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   Abstract 

 Argonaute proteins play a central role in gene silencing 
pathways mediated by small RNA molecules. The ances-
tral function of small RNA-dependent silencing is related 
to genome protection against parasitic nucleic acids, such 
as transposons and viruses. However, new classes of small 
RNAs are continuously being uncovered in all higher 
eukaryotes in which they play important functions in pro-
cesses ranging from embryonic development to differentia-
tion to cell proliferation and metabolism. Small RNAs have 
variegated biogenesis pathways and accomplish distinct 
functions. Nevertheless, it appears that all small RNAs work 
merely as guides in recognizing the target RNAs invariably 
relying on the interaction with Argonaute proteins and asso-
ciated factors for their biological function. Here, we discuss 
recent fi ndings on the structure and regulation of mamma-
lian Argonaute proteins and overview the various roles that 
these versatile proteins play in regulating gene expression.  
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  Introduction 

 Argonaute proteins modulate gene expression at multiple lev-
els, ranging from transcription to messenger RNA (mRNA) 
stability and translation. Their function is usually mediated 
by small non-coding RNAs (ncRNAs), which guide them via 
either extensive or partial base pairing to target RNAs  (1) . 
Binding to different classes of small RNAs and to different 
transacting factors activates different pathways of Argonaute-
dependent gene expression regulation  (2) . Indeed, Argonaute 
protein family constitutes a class of highly specialised RNA 
binding proteins whose versatility is still not fully explored 
 (3 – 5) . 

 In mammals, microRNAs (miRNAs) represent the most 
abundant class of small RNAs characterised to date. They are 
functional in the form of a ribonucleoprotein particle, referred 
to as miRNA-induced silencing complex (miRISC), com-
posed of a mature miRNA and an RISC of which Argonaute 
is the core component. miRNAs are 19 – 22 nucleotides (nts) 
in length and are transcribed by RNA polymerase II as pri-
mary miRNA transcripts harbouring 5 ′  cap and 3 ′  polyA 
tails  (6, 7) . In the nucleus, primary miRNAs are processed 
into precursor-miRNA hairpins of about 60 – 100 nts by the 
Microprocessor complex, including the RNase III enzyme 
Drosha and the protein DGCR8 (from the Di Giorge syn-
drome)  (8 – 11) . A small subgroup of miRNAs, called mir-
trons, is instead encoded within introns of other genes and 
released on splicing from the intron-lariat  (12) . Regardless 
of the origin, a harpin precursor miRNA is produced in the 
nucleus and translocated to the cytoplasm via Exportin-5/
Ran-GTP  (13, 14) . Once exported, the precursor undergoes 
two processing steps required for the maturation of the RISC 
complex and is catalysed by the RISC loading complex, 
including the RNaseIII Dicer, TRBP and Argonaute  (15 – 17) . 
The Dicer cleaves the precursor, releasing a double-stranded 
RNA (dsRNA), referred to as the miRNA-duplex, harbouring 
5 ′  phosphate (5 ′ -P) and 3 ′  hydroxyl (3 ′ -OH) ends and 2-nt 
overhangs at the 3 ′  ends  (18 – 20) . The mature miRNA will 
result from unwinding of the duplex where the  ‘ guide strand ’  
is retained while the  ‘ passenger strand ’  is removed. Selection 
of the correct RNA strand as  ‘ guide ’  is carried out by TRBP on 
the basis of its thermodynamic properties. This step is critical, 
as a wrong selection would entail misregulation of off-target 
genes. TRBP then  ‘ presents ’  the duplex to Argonaute, which 
will proceed to unwind and release the passenger strand while 
retaining the guide strand  (15, 21, 22) . This fi nal step results in 
the formation of the miRISC complex, which is competent for 
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target mRNA recognition and regulation. Complementarity 
between miRNAs and their targets is not extensive; base par-
ing between positions 2 – 7 from the 5 ′  end of the miRNA, 
called the seed region, and the target mRNA is necessary and 
often suffi cient to direct regulation  (23) . 

 Small ncRNAs may be also produced via Drosha-
independent pathways  (24 – 26) . This is the case of endoge-
nous small interfering RNAs (siRNAs), a class of endogenous 
siRNAs displaying extensive complementarity with their 
target RNAs. Endogenous siRNAs direct Argonaute slicing 
activity onto the target, resulting in its cleavage and degra-
dation. These small RNAs are released via processing by 
Dicer of long dsRNAs deriving from transposons, intergenic 
regions or heterochromatic sequences whose products are 
long inverted repeats or convergent transcripts able to anneal 
with one another. Subsequently, the small RNAs are bound by 
Argonaute and proceed to silence their target genes  (26 – 28) . 

 Finally, a large class of small ncRNA molecules exists 
whose production is Dicer independent. Piwi-interacting 
RNAs (piRNAs) depend on a subclass of Argonaute proteins, 
the Piwi clade, for both their biogenesis and function. piRNAs 
are commonly transcribed from intergenic repetitive regions, 
and their processing depends on Piwi endonucleolytic acti-
vity in a complex amplifying scheme, referred to as the ping-
pong mechanism  (29) . Piwi/piRNA complexes are mostly 
restricted to the germline and are involved in silencing trans-
posons, which in mammals are primarily long interspersed 
nuclear element or long terminal repeat retrotransposons 
 (30 – 32) . Silencing induced by piRNA/Piwi complexes occurs 
by directing the cleavage and degradation of target RNAs or 
by eliciting de novo DNA methylation and chromatin remod-
elling  (32, 33) . Interestingly, Piwi/piRNAs complexes have 
also been reported to target non-transposable elements in 
animals  (30, 34 – 36) , and recently neuronal piRNAs were 
described in Aplysia as epigenetic regulators of synaptic plas-
ticity  (37) . 

 Mentioned above are only some in a multitude of path-
ways involving Argonaute proteins. These proteins display an 
impressive array of diversifi ed functions and binding partners, 
mirrored by an ever-expanding literature. Here, we review 
the current understanding of Argonaute proteins ’  structure 
and function, focusing on, but not limiting our attention to, 
mammals.  

