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Abstract

It is well known from the seminal paper by Fujita [22] for 1 < p < p0, and Hayakawa [36]
for the critical case p = p0, that all the solutions u ≥ 0 of the semilinear heat equation

ut = Δu + |u|p−1u in RN × R+, in the range 1 < p ≤ p0 = 1 + 2
N , (0.1)

with arbitrary initial data u0(x) ≥ 0, � 0, blow-up in finite time, while for p > p0 there
exists a class of sufficiently “small” global in time solutions. This fundamental result from
the 1960-70s (see also [39] for related contributions), was a cornerstone of further active
blow-up research. Nowadays, similar Fujita-type critical exponents p0, as important char-
acteristics of stability, unstability, and blow-up of solutions, have been calculated for vari-
ous nonlinear PDEs. The above blow-up conclusion does not include solutions of changing
sign, so some of them may remain global even for p ≤ p0. Our goal is a thorough de-
scription of blow-up and global in time oscillatory solutions in the subcritical range in (0.1)
on the basis of various analytic methods including nonlinear capacity, variational, cate-
gory, fibering, and invariant manifold techniques. Two countable sets of global solutions
of changing sign are shown to exist. Most of them are not radially symmetric in any di-
mension N ≥ 2 (previously, only radial such solutions in RN or in the unit ball B1 ⊂ RN

were mostly studied). A countable sequence of critical exponents, at which the whole set
of global solutions changes its structure, is detected: pl = 1 + 2

N+l , l = 0, 1, 2, ... .. See
[47, 48] for earlier interesting contributions on sign changing solutions.

2010 AMS Subject Classification: 35J85, 49J40, 58E05.
Key words. Semilinear heat equations with source, global and blow-up sign-changing solutions, subcritical Fujita range, nonlinear capacity,

variational theory, category, bifurcation branches.

1 Introduction

1.1 Semilinear heat equation: classics and new trends

The celebrated results by Fujita [22] for 1 < p < p0, and Hayakawa [36] for the critical case p = p0

and N = 1, 2, has opened a new paradigm in the study of blow-up theories of different kinds of
partial differential equations and systems.

In the last fifty years those results were later extended in several ways to various semilinear and
quasilinear PDEs (see a list of monographs to be given below shortly). Fujita and Hayakawa were
the first, who established existence of a very special critical exponent

p = p0 = 1 + 2
N (1.1)

for the semilinear heat equation

ut = Δu + |u|p−1u in RN × R+, p > 1; u(x, 0) = u0(x) in RN , (1.2)

where data u0 ∈ L1 ∩ L∞ are typically, and for simplicity, assumed to decay exponentially fast at
infinity. Namely:
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Sign-changing solutions of a semilinear heat equation 3

(I) in the subcritical range

1 < p ≤ p0 = 1 + 2
N , (1.3)

all the nontrivial nonnegative solutions (for data u0 ≥ 0) blow-up in finite time, while

(II) for p > p0, there exists a class of “small” global nonnegative solutions.

These two results, (I) and (II), serve as the definition of the first critical Fujita exponent p0

for the PDE (1.2). This fundamental result from the 1960-70s initiated a deep research of blow-
up solutions and general stability issues for various nonlinear evolution PDEs. Up to now, similar
Fujita-type critical exponents p0, as important characteristics of stability, unstability of the origin
u = 0, and blow-up of solutions, have been calculated for dozens of various semilinear, quasilinear,
and even sometimes fully nonlinear PDEs of the second and higher-order parabolic, hyperbolic,
and for Schrödinger-type equations and systems. Such blow-up results have been reflected in detail
in a number of monographs devoted to blow-up theory for nonlinear evolution PDEs, embracing
a wide range of various nonlinear evolution models. We list a few well-known monographs and
contributions from the 1980s and later periods up to 2007, [3, 25, 32, 46, 47, 48, 49, 53, 56, 58],
where the history, key references, and further extensions can be found.

