
composition and the enzymatic activities of the cecal microbiota, 
resultant significant probiotic effect.186

Along with the control of food-borne pathogens in the poultry 
gut, selected probiotic cultures, mainly Lactobacillus spp., may also 
potentially increase production performance parameters; among 
poultry farmers, objectives (such as increasing growth rate, improving 
feed conversion and meat quality) are undoubtedly of primary 
importance. In a comprehensive in turkeys and chickens, commercial 
researches have established that proper administration of probiotics 
mixture increased performance, reduced costs of production as 
well as was effective in reducing abdominal fat deposition.232‒236 
Timmerman et al.237 reported that the main factors affecting the 
efficacy of the probiotic preparations depend on way and timing of 
the administration.237 Application through the feed than application 
in the drinking water resulted in a higher increase of average daily 
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gain. Furthermore, the supplementation of probiotics during early 
life of host is of great importance to the host because the probiotic 
bacteria can modulate intestinal epithelia genes expression to creating 
a favorable habitat for themselves. 

Eggs production has been also investigated in relation to probiotic 
application. A combined mix culture of Lactobacillus acidophilus, 
L. Casei, Bifidobacterium thermophilus and Enterococcus faecium 
enhanced egg size and lowered feed cost in laying hens.238 Moreover, 
Bifidobacterium thermophilus and Enterococcus faecium improved 
egg production and quality.239 The use of Enterococci as probiotics is 
somewhat controversial in humans, but in chickens prolonged feeding 
with E. Faecium based probiotics increased egg laying intensity and 
feed conversion efficiency.240,241

In poultry, benefits of yeast probiotic supplementation are 
established in broilers’ production performance and increased 
resistance of chickens to enteric pathogens infections (Salmonella, 
Campylobacter jejuni, E. coli or C. perfringens).230,242‒244 Furthermore, 
supplementation with yeast treatment significantly decreased the 
frequency of Salmonella colonization to lower than the pre-stress 
(before transport) levels, whereas non-supplemented birds had higher 
levels of Salmonella colonization.245 Probiotics can increase feed 
efficiency and productivity of laying hens239,246 and an improvement 
in egg quality (decreased yolk cholesterol level, improved shell 
thickness, egg weight) has also been reported.239,247 Invernizzi et 
al.,248 reported that selenium containing dead yeast (Saccharomyces 
cerevisiae) probiotic increased egg weight, egg shell quality with 
higher selenium concentration in egg and breast muscle. On the other 
hand, Zhang et al.249 conducted an experiment with male broilers to 
investigate the effects of Saccharomyces cerevisiae cell components 
on the meat quality and they reported that meat tenderness could be 
improved by the whole yeast or Saccharomyces cerevisiae extract.249

Probiotics for veal calves and horses: The most significant beneficial 
effects of probiotics have been established when probiotics included 
in the animals diet during specifically stressful periods for the gut 
microbiota and the animal. Due to undeveloped rumen in young 
pre-ruminants, lactic acid bacteria probiotic (Lactobacillus spp., 
Bifidobacterium spp., Enterococcus spp., Propionibacterium spp.) or 
Bacillus spores generally target the small intestine due to stabilize the 
gut microbes and limit the risk of enteric pathogen colonization. 

Several in vivo trials have shown positive results with regard to 
animal performance, improved weight gain and rumen development 
in young calves with various type of bacterial and yeast strains 
supplementation.250 Calves fed milk fermented with either mixed 
lactic acid bacteria, or L. Acidophilus or S. Cerevisiae NCDC49 
obtained reduce incidence of diarrhea.41 Moreover, viable E. Coli 
strain Nissle 1917 administered to calf had a clear favorable effect 
on the prophylaxis and treatment of neonatal calf diarrhea.251 Our lab 
reported that an investigation was carried out into the recovery from 
calf feces of Bacillus coagulans spores added to the feed as probiotic.81 
Throughout the trial the fecal spore counts were significantly higher 
in the treated group than in the controls. In addition, the recovered 
cells were found to maintain their functionality aspects of acid 
production, survival in artificial gastric juice and in the presence of 
bile, and attachment to human intestinal epithelial cells in vitro. The 
results further elucidate the fate of spore formers administered to 
calves, and this will help in the development of new species-specific 
nutritional strategies. Improved weight gain and rumen development, 
improvement of lactic acid bacteria/E. Coli ratio and fecal score in 
young calves have been reported with several products.43,250,252,253 On 

the other hand, from the first days after birth, live yeast administered 
to calf has been helped to favor microbial colonization and the set-
up of fermentative capacities in the rumen.254 In young calves, 
incorporating live yeasts into the grain reduced the number of days 
with diarrhea.252 

In horse, probiotic effects to the digestive compartment mainly 
caecum-colon. Fiber digestibility increased in the horse colon and 
modulated the balance of hindgut bacterial communities through 
supplementation with live yeast, consequently decreased risk of lactic 
acidosis.255,256 Agazzi el al.51 also reported that the administration of 
S. Cerevisiae to mature horses fed high-fiber diet increased apparent 
nutrient digestion rate.51 The apparent digestion rates of dry matter 
and organic matter were significantly improved in treated horses 
as compared with control subjects, but the most relevant difference 
among experimental groups was evidenced by a positive effect of the 
of live yeast over the fibrous fractions such as neutral detergent fiber 
and acid detergent fiber.

Conclusions
Most probiotic strains marketed today were originally selected 

for their superiority in a variety of easily measurable phenotypes, 
and not necessarily for their unique ability to confer defined health 
benefits. Unfortunately, the currently available in vitro tests are 
not accurate enough to predict the potential use and functionality 
of probiotic strains in vivo. Better knowledge of the structure and 
activities of the gut microbiota, functional interactions between 
gut microbes and interrelationships between microbes and host 
cells represent a fundamental aspect of future lactic acid bacteria 
probiotic research. The combination of verified molecular in 
vitro assays and in vivo animal models, through the monitoring of 
identified biomarkers with functional and comparative genomics 
and proteomics based approaches, should enable selection of the 
most appropriate probiotic strain for a particular health benefit or 
improvement of strain processing and/or administration regimes that 
strengthen the established health effect. At least the implementation 
of both in vitro and in vivo techniques will increase the knowledge of 
such an attractive perspective as the co-immobilization of probiotics 
microorganism with prebiotics, antioxidants, peptides or immune-
enhancing compounds. 
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