  Argonaute evolution and structure 

 The founding member of the Argonaute family of proteins, the 
 Arabidopsis thaliana  Ago1, was fi rst identifi ed in a genetic 
screen for genes involved in development  (38) . Mutations in 
the  Ago1  gene led to developmental defects and a morphol-
ogy resembling a squid known as  ‘ Argonaute argo ’ . Few years 
later, Argonaute proteins were found to play a central role in 
RNA-mediated gene silencing, a phenomenon described in 
different eukaryotic organisms including fungi, plants and 
animals  (39 – 41) . Gene silencing mediated by small regulatory 
RNA molecules occurs ubiquitously in eukaryotes, playing a 
key role in defending eukaryotic genomes against viruses and 

genomic parasites such as transposons. Although the mecha-
nistic details of the RNA-mediated gene silencing machinery 
may vary among different species, it appears that the general 
features and the central components of this regulatory path-
way are universally conserved. Argonaute proteins are one of 
the few components that are always required for gene silenc-
ing, suggesting an ancestral function of these proteins in the 
genome defence systems. 

 Argonaute family members have evolved, by gene duplica-
tion and sequence divergence, to play crucial roles, not only 
in genome protection but also in a number of different bio-
logical processes ranging from development to differentiation 
to cell proliferation and metabolism  (42) . To date, Argonaute 
genes are widely present in eukaryotes and in some prokaryotic 
genomes. Typically, eukaryotic genomes contain one or more 
Argonaute genes: 1 gene is present in  Schizosaccharomyces 
pombe , 5 paralogs are expressed in  D. melanogaster , 10 in 
 A. thaliana , 27 in  Caenorhabditis elegans  and 8 in human and 
mice  (43) . Based on phylogenic analyses, Argonaute proteins 
from plant, fungal and animal kingdoms can be subdivided into 
three clades: the Ago-like subfamily of proteins, defi ned depend-
ing on the similarity to  A. thaliana  Ago1, present in animals, 
plants and yeast; the Piwi subfamily with members found only 
in animals and sharing similarities with  D. melanogaster  Piwi 
protein; and the  C. elegans -specifi c Wago subfamily  (44 – 47) . 
Although the phylogenetic classifi cation of Argonaute proteins 
in three clades is solely based on protein sequence similarity, it 
likely refl ects a functional diversifi cation of small RNA-based 
regulatory mechanisms in which they are involved  (5) . 

 Despite these functional differences, eukaryotic Argonaute 
proteins are generally characterised by four conserved 
regions (an N-terminal region, the PAZ domain, the MID 
domain and the PIWI domain) that are connected by two 
less characterised regions named L1 and L2 (for Linker1 
and Linker2) (Figure  1  ). Argonaute-like genes were also 
found in prokaryo tic genomes including both eubacteria and 
archaebacteria, and although they share sequence homology 
with eukaryotic Argonautes, the organisation of domains is 
variable and the PAZ domain is frequently absent  (48, 49) . 
During the past few years, full-length Argonaute proteins and 
isolated domains have been analysed by X-ray crystallogra-
phy and NMR spectroscopy and functionally characterised by 
biochemical approaches, particularly in regard to their asso-
ciation with small RNAs. 

 The PAZ domain, composed of approximately 130 amino 
acids, is shared by both Argonaute and Dicer protein families. 
X-ray crystallography and NMR spectroscopy have revealed 
its three-dimensional structure, with a subdomain exhibiting 
an OB-like folding (oligonucleotide/oligosaccharide bind-
ing). This region is able to bind single-stranded nucleic acids, 
preferentially DNA in archeal and eubacterial Argonaute pro-
teins, and RNA in their eukaryotic counterparts  (50 – 52) . Four 
aromatic residues within the PAZ domain are responsible for 
the interaction with the 3 ′  end of single-stranded RNAs or 
with 3 ′  overhangs of double-stranded small RNAs  (53) , with-
out any sequence requirements  (54 – 56) . 

 Next to the PAZ domain, along the primary structure 
of Argonaute proteins, is the MID domain, exhibiting a 
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Rossmann-like fold characteristic of the bacterial Lac1 
repressor. This domain takes part in forming the binding 
site for the 5 ′  end of the guide strand of the small RNA  (53, 
57) . Crystallographic studies of Argonaute proteins from 
archaeo bacterial  Archaeoglobus   fulgidus  and eubacterial 
 Aquifex aeolicus  revealed that the 5 ′  phosphate (5 ′ -P) of the 
fi rst nucleotide in the guide RNA is anchored by a divalent 
cation deeply within a highly conserved basic pocket formed 
by the PIWI and MID domains. This interaction excludes 
the 5 ′  terminal nucleotide from base pairing with the tar-
get mRNA  (58, 59) . More recently, Boland and co-workers 
resolved the structure of the MID domain alone and of the 
MID-PIWI portion of  Neurospora crassa  QDE-2, a eukary-
otic Argonaute protein  (60, 61) . These studies show that the 
binding pocket for the 5 ′  end of the guide strand is highly 
conserved, positioned at the MID-PIWI hydrophilic inter-
face. In addition, this interface is where nts 2 – 7 of the guide 
strand ( ‘ seed ’  region) are exposed so as to base pair with the 
target RNA  (58 – 61) . Moreover, the correct anchoring of the 
5 ′  end of the guide is essential for placing the scissile phos-
phate of the target RNA adjacent to the Argonaute catalytic 
site responsible for its cleavage  (62) . In keeping with this, 
several computational and structural analyses suggest that 
the cleft between the MID and Piwi domains is key in deter-
mining preferential binding of Argonaute orthologs to a spe-
cifi c type of small RNA, based on their 5 ′  terminal nucleotide 
 (30, 57, 60, 63) . 

 The PIWI domain displays a ribonuclease H-like active 
site, which catalyses the cleavage of target nucleic acids (slicer 
activity)  (64) . RNaseH enzymes cleave RNA using DNA as a 
template, unlike eukaryotic Argonaute proteins, which prefer 
an RNA guide for their endonuclease activity. Regardless of the 
nature of the guide molecule, cleavage by these proteins gener-
ates a 3 ′ -OH terminus and a 5 ′ -P terminus. The active site of 
RNaseH enzymes contains an Asp-Asp-Glu/Asp motif and two 
divalent cations  (65, 66) , whereas Argonaute proteins exhibit a 
more degenerate catalytic centre (Asp-Asp-Glu/Asp/His/Lys) 
 (46, 67, 68) . Mutagenesis of the conserved amino acid residues 
in the catalytic centre was shown to abolish target RNA slicer 
activity. Although the amino acid residues of the catalytic centre 
are generally well conserved among Ago proteins, not all Agos 
display endonucleolytic activity  (67, 68) . For instance, among 
the four closely related human Argonautes, only hAgo2 has a 
slicer activity, while hAgo1, hAgo3 and hAgo4 are not able 
to cleave target RNAs in biochemical assays  (67, 68) . Thus, it 
appears that conservation of the catalytic centre, although nec-
essary, is not suffi cient to ensure slicer activity. 