The first blow-up conclusion (I) in the parameter range (1.3) does not include solutions of chang-
ing sign, so some of them may remain global. For sign changing solutions, proving blow-up in the
range (1.3) can be rather tricky, as the recent results in [7]–[11] and [2] show. Actually, these pa-
pers attracted our attention to the problem of existence of global solutions of (1.2) in the subcritical
range (1.3), though we are going to use different approaches to this problem. In particular, we plan
to attack the Cauchy problem not in a ball or in a bounded domain as in the most of previous papers.

The Cauchy problem in RN × R+ leads to different rescaled equations and requires different
variational and invariant manifold techniques to detect the corresponding countable families of sign-
changing global solutions.

Overall, it is not an exaggeration to say that the recent new results in [7]–[11], [2], (see also [47,
48]) and [52]) on oscillatory solutions revived an extra new interest to blow-up/global phenomena
in the classic semilinear models from 1960s after more than forty years of very intensive research
in this important nonlinear PDE area. However, nowadays, these require more powerful techniques
to describe structures of such blow-up and global solutions of changing sign, which was not done
before, and, especially, in the Cauchy problem.

Intuitively, it is clear that, if a sign changing solution of (1.2) contains an essentially “dominant”
positive (or negative) part, then such a solution must blow-up in finite time, since the remaining
sufficiently small negative (positive) part would play no role as t → T−. However, a full proof
of such a result by standard blow-up approaches is indeed difficult. The main problem of concern
is to describe the precise balance between the negative and positive parts of the solutions under
consideration that prevents blow-up. This inevitably generates the question of a description of global
solutions in the range in (1.3), as a natural complement of the study of blow-up solutions.
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1.2 Layout for the semilinear heat equation

Our paper is organized as follows. Sections 2–4 are devoted to a classification of global solutions,
where we construct two countable families of global self-similar solutions of changing sign. It
turns out that most of them are not radially symmetric in any dimensions N ≥ 2. It is worth
mentioning that almost all of previous studies of such parabolic blow-up problems were dealt with
radial solutions either in RN or in a ball B1 ⊂ RN ; see [7, 8, 11, 35, 60, 61].

Here the study is done by various analytic methods including variational, category, and fibering
approaches. In particular, a countable sequence of critical values is detected:

pl = 1 + 2
N+l , l = 0, 1, 2, ... , (1.4)

so that Fujita’s exponent p0 is just the first one in this sequence. See the earlier interesting contribu-
tions [47, 48] on sign-changing solutions where 1.4 play a crucial role.

These critical exponents occur while using classical Hermitian spectral theory. Indeed, where,
locally, the rescaled spatial structure of sign changing solutions well corresponds to classic arbitrary
Hermite polynomials in RN .

In Section 5, we present a linearization technique associated with invariant manifold theory
for revealing another countable subset of global patterns, which are not self-similar and are called
linearized ones. It turns out that, at the critical values (1.4), the overall structure of the whole set of
global solutions essentially changes and some global patterns of these two families are interchanged.

1.3 Towards extensions to higher-order reaction-diffusion models

Such extensions to higher-order models are principal in modern nonlinear PDE theory, so we now
briefly stress attention on our future work. Namely, in [30], we show that some analogous (but
somehow weaker) nonlinear phenomena can be revealed for the 2mth-order semilinear heat equation
for m ≥ 2,

ut = −(−Δ)mu + |u|p in RN × R+, in the range 1 < p ≤ p0 = 1 + 2m
N . (1.5)

Then blow-up occurs [15] for any solutions with initial data having positive first Fourier coefficient
(see [16] for further details and [31] for an alternative proof):∫

RN
u0(x) dx > 0, (1.6)

i.e., again arbitrarily small data lead to blow-up. In [30], construction of countable sets of global
sign changing solutions is performed on the basis of bifurcation/branching analysis as well as of a
centre-stable manifold one1. Here, we apply spectral theory of related non-self-adjoint 2mth-order
operators in [16], which is available for any m = 2, 3, ... . This gives a similar sequence of critical
exponents:

pl = 1 + 2m
N+l , l = 0, 1, 2, ... . (1.7)