 The N-terminal domain was recently shown to direct small 
RNA duplex unwinding  (69) . This and prior observations con-
tribute to depict a model for the formation of a competent RISC 
in which one of the two strands of the small RNA duplex is sta-
bly incorporated in the binding pocket of Ago protein. The fi rst 
step consists of duplex loading onto Ago. A conformational 
change is required to allow for such a bulky molecule to be 
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 Figure 1    Schematic representation of Ago proteins. 
 Numbering is referring to Ago2 protein. Functions proposed for each individual domain are indicated at the bottom. Above are boxes showing 
the position, type and role of Ago post-translational modifi cations. (N) N-terminal domain; (L1-L2) Liker region1 and 2; PAZ, MID and PIWI 
domains.    
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accommodated by Ago. To this end, ATP hydrolysis and the 
chaperone Hsp70/90 machinery induce a temporary distancing 
of the N domain from the body of the protein. Upon dsRNA 
loading, the 3 ′  end of the guide strand anchors itself to the PAZ 
domain. When the N-terminus returns to its original position, 
it behaves as a wedge prying open the two strands and caus-
ing a partial unwinding of the duplex. In addition, N-domain 
repositioning induces proper placement of the loaded dsRNA 
within the slicing Piwi domain. When siRNAs are loaded, the 
passenger strand is cleaved by Ago, a step required to reduce 
the duplex stability of the siRNA. This step is dispensable for 
miRNA duplexes whose stability is already weakened by mis-
matches. The fi nal step consists of the passenger strand being 
removed, thus resulting in a mature miRISC complex. 

 Structural studies of prokaryotic Argonaute proteins 
revealed that their four domains are organised in two lobes, 
each containing two globular domains: the N-terminal and 
PAZ domains in one lobe and the MID and PIWI domains in 
the other. Recently, Schirle and MacRae  (70)  resolved the fi rst 
crystal structure of a full-length eukaryotic Argonaute protein 
hAgo2. Their work confi rms the general bi-lobed architec-
ture of Argonaute proteins, with a central cleft for binding of 
guide and target RNAs, already observed in the prokaryotic 
homologues  (53) . Although the structure of isolated globular 
domains was quite similar between humans and prokaryotes, 
some differences in their relative positioning within the two 
lobes were present, likely infl uencing how the protein inter-
acts with guide and target RNA molecules and highlight-
ing specifi c functional features of eukaryotic Ago proteins. 
Firstly, hAgo2 ’ s structure revealed that its binding pocket, 
in which the guide molecule accommodates, is less hydro-
phobic than the one in prokaryotic Argonaute. Thus, bacterial 
Ago may not easily take in several 2 ′  hydroxyls present in 
RNA molecules, explaining the diverse preference for DNA 
vs. RNA guide of the prokaryotic Ago proteins. Secondly, the 
structural analysis of alfa-helix 7 within the L2 region, which 
is conserved in eukaryotic Argonautes but is not present in 
bacteria, revealed that this helix inserts a kink in the seed 
region of the guide RNA between nts 6 and 7. This structural 
modifi cation interferes with the conformation needed by this 
sequence to interact with the target. Thus, target recognition 
requires a shift in helix 7 positioning, to allow target pairing 
to nts 6 and 7 of the guide. These data are consistent with 
previous observations on the importance of nucleotide 7 pair-
ing in guide-target recognition in miRNA repression in mam-
mals  (23) . Thirdly, two adjacent hydrophobic pockets were 
identifi ed in the hAgo2 PIWI domain that are able to bind 
free tryptophan amino acids. It has been proposed that the 
two tryptophan-binding pockets may be the interaction sites 
for binding to GW motifs (glycine-tryptophan- rich regions) 
present in Argonaute-associated proteins, as GW182 is neces-
sary to mediate specifi c Argonaute functions (see below).  

  Expression of Argonaute genes 

 The human genome encodes four Ago genes ( AGO 1 – 4) and 
four  PIWI  genes ( HIWI ,  HILI ,  PIWIL 3 and  PIWIL 4/ HIWI 2). 

Human  AGO 1,  AGO 3 and  AGO 4 are clustered in tandem on 
chromosome 1, whereas  AGO 2 is located on chromosome 
8. This distribution pattern is conserved in mammals, and a 
similar balance between  AGO  and  PIWI  encoding genes has 
been observed in  Drosophila , displaying two  AGO  and three 
 PIWI  genes. 

 Ago proteins are expressed in most tissues, and their 
disregulation has been linked to several cancer disorders  
(71 – 74) . Moreover, their relative abundance varies depend-
ing on the cell type, development and differentiation stage 
 (75, 76) , while PIWIs are primarily found in the germline 
 (30, 77) . 

 Recently, Valdmanis et al.  (76)  carried out an analysis on the 
regulated expression of  AGO  genes, searching for elements in 
 AGO 3 and  AGO 4 coding regions that limit their expression. 
This analysis was prompted by the observation that  AGO 3 
and  AGO 4 are expressed at low levels in mammalian tissues 
and the ectopic overexpression of their cDNAs is diffi cult 
to achieve experimentally compared with that of  AGO 1 and 
 AGO 2  (78) . This suggests that some elements in their cod-
ing region may be curtailing protein expression. Indeed, the 
authors found that the N-terminal half of  AGO 3 and  AGO 4 
coding regions contains uncharacterised elements that down-
regulate their expression post-transcriptionally. Interestingly, 
they also found that all Argonaute genes display a particu-
larly high level of rare codon usage and that different expres-
sion levels may result from a diversifi ed distribution of these 
codons along each gene. In addition, this distribution pattern 
is evolutionarily conserved; in  AGO 1 and  AGO 2, rare codons 
are concentrated in the fi rst half of the gene, while  AGO 3 
and  AGO 4 show an even distribution along their entire open 
reading frame. The enrichment in rare codons within the fi rst 
50 amino acids induces a uniform positioning of ribosomes 
across the beginning of the transcript, likely facilitating ribo-
some movement and translational effi ciency  (79) ; conversely, 
their extensive presence along a gene reduces protein yields 
in normal cells, while ensuring their expression under stress 
conditions. Preliminary results from mutational analyses of 
these codons seem to indicate that rare codons do participate 
in limiting the expression of  AGO 3 and  AGO 4. The conser-
vation of this feature suggests that rare codon usage might 
be responsible for maintaining a dynamic balance between 
 AGO  genes, ensuring a constant supply of miRNA effector 
proteins, Ago1 and Ago2, while allowing high levels of Ago3 
and Ago4 expression only in specifi c cellular contexts. 