1For any m ≥ 2, non-variational problems occur, so that category/fibering theory is useless here.
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Sign-changing solutions of a semilinear heat equation 5

References and results for analogous global similarity solutions of a different higher-order reaction-
diffusion PDEs with a monotone nonlinearity

ut = −(−Δ)mu + |u|p−1u (m ≥ 2) (1.8)

can be found in [27]. It is remarkable (and rather surprising for us) that the bifurcation-branching
phenomena therein for (1.8) are entirely different from those for the present equation (1.5). Never-
theless, some approaches developed in [27] will be applied for (1.5) in [30].

2 Countable set of p-branches of global self-similar solutions of

(1.2): preliminaries and general strategy of research

2.1 Global similarity solutions

This is the first family of global solutions of (1.2), which we are looking at. Namely, in the range
(1.3), we consider the standard self-similar solutions defined for all t > 0:

uS (x, t) = t
− 1
p−1 f (y), y = x√

t
, (2.9)

where f solves a semilinear elliptic equation of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
A( f ) ≡ Δ f + 1

2 y · ∇ f +
1
p−1 f + | f |

p−1 f = 0 in RN ,

f (y) has exponential decay at infinity.
(2.10)

The self-similar solutions of the type (2.9) have been well known from the 1980s, [35]; see [56,
Ch. 4] for further history and results. Already in 1985, Weissler [60, 61] proved existence of a
countable set of radially symmetric similarity profiles { fl} satisfying the corresponding ODE for any
p > 1.

However, we plan to describe a much wider (and, hopefully, a whole) set of non-radial global
patterns (2.9), so we will need further developments. Let us explain the main ingredients of our
bifurcation and variational analysis of non-radial similarity profiles.

2.2 Spectral properties of a self-adjoint operator and bifurcations

We write the elliptic equation in (2.10) as follows:

A( f ) ≡ B f + c1 f + | f |p−1 f = 0, where c1 = 1
p−1 −

N
2 =

N(p0−p)
2(p−1) (2.11)

and B is the classic linear Hermite operator

B f = Δ f + 1
2 y · ∇ f +

N
2 f . (2.12)

This can be written in the symmetric form

B f ≡ 1
ρ
∇ · (ρ∇ f ) + N

2 f , where ρ(y) = e
1
4 |y|

2
. (2.13)
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B is then self-adjoint in the weighted space L2
ρ(R

N); see Birman–Solomjak [6, p. 48]. The spectrum
of B is discrete,

σ(B) =
{
λl = − l

2 , l = |β| = 0, 1, 2, ...
}
, where β is a multiindex in RN , (2.14)

and a complete and closed set of eigenfunctionsΦ = {ψβ} is associated with the Hermite polynomials
{Hβ} as follows. Denoting by

F(y) = (4π)−
N
2 e−

1
4 |y|

2
(then BF = 0) (2.15)

the rescaled profile of the fundamental solution of the linear operator Dt − Δ, we have the following
well-known generating formula of eigenfunctions:

ψβ(y) =
(−1)|β|√

β!
DβF(y) ≡ Hβ(y) e−

1
4 |y|

2
, with any |β| = l = 0, 1, 2, ... , (2.16)

where β = (β1, ..., βN), |β| = β1 + ... + βN . Note that Hermite polynomials

ψ∗
β(y) = bβHβ(y) (bβ are normalization factors)

are then eigenfunctions of the adjoint operator in the usual dual metric of L2(RN):

B∗ = Δ − 1
2 y · ∇;

see [18]. Later on, 〈·, ·〉 will denote the L2-metric, while 〈·, ·〉ρ the weighted L2
ρ-one. Therefore, the

orthonormality condition reads: for any σ, γ,

〈ψβ, ψ∗
σ〉 ≡ 〈ψβ, ψσ〉ρ = δβσ, where δβσ is Kronecker’s delta. (2.17)

2.3 Bifurcations, p-branches, and local structure of solutions

Bifurcation results are next applied to revealing all possible similarity profiles of the problem. In
Section 3, we apply classic bifurcation theory [40, 41, 59] to the equation (2.11) looking for small
solutions bifurcating from the origin f = 0. It follows from (2.11) that the only possible bifurcation
points may occur if B + c1I has a non-trivial kernel, i.e., by (2.14), when

c1 = −λl =⇒ p = pl = 1 + 2
N+l , l = 0, 1, 2, ... , (2.18)

so this is how the all the critical exponents (1.4) are revealed. Since A is a potential operator, each
p = pl becomes an actual bifurcation point of global similarity profiles fl, [40, p. 332]. For any
l = 0, 1, 2, ..., by Φl = { fσ}|σ|=l, with a suitable multiindex σ, we denote the corresponding finite
subset of different (up to scalings and rotations or other standard orthogonal changes in RN) patterns
corresponding to the eigenvalue λl = − l

2 .
Finally, we rely on the classic fact [14, p. 412] that, for odd higher-order nonlinear perturbations

as in (2.11), the number of different bifurcation branches originated at p = pl from f = 0 is not less
than the geometric multiplicity of the corresponding eigenvalue λ = λl. This defines the overall mul-
tiplicity of bifurcation branches. As usual in branching theory (see e.g., a general characterization
in [59, p. 329]), the critical points (functions), from which the branches of global similarity profiles
are originated at p = pl, are detected from the nonlinear algebraic Lyapunov–Schmidt equation, to
be discussed as well on the basis of category theory.
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Sign-changing solutions of a semilinear heat equation 7

2.4 Variational setting: global p-branches

As a next step, we use the fact that (2.10) admits a variational setting since A is a Frechét derivative
of the following functional:

G( f ) = −
1
2

∫
ρ|∇ f |2 +

1
2(p − 1)

∫
ρ f 2 +

1
p + 1

∫
ρ| f |p+1 in H1

ρ(R
N) ∩ Lp+1ρ (RN). (2.19)

Variational approaches for functionals in weighted spaces of functions in RN go back to Kurtz [42].
Later, Weissler [61] applied the variational approach to the elliptic equation (2.10) establishing ex-
istence of a countable sequence of similarity patterns (cf. also Escobedo–Kavian [18] for an anal-
ogous elliptic problem with absorption). However, the author in [61] made a comment that he did
not know whether this variational countable sequence coincided with that obtained simultaneously
in [60] by ODE methods for radially symmetric solutions. We show that this is not the case and the
variational/fibering family of solutions of (2.10) is uncomparably wider than the ODE (radial) one.

In Section 4, we use the ideas of the fibering method [51] based on Lusternik–Schnirel’man
(L–S) category theory of calculus of variations [41] to show that there exists a countable family of
global p-bifurcation branches originated at the critical exponents p = pl, (1.4).

Thus, we begin our study of global solutions of (1.2) with bifurcation theory for (2.10).

3 Pitchfork p-bifurcations

3.1 Pitchfork bifurcations at p = pl: local existence of global similarity pro-

files

We first present a rigorous justification of bifurcation points given in (2.18).

Proposition 1 For any l = 0, 1, 2, 3, ..., the critical exponent in (2.18) is a p-bifurcation point for
the problem (2.10).

Proof. This result is standard in elliptic operator theory, where, dealing with the nonlinearity | f |p−1 f ,
in order to have a compact embedding of functional spaces involved, one should take into account
that (i) p must be always less than the Sobolev critical exponent:

1 < p < pS = N+2
N−2 , (3.20)

and also that (ii) the domain RN is unbounded. Since the weight ρ(y) is exponentially growing as
y→ ∞, the necessary compact embedding holds (see [45, p. 54, 63] and [18]):

H1
ρ(R

N) ⊂ Lp+1ρ (RN) compactly. (3.21)

Thus, consider in L2
ρ the equivalent equation

B̂ f = −(1 + c1) f − | f |p−1 f , where B̂ = B − I. (3.22)
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8 V.A. Galaktionov, E. Mitidieri, S.I. Pohozaev