 As Argonaute proteins associate with miRNAs in a 1:1 
ratio, their concentration in a cell is a limiting factor for miR-
NAs ’  function and is indicative of the magnitude of miRNA-
dependent regulation in that cell  (80) . All Ago proteins share 
the same binding potential with miRNAs, which are ran-
domly sorted to the different Ago proteins based only on their 
relative concentration  (81, 82) . This apparent randomisation 
in Ago-miRNA binding does not rule out the possibility that 
association with a specifi c Ago protein may instruct miRNA 
function, as several recent studies suggest  (83, 84) . 

 Most mRNAs contain multiple miRNA binding sites in 
their 3 ′  untranslated regions (UTRs), which might be utilised 
at different times or in different cellular contexts. However, 
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it is now clear that multiple miRNAs function coopera-
tively on a target 3 ′  UTR by stabilising Argonaute associa-
tion with the mRNA. Broderick et al.  (83)  found that Ago 
proteins can exert different effects on the cooperativity of 
miRNAs. In HeLa cells and embryonic fi broblasts, miRNAs 
associated with Ago1, Ago3 and Ago4 always mediate silenc-
ing in a cooperative fashion, independently of the grade of 
pairing with the target. Instead, miRNAs bound to Ago2, 
and extensively paired with the target, elicit silencing in a 
non-cooperative manner. Thus, the relative abundance of Ago 
may be the discriminatory condition to obtain cooperation of 
adjacent miRNA binding sites on a given target. 

 Differences in Ago protein abundance may also affect 3 ′ -
end trimming of miRNAs. This, in turn, would affect their 
target mRNA specifi city, as 3 ′  ends of miRNAs participate 
with the  ‘ seed region ’  in target recognition. Juvvuna et al.  (84)  
found that Ago2 ’ s PAZ domain binds less effi ciently to the 
3 ′  end of miRNAs compared with other Agos. As a result, 
miRNA 3 ′  ends are shortened, likely because they are more 
accessible to trimming by exonucleases. The association of 
miRNAs with other Ago proteins would avoid this type of 
miRNA  ‘ remodelling ’ . Interestingly, the authors found that 
many miRNAs undergo an extensive 3 ′ -terminal trimming 
during nervous system development. Indeed, this modifi ca-
tion is accompanied by a decrease in Ago1 and a parallel 
increase in Ago2 levels. An intriguing model is that neuronal 
cells control their internal Ago1/Ago2 ratio, during differen-
tiation, to adapt their miRNA pattern towards a new set of 
target transcripts  (84) .  

  Argonaute proteins: new targets for traditional 

post-translational modifi cations 

 Post-translational modifi cations of Argonaute proteins repre-
sent a hub for the integration of different signalling pathways 
and the coordination of cellular responses. Chemical modifi -
cation of Argonautes can alter their cellular localisation, their 
affi nity to small RNAs and protein partners and their overall 
abundance (Figure 1). The fi rst post-transcriptional modifi -
cation ascribed to hAgo2 is hydroxylation at proline 700 by 
the prolyl-4-hydroxylase [C-P4H(I)  (85) ]. This modifi cation 
stabilises Ago2 by protecting it from proteasome-mediated 
degradation. In addition, prolyl-4-hydroxylation is required 
for Ago1 and Ago2 localisation to P-bodies, cytoplasmic foci 
where miRNAs accumulate and function, as well as sites of 
storage and degradation of translationally repressed mRNAs 
 (86) . In contrast, this type of chemical modifi cation is dis-
pensable for stress granule re-localisation of both Ago1 and 
Ago2 in response to cellular stress. 

 Phosphorylation of different residues of Ago proteins can 
also infl uence their P-body localisation. p38 MAPK kinase 
is responsible for serine 387 phosphorylation of Ago2, caus-
ing its concentration into P-bodies  (87) . The opposite effect is 
observed on the phosphorylation of Ago2-conserved tyrosine 
529, which promotes diffused cytoplasmic localisation and 
impairs its granular distribution  (88) . Interestingly, this modi-
fi cation acts as a molecular switch that turns off Ago2 ’ s affi nity 

for small RNAs, thus signifi cantly modulating its activity. 
Tyrosine 529 is positioned in the small RNA 5 ′ -end binding 
pocket of the MID domain, where the addition of a negatively 
charged phosphate group may interfere with the binding of the 
negatively charged 5 ′  phosphate of the small RNA. 

 Subcellular localisation of Ago proteins, as well as miRNA 
silencing, is also regulated by polyADP-ribosylation  (89) . All 
mammalian Ago proteins are targets of both poly(ADP)-ri-
bose polymerases and of their counterpart, poly(ADP-ribose) 
glycohydrolase. Interestingly, both poly(ADP)-ribose poly-
merase overexpression and poly(ADP) hydrolysing enzyme 
downregulation induce stress granule assembly and alleviate 
miRNA silencing. Conversely, stress conditions elicit strong 
poly(ADP)-ribosylation of Ago2 and again inhibition of 
miRNA-mediated silencing. Stress conditions may lead to an 
increase in poly(ADP)-ribose polymerases activity and/or a 
decrease in poly(ADP) hydrolysing enzyme activity. Either 
way, the end result is an increase in poly(ADP)-ribosylation 
of Ago and possibly a decrease in affi nity for their target 
mRNAs or RISC-associated factors. This bulky modifi cation 
may actually sterically interfere with RISC complex integrity. 
Alternatively, the negatively charged poly(ADP)-polymers 
might disrupt the electrostatic equilibrium of the silencing 
complex. As we describe later on, Argonaute has also been 
shown to induce chromatin modifi cations. As Poly(ADP)-
ribosylation is critical in the modulation of chromatin remod-
elling complexes  (90) , it might well be that both cytoplasmic 
and nuclear functions of Argonaute are controlled by this 
post-translational modifi cation. 

 Lastly, Argonate is ubiquitinated by several E3 ubiquitin 
ligases and targeted to proteasomal degradation. In mouse 
embryonic stem cells, overexpression of the E3 ubiquitin 
ligase mLin41 reduces Ago2 levels and inhibits miRNA-de-
pendent silencing, whereas downregulation has the opposite 
effect. Conversely, mLin41 is target of the let-7 miRNA, and 
this reciprocal regulation constitutes an elegant feed-forward 
circuit: let-7 reduces mLin41 expression, thereby enhancing 
Ago2/miRNAs-dependent gene silencing, while mLin41 atten-
uates miRNA silencing and reinforces its own expression  (91) .  