The spectrum of B̂ is a translation of that of B, σ(B̂) = {−1 − l
2 }, and consists of strictly negative

eigenvalues. The inverse integral operator B̂−1 is known to be compact in L2
ρ (Theorem 2.1 (iii) in

[16]). Therefore, in the corresponding integral equation

f = Â( f ) ≡ −(1 + c1)B̂−1 f − B̂−1| f |p−1 f , (3.23)

the right-hand side contains a compact Hammerstein operator in an Lqρ(RN) space for some q ≥ 1
[40, p. 38] (see details on the resolvent of B in [5]). Bifurcations in the truncated problem (3.23)
are always guaranteed if the derivative Â′(0) = −(1 + c1)B̂−1 has the eigenvalue 1 of an odd mul-
tiplicity; see [40, p. 196]. Moreover, for potential operators, any characteristic value, regardless its
multiplicity, is a bifurcation point; see [40, p. 332]. As an alternative, we can use Ladyzhenskii’s
theorem [40, p. 34] establishing compactness in C. For exponentially decaying kernels of B̂−1, the
case of unbounded space RN can be settled by approximation via a converging in the norm sequence
of compact operators in expanding bounded domains. Note that some of the compactness conditions
in [40, Ch. 1] are directly applied to arbitrary unbounded domains in the integral operators.

Compactness of the integral operators involved with exponential kernels and weights in RN may
cause some technical difficulties, especially in the higher-order cases with m ≥ 2 [30]. Therefore, it
is more convenient to use results without compactness assumptions as in [14, p. 412], which we will
rely on later.

Thus, since σ(Â′(0)) = {(1+ c1)/(1+ l
2 )}, we arrive at the critical values (2.18). By construction,

the solutions of (3.23) for p ≈ pl are small in L2
ρ and, as is seen from the properties of the inverse

operator, in H2
ρ . Since the weight ρ(y) is a monotone exponentially growing function as |y| → ∞,

this implies that f ∈ H2
ρ is a uniformly bounded, continuous function by standard elliptic regularity

and embedding results [45] (as we have mentioned, for compactness in C, this is not necessary).
Therefore, for p ≈ pl, we have bounded, small solutions only.

3.2 Simple eigenvalues

We begin with the case of simple eigenvalues, where the calculus are rather straightforward. Actu-
ally, in the elliptic setting, this happens for l = 0 only, but, nevertheless, we perform the analysis
for any l ≥ 0 bearing in mind some possible restrictions on the geometry of eigenfunctions (e.g, this
happens for any l = 0, 1, 2, ... in the radial ODE setting). Since the nonlinear perturbation term in
the integral equation (3.23) is an odd sufficiently smooth operator, we arrive at the following result
describing the local behaviour of bifurcation branches; see [40] and [41, Ch. 8].

Proposition 2 Let λl be a simple eigenvalue of B with a given eigenfunction ψl. Then the problem
(2.10) has precisely two small solutions for p ≈ p+l , so p = pl is a supercritical pitchfork bifurcation.

Observe that the corresponding coefficient of the vector field,

κl = 〈|ψl|p−1ψl, ψl〉ρ ≡
∫

ρ|ψl|p+1 > 0 (p = pl), (3.24)

is strictly positive, so that the bifurcation is always supercritical; see calculus below.
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Sign-changing solutions of a semilinear heat equation 9

Proof. Thus, we perform the corresponding calculation assuming that λl is simple. In order to
describe the asymptotics of solutions as p → pl, we apply the Lyapunov–Schmidt method [41,
Ch. 8] to equation (3.23) with the operator Â being differentiable at 0. Since, under the assumptions
of Proposition 2, the kernel E0 = ker Â′(0) = Span {ψl} is one-dimensional, denoting by E1 the
complementary (orthogonal to ψl) invariant subspace, we set

f = F0 + F1, where F0 = εlψl ∈ E0 and F1 =
∑

(k�l) εkψk ∈ E1. (3.25)