  Argonautes in the nucleus 

 In mammals, all four Ago proteins localise to both the cyto-
plasm and the nucleus  (92) . Initial evidence indicating a poten-
tial nuclear role of Argonautes was obtained by transfecting 
mammalian cell lines with exogenous siRNAs complementary 
to promoter sequences. This artifi cial targeting resulted in the 
silencing of the gene and, depending on the study, it required 
either Ago1 or Ago2  (93 – 97) . Most reports on siRNA-
mediated transcriptional gene silencing (TGS) ascribe it to 
siRNA-induced epigenetic modifi cations of histones ’  lysines 
(H3K9me2 and H3K27me3), while ruling out CpG DNA 
methylation  (94 – 96) . However, Napoli et al.  (97)  found that 
siRNAs targeting promoter regions interfere with the assem-
bly of the polymerase II pre-initiation complex, while observ-
ing no epigenetic effects. Lastly, another report indicates 
CpG DNA methylation as the silencing pathway involved 
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in siRNA-mediated TGS  (98) . However contradictory, these 
studies have prompted further analyses to test whether arti-
fi cially induced TGS is indicative of an endogenous path-
way involving nuclear small RNAs. Supporting this idea are 
computational analyses and the miRNA-promoter interaction 
resource database, which have identifi ed multiple endogenous 
miRNA target sites within promoter regions  (99, 100) . Indeed, 
several studies have now confi rmed that miRNAs act at the 
nuclear level to silence the transcription of target genes, albeit 
via different proposed mechanisms  (99, 101 – 104) . The cur-
rent model is that miRNAs are recruited onto target promoters 
by pairing to nascent non-coding RNA transcribed from the 
promoter region (Figure  2  ). This is indeed an experimentally 
proven model also in yeast  (105) . In mammals, miRNA-di-
rected TGS depends on the formation of protein complexes 
that include Argonaute proteins, transcription factors and DNA 
and chromatin-modifying enzymes. Thus, miRNAs bound to 
nascent RNAs in the promoter region are thought to facilitate 
the binding of these inhibitory complexes onto the promoter. 

 As with exogenous siRNAs, it is unclear whether miRNA-
directed transcriptional silencing depends primarily on his-
tone modifi cation, CpG methylation or interference with PolII 
assembly. There is controversy also on the role played by 
Ago1 and Ago2 in this silencing mechanism. In multiple stud-
ies, miRNA-mediated TGS is Ago1 dependent. Furthermore, 

Ago1 is a good candidate as an effector protein in TGS as it 
interacts with Polycomb proteins such as the histone-lysine 
 N -methyltransferase EZH2  (99, 102, 104, 106) . However, 
Younger and Corey  (103)  recently characterised an Ago2-
dependent TGS mechanism in breast cancer cells. They found 
that the progesteron receptor gene promoter is silenced by 
four miRNAs, including miR-423-5p, which recognise a long 
ncRNA resulting from divergent transcription of the promoter 
region. They also showed that Ago2 is required for this miRNA-
dependent silencing, which is achieved by histone H3 methyla-
tion and reduced recruitment of RNA Pol II. Curiously, when 
analysing the degree of base pairing between miRNAs and 
their targeted promoters, it seems that miRNA-TGS requires 
Ago2 in the case of imperfect complementarity, while Ago1 is 
involved when base pairing is extensive  (99, 102, 103) . 

 Induction of heterochromatic modifi cations by miRNAs 
has been recently described by Zardo et al.  (104)  as a key 
element in the terminal granulocytic commitment of myeloid 
progenitor cells. The authors have shown that this critical step 
is induced by miR-223, which induces TGS of the NFI-A tran-
scription factor  (104, 107) . NFI-A promoter has a bivalent 
chromatin structure characterised by both euchromatic and het-
erochromatic histone modifi cations. Upon induction of granu-
locytic differentiation, miR-223 associates with Ago1, Dicer 
and Polycomb proteins and switches off NFI-A transcription 
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 Figure 2    Proposed models of Ago roles in the nucleus. 
 Argonaute-bound small RNAs interfere with transcription by base pairing with nascent non-coding transcripts at the promoter level. Argonaute 
proteins recruit DNA methyltrasferases (DNMTs) and/or histone methyltransferases (HMTs), thus modifying the local heterochromatic state. 
In mammals, both Ago1 and Ago2 seem to be involved in chromatin remodelling. In a separate pathway, upon DNA damage, small RNAs are 
produced from the site. Ago2 bound to these small RNAs then recruits the DNA repair machinery to the damaged sequences.    
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by inducing the heterochromatic state of the promoter, thus 
resolving its bivalent chromatin character. Confocal micros-
copy analyses carried out on mitotic cells suggest that miR-
223 directly interacts with native chromatin. This interaction 
occurs via two evolutionarily conserved sequences close to the 
NFI-A transcription start site, which are complementary to the 
seed region of miR-223. In another study, Argonaute and miR-
NAs were also shown to induce gene expression by recruiting 
RNA Pol II at targeted gene promoters  (101) . 

 Recent developments in genome-wide and transcrip-
tome-wide sequencing approaches led to a major shift in 
our perception of gene regulation and small RNAs ’  func-
tions. By adopting these techniques, a vast number of novel 
classes of small- and long ncRNAs have been unveiled, 
representing the majority of transcribed RNA species in the 
cell  (3) . Several of these ncRNAs are devoted to regulat-
ing transcription by targeting either promoter (promoter-
associated small RNAs) or enhancer regions (eRNAs). 
While often their biogenesis seems to be the result of 
divergent or bi-directional RNA Pol II transcription, their 
mode of action and  trans -acting factors are almost entirely 
unknown. Interestingly, a recent deep-sequencing analysis 
of mammalian Argonaute-associated small RNAs shows 
that Agos bind to many non-miRNA classes of RNAs, 
including nuclear-localised snRNAs and nucleolar snoR-
NAs. The authors also observed a signifi cant enrichment in 
small RNAs overlapping promoter regions associated with 
Argonaute proteins. Thus, at least a fraction of the recently 
identifi ed promoter-associated small RNAs may function 
through interaction with Ago proteins  (108) . 

 Argonaute ’ s ability to recruit chromatin remodelling 
enzymes might also be involved in alternative splicing in 
human cells. Transfection of endogenous siRNAs comple-
mentary to sequences near an alternative exon was shown 
to affect alternative splicing of the mRNA. Two studies 
performed on this subject reached opposite conclusions on 
the involvement of Ago1 vs. Ago2 in this modulation  (109, 
110) . The  ‘ modus operandi ’  of Ago1 in controlling alterna-
tive splicing might be the same used in TGS; pairing between 
the siRNA and the nascent transcript mediates binding of 
chromatin-modifying complexes, thus inducing epigenetic 
modifi cations of the target gene. These modifi cations can lead 
to a reduction in the processivity of Pol II elongation  (109) , 
which, in turn, can result in a higher inclusion of alternative 
exons. Indeed, siRNAs induce exon inclusion when the tran-
scription of a reporter is activated by Sp1, a transactivator that 
supports initiation, but not when VP16, promoting both initia-
tion and elongation, is used. Differently, Ago2-mediated exon 
skipping seems to be independent from both heterochromatic 
modifi cations and the slicer activity of Ago2  (110) . 

 Argonaute ’ s roles within the nucleus might expand to 
include an involvement in DNA damage responses. In plants, 
preliminary data suggest that RNA molecules are transcribed 
from DNA at the damaged locus and converted into dsRNAs. 
These duplexes are then processed by Dicer to double-strand 
break-induced RNAs, which lead Ago2 and DNA repair pro-
teins on the injured DNA  (42)  (Figure 2). This model fi nds 
support also in  N. crassa , in which small RNAs originated 

by rDNA repetitive loci are associated with QDE-2 protein 
after DNA injuries  (111) . Moreover, knockdown of Dicer and 
Ago2 in HeLa cells reduced DNA repair, suggesting a not 
well defi ned yet conserved function of Argonaute and small 
RNAs in this process  (42) .  

  Argonaute ’ s roles in miRNA-induced repression 

 The primary role of mammalian Argonaute is to induce silenc-
ing of miRNA-bound mRNAs, interfering with their transla-
tion and stability  (1, 112) . A large number of studies aimed 
at understanding the mechanism of miRNA-mediated repres-
sion have led to contradictory results, opening the debate on 
whether silencing of the target mRNA is achieved primarily 
via mRNA degradation or translational repression, and which 
step of translation is inhibited. Adding to the complexity of 
this issue, some miRNAs were also shown to activate rather 
than inhibit mRNA translation  (113 – 115) . Here, we briefl y 
overview different proposed models of miRNA mode of 
action, focusing on roles played by Argonaute proteins and 
their interactors. 

 Initially, studies in C.  elegans  suggested that miRNA 
function is directed at inhibiting translation, leaving target 
mRNA stability generally unperturbed  (116) . Polysomal 
sedimentation analyses of lin-14 and lin-28 mRNAs revealed 
that while lin-4 inhibits their translation, they remain none-
theless associated with translating polysomes. This evidence 
suggested that the translation of miRNA targets is inhibited 
at a post-initiation step  (116, 117) . Other studies in mam-
malian cells also report the co-sedimentation of repressed 
mRNAs, as well as of Ago proteins and some miRNAs, 
with polysomal fractions, corroborating the idea that miR-
NAs act to block translation after initiation has occurred 
 (118 – 122) . It has been proposed that miRNAs block trans-
lation during elongation, either inducing ribosome drop-
off  (122)  or eliciting degradation of nascent polypeptides 
 (121) . However, there is little experimental data to clarify 
the molecular mechanisms underlying the models proposed. 
A recent analysis of Ago ’ s interacting proteins may sug-
gest a potential explanation  (123) . Friend et al.  (123)  found 
that both nematode and mammalian Ago proteins form an 
inhibitory complex with Pumilio/FBF (PUF) and eEIF1A. 
Puf proteins modulate mRNA expression by recruiting the 
CCR4-NOT deadenylase, thereby reducing mRNA stability 
and repressing translation. eEIF1A is a GTPase essential for 
translational elongation, and its activity is inhibited by the 
formation of the ternary Ago-Puf-eEIF1A complex  in vitro . 
In addition, Puf mutants that are unable to form this complex 
lose the ability to repress the translation of reporter mRNAs 
harbouring Puf-binding sites in their 3 ′  UTR. The authors 
also examined polysome profi les and ribosomal footprints, 
showing that translational inhibition by the ternary com-
plex likely occurs after translation initiation, causing elon-
gating ribosomes to stall at 100 – 140 nt downstream of the 
start codon. Interestingly, this site corresponds roughly to 
where the nascent polypeptide emerges from the ribosomal 
exit tunnel. Interaction with Puf proteins and the blockage 
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of eEIF1A GTPase activity represents a novel and intrigu-
ing mechanism in which Ago proteins may interfere with 
translational elongation. However, there is yet no indica-
tion that this mechanism involves miRNAs or that miRNAs 
mediate translational repression via this pathway. Thus, the 
mechanistic details of a potential post-initiation model for 
miRNA-mediated translation repression remain unresolved. 

 Increasing experimental evidence suggests instead that 
miRISC complexes inhibit translation at an early step, inter-
fering concomitantly with cap-dependent translation initiation 
and mRNA stabilisation. Contrary to the studies mentioned 
above, analyses of polysome profi les performed in C.  ele-
gans  and in mammalian cells revealed that both endogenous 
and exogenous mRNAs targeted by miRNAs are not asso-
ciated with polysomes; rather, they shift to lighter fractions 
containing few ribosomes or messenger ribonucleoprotein 
particles  (124 – 127) . Furthermore, several studies tested the 
involvement of cap-dependent translation initiation in miR-
NA-mediated silencing. Substituting the m7G cap with the 
non-functional analogue ApppG cap at the 5 ′  end of target 
mRNAs signifi cantly relieves miRNA-mediated repression 
 (127, 128) . Consistently, mRNAs harbouring IRES that par-
tially or completely bypass cap-dependent translation initia-
tion are refractory to miRNA-mediated silencing  (127 – 130) . 
Interestingly, Walters et al.  (131)  found that susceptibility of 
IRES-containing mRNAs to miRNAs is rescued when both the 
m7G cap structure and the polyA tail are present. Altogether, 
these observations indicate that effi cient inhibition by miRISC 
requires a functional cap structure and a polyA tail and that 
miRNAs likely act by interfering with eIF4E function. This 
interference could be achieved via direct interaction between 
miRISCs with the cap structure. While initially it was sug-
gested that human Ago2 could interact with the cap via an 
eIF4E-like domain, this idea was then brought into question 
by two independent studies  (132, 133) . Yet again, an  in vitro  
biochemical study found that Argonaute proteins involved in 
translational repression, like hAgo1-4, display potential cap-
binding activity albeit not via an eIF4E-like domain  (57) . 
However, a recent crystallographic and NMR analysis ques-
tions this fi nding, showing that hAgo2 does not bind signifi -
cantly or specifi cally to cap analogues  (134) . Thus, a model 
of direct and competitive interaction of miRISC with the cap 
structure remains controversial. 

 Direct interaction between the cap-binding complex eiF4F 
and Ago proteins has also been proposed as a mechanism of 
interference with translation initiation. Increasing concentra-
tions of purifi ed eIF4F to an  in vitro  reconstituted translational 
system suppress miRNA-mediated silencing  (128) , suggesting 
that micro ribonucleoprotein particles may be able to interact 
and sequester cap-binding complexes. Moreover,  Drosophila  
dAgo2 proteins were found to directly interact with eIF4E 
 (135) , possibly competing with eIF4G for binding. However, 
this interaction is not conserved, as mammalian Ago2 does 
not bind eIF4E  (136) . In addition, this hypothesis would be 
in contrast with the fi nding that in HeLa cells direct tethering 
of eIF4E or eIF4G to the 5 ′  UTR promotes translation of the 
downstream reporter mRNA regardless of let-7 binding in its 
3 ′  UTR  (127) . Overall, while a plethora of data indicates that 

miRISC interferes with cap-binding complex function, the 
underlying mechanism is still unresolved. Other studies have 
also proposed that miRNAs inhibit 80S complex assembly, a 
step that occurs on scanning of the 5 ′  UTR and recognition of 
the fi rst AUG codon  (112) . 

 An important aspect of miRNA-mediated repression of 
translation is the tightly coupled enhancement of target mRNA 
deadenylation and degradation. Indeed, while initial reports 
suggested that miRNAs elicit very little, if any, mRNA desta-
bilisation  (116, 137) , it has become clear that target degrada-
tion is crucial to miRNA-mediated silencing  (1) . 

 High-throughput proteomic approaches were recently 
used to quantitatively compare changes in protein versus 
mRNA levels, on transfection or depletion of individual 
miRNAs  (138, 139) . Two studies found that miRNAs inhibit 
target gene expression only modestly and that mRNA deg-
radation accounts for most of the regulation. Subsequently, 
Hendrickson et al.  (140)  developed a method based on DNA 
microarrays to assess mRNA abundance, ribosome occupancy 
and ribosome density of hundreds of genes targeted by human 
miR-124 in HEK-293T cells. This study also found a close 
correlation between the decrease in target mRNA levels and 
the translational rate, with mRNA destabilization accounting 
for approximately75 %  of the change in protein synthesis. 

 Amongst numerous reports indicating the importance of 
mRNA degradation in the silencing cascade induced by miR-
NAs, a seminal study was carried out by the Bartel group, 
which adopted a recently developed ribosome profi ling 
technique  (141) . This method is based on deep sequencing 
of ribosome-protected mRNA fragments, thus resolving the 
exact position and density of ribosomes on cellular mRNAs. 
The analysis was performed in HeLa cells transfected with 
miR-1 or miR-155 and in mouse neutrophils in which miR-
223 was knocked out. Similarly to Hendrickson et al., the 
results of this analysis indicate that in mammalian cells, miR-
NA-mediated silencing is predominantly (84 % ) accounted 
for by mRNA destabilisation. 

 Once assessed that mRNA degradation plays a critical 
role in miRNA-mediated silencing, the debate has shifted to 
whether miRISC association simultaneously triggers mRNA 
deadenylation and translational repression, or whether one 
precedes the other. This debate is a hard one to solve as the 
two processes are tightly coupled in the cell and many factors 
involved in mRNA deadenylation also exert an inhibitory role 
in translation initiation. This coupling is due to the circulari-
sation of the mRNA, mediated by the interaction between the 
PolyA binding protein (PABP) and eIF4G bound to the cap 
complex. This interaction is crucial to reinforce stability of 
the mRNA, to 40S ribosomal subunit recruitment and to 80S 
complex formation during translation initiation  (112) . 

 It has been observed that mRNAs targeted by miRNAs do 
not need to be translationally competent for deadenylation to 
occur, suggesting that this process is translation independent 
 (130, 136, 142) . However, prior to deadenylation, the interac-
tion between eIF4G and PABP needs to be disrupted in an 
 in vitro  assay  (136) , suggesting that translational inhibition 
may be nonetheless a prerequisite for deadenylation and sub-
sequent mRNA decay. 
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 In keeping with this result are two important studies 
recently published in the same issue of  Science . Bazzini et al. 
 (143)  replicated the ribosome profi ling approach utilised by 
the Bartel group to monitor mRNA levels and ribosome occu-
pancy of endogenous miR-430 mRNA targets in zebrafi sh 
during embryogenesis. Soon after fertilisation, zebrafi sh 
zygotes express miR-430 to elicit clearance of maternal 
mRNAs. By comparing ribosome profi les of wild-type and 
Dicer mutants, at stages that precede or follow miR-430 
expression, the authors can fi nely and dynamically dissect  in 
vivo  when translational repression and mRNA decay begin 
to exert their effects. At 4 h post-fertilisation, just as miR430 
appears, they observe an initial reduction in ribosome-pro-
tected fragments of maternal mRNAs without a correspond-
ing decrease in mRNA levels, indicating that in this system 
translational repression precedes deadenylation. Indeed, at 
4 h post-fertilisation, endogenous targets of mir430 are still 
polyadenylated. Interestingly, only 2 h later, the decreased 
levels in ribosome-protected fragments coincide with low-
ered mRNA levels, suggesting that subsequent to the onset 
of miRNA-mediated translational repression, mRNA decay 
becomes primarily responsible for silencing. In comparison, 
the ribosome profi le analyses carried out by the Bartel group 
in mammalian cells were performed at 12 h post-transfection 
as the earliest time point, potentially failing to detect an early 
contribution of translational repression. 

 Consistent with translational repression occurring prior to 
deadenylation are the fi ndings by Djuranovic et al.  (144)  in 
 Drosophila  S2 cells. They devised a luciferase-based reporter 
assay under inducible Metallothionein promoter to test the 
effects of both endogenous and exogenous miRNAs. Upon 
pulse induction by copper, the levels of protein output, total 
mRNA and polyadenylated mRNAs were monitored for both 
targeted and non-targeted constructs. In addition, the authors 
assay polyA length and the repression exerted by miRNAs 
on non-polyadenylated constructs. The verdict is clear: simi-
larly to the conclusions drawn by Bazzini et al., miRNAs in 
 Drosophila  S2 cells act fi rst by inhibiting translation, inde-
pendently of deadenylation, and subsequently elicit dead-
enylation and decay. Moreover, the insertion of a natural 
elongation stall signal in the vicinity of the start codon allows 
them to determine that translation is inhibited during initia-
tion or early elongation phases, as also observed by Bazzini 
et al. and the Bartel group. 

 It remains to be seen whether translational repression can 
occur independently of deadenylation in mammalian cells and 
whether miRNAs act by mechanisms that differ signifi cantly 
depending on the 3 ′  UTR context. Other proteins bound to the 
3 ′  UTR and/or interacting with Ago proteins are in fact known 
to modulate miRISC ’ s mode of action  (112) . Indeed, the com-
plex array of RISC interactions with factors modulating mRNA 
stability and translation is starting to explain the molecular 
mechanisms underlying miRNA-mediated silencing. 

 A key mediator in the silencing pathway triggered by miR-
NAs in animal cells is the GW182/TNRC6 protein, recruited 
by Ago and acting downstream of it, as an effector of both 
mRNA decay and translational inhibition  (1, 112, 145) . 
GW182/TNRC6 interacts with the AGO MID/PIWI domain 

via multiple glycine-tryptophan repeats (GW repeats) in its 
N-terminal region  (132, 146, 147) . This interaction is essen-
tial to miRNAs ’  function, as overexpression of a peptide 
encompassing GW182 N-terminal domain competes with 
endogenous GW182 binding to AGO and inhibits miRNA-
mediated decay and tranlational repression of target mRNAs 
 (132, 136, 147, 148) . The C-terminal region of GW182 is 
considered the silencing domain as this domain alone is able 
to induce mRNA decay and translational inhibition of reporter 
constructs when tethered to their 3 ′  UTR  (149, 150) . This 
and other observations show that GW182, when tethered to 
mRNAs, can recapitulate miRISC repressive functions inde-
pendently of AGO proteins, indicating that it is indispensable 
for miRNA function and that AGOs act by recruiting GW182 
to the target mRNAs. 

 The question then becomes: how does GW182 elicit dead-
enylation and translational repression ?  

 Mammalian and fl y GW182 have been shown to bind 
directly to PABP through a PAM2 domain (PABP-interacting 
motif) located in their silencing domain  (65, 136, 151, 152) . 
Via this interaction, GW182 proteins have been proposed to 
induce the dissociation of PABP from the mRNA polyA tail, 
thus rendering it susceptible to deadenylases. 

 Recent studies, however, point in a different direction, one 
where deadenylases are directly recruited by GW182 to the tar-
get mRNA. At the end of 2011, three independent reports were 
published showing that human and  Drosophila  GW182 directly 
recruit CNOT1, a component of the cytoplasmic CCR4-NOT 
deadenylase complex, facilitating assembly of this complex onto 
targeted mRNAs  (153 – 155) . This interaction occurs via GW 
repeats (and other tryptophan-Gly/Ser/Thr repeats) dispersed 
both in the C- and N-terminal domains of GW182. Tethering 
of these GW motifs, even within a heterologous yeast protein, 
results in CCR4-NOT recruitment and silencing or the reporter 
mRNA  (154) . This and other tethering experiments presented in 
the three studies show that CCR4-NOT deadenylation complex 
is an effector of miRISC in repressing target mRNA expres-
sion, acting downstream not only of AGOs but also of GW182 
(Figure  3  ). Interestingly, CCR4-NOT recruitment explains not 
only the mechanism underlying miRNA-mediated deadenyla-
tion but also the concomitant translational repression. Indeed, 
CCR4-NOT was able to repress the expression of reporters 
even when tethered to mRNAs lacking polyA tails  (153 – 155) . 
This observation is consistent with data recently obtained in 
 Xenopous laevis  showing that tethering of CCR4-NOT to 
mRNAs microinjected in the oocyte represses translation at the 
initiation step  (156) . Overall, in light of all the discrepancies 
and contradictory observations regarding whether translation 
or mRNA decay is primarily responsible for miRNA-mediated 
silencing, the role played by the CCR4-NOT complex in trig-
gering both pathways might end up representing a fascinating 
and unifying solution.  

  Concluding remarks 

   Argonaute proteins translate small RNA binding to a target 
into action. Bound small RNAs guide Argonaute proteins 
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cell. Indeed, in the nucleus Argonaute proteins seem to exert 
their function on transcription and on splicing by  recruiting 
chromatin remodeling enzymes onto target genes. On the 
other hand, in the cytoplasm, Argonaute proteins affect target 
mRNA stability and translation by interacting with GW182, 
which in turn recruits the CCR4-NOT deadenylase complex. 
Thus, compartmentalization and affi nity to binding part-
ners are crucial in determining the regulatory effects initi-
ated by Argonaute-bound small RNAs on their target genes. 
Raising further the complexity of this fascinating cascade are 
Argonaute post-translation modifi cations which signifi cantly 
affect their function by altering their subcellular localization, 
half life and affi nity to small RNAs.

Another promising fi eld that needs to be further explored, 
is the likely involvement of Argonaute in the expanding terri-
tory of non-coding RNAs, as these molecules appear to be a 
major regulatory tool of gene expression.
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onto complementary sequences of target RNAs, regulating 
the expression levels of a wide variety of genes and in a com-
plex array of different pathways. Argonaute ancestral role 
was to counteract the action of invading nucleic acids in order 
to defend genome integrity.

Subsequent duplication and divergence of Argonautes 
genes resulted in the development of new key functions for 
these proteins in diverse contexts such as cell cycle control, 
development and metabolism. Argonaute binding to a tar-
get can lead to different regulatory outcomes, ranging from 
modulation of transcriptional rates or mRNA splicing in 
the nucleus, to alteration of mRNA stability and translation 
effi ciency in the cytoplasm. What elements turn Argonaute 
into proteins so versatile to infl uence such diverse pathways 
are still not fully understood. Their subcellular localization, 
post-translational modifi cations and binding partners are 
likely responsible of shaping their functions throughout the 
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