Let P0 and P1, P0 + P1 = I, be projections onto E0 and E1 respectively. Projecting (3.23) onto E0

yields
γlεl = −〈B̂−1(| f |p−1 f ), ψl〉ρ, with γl = 1 − 1+c1

1+ l
2
=

2(N+l)s
2(p−1)(2+l) , (3.26)

where s = p − pl. By general bifurcation theory (see e.g. [41, p. 355] and [14, p. 383]; note that
operator Â′(0) is Fredholm of index zero), the equation for F1 can be solved and this gives F1 = o(εl)
as εl → 0, so that εl is calculated from the Lyapunov bifurcation equation (3.26) as follows:

γlεl = −εpl 〈B̂
−1(|ψl|p−1ψl), ψl〉ρ + o(εpl ) =⇒ |εl|p−1 = ĉl[(p − pl) + o(1)], (3.27)

where ĉl =
(l+N)2

4κl
> 0. We have performed these calculations as follows:

〈B̂−1(|ψl|p−1ψl), ψl〉ρ = 〈|ψl|p−1ψl, B̂
−1ψl〉ρ = − κl

1+ l
2
.

We have shown in (3.24) that κl > 0. Note that, in view of the orthonormality (2.17) of the eigen-
function set {ψl}, for p = 1, we have κl = 1. Indeed, the algebraic equation in (3.27) implies a typical
and standard pitchfork bifurcation structure of branches at p = p+l .

Thus, we obtain a countable sequence of bifurcation points (2.18) satisfying pl → 1+ as l → ∞,
with typical supercritical pitchfork bifurcation branches appearing in a right-hand neighbourhood of
p = pl, i.e., for p > pl. The behaviour of solutions in H2

ρ (and uniformly in RN by a standard elliptic
regularity) takes the form

fl(y) = ±
[
ĉl(p − pl)

] 1
p−1 (ψl(y) + o(1)) as p→ p+l . (3.28)

A rather slow rate of such p-bifurcation of the first similarity profile f0(y) for N = 1 as p→ p0 = 3+

is illustrated by Figure 1, where

f0(y) = ±
√
ĉ0(p − p0) (F(y) + o(1)) (with the Gaussian (2.15)).

3.3 Instability of p-branches

A linearized analysis (see some details in [26, 27]) shows that the first p0-branch is unstable for
p − p0 > 0 small in the sense of the rescaled parabolic equation

fτ = A( f ) for τ > 0. (3.29)
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Figure 1: Bifurcation of f0(y) as p→ 3+ for N = 1.

Indeed, by spectral theory, for p > p0, the zero equilibrium f = 0 becomes stable, emphasizing
existence of global small solutions in this supercritical range. For p < p0, instability of p-branches
can be associated with existence of a huge amount of blow-up solutions of (3.29). These results are
connected with the spectrum of the linearized operator in (3.29)

D0 = A′( f0) = B1 + p| f0|p−1I, (3.30)

which can be sharply estimated for p close to p0 by the above asymptotic expansion techniques.
In general, studying existence/nonexistence of turning points of such global p-branches is a

difficult problem. For a class of variational problems, nonexistence of turning points and hence
monotonicity of the branches are known [57], which also holds for ordinary differential higher-order
equations with self-adjoint positive operators of special structure of quasi-derivatives [1, 55]. We
justify the existence of global continuous branches in the next section. Similarly, all other bifurcation
pl-branches for any l ≥ 1 are shown to be unstable with respect to the rescaled evolution via (3.29).

3.4 Lyapunov–Schmidt branching equation in the general multiple case: non-

radial patterns

Let now λl = − l
2 have multiplicity m = m(l) > 1 given by the binomial coefficient

m(l) = dimWc(B − λlI) = Cl
N+l−1 =

(N+l−1)!
l!(N−1)! , so that (3.31)

E0 = ker(B − λlI) = Span{ψl1, ..., ψlm}. (3.32)

Then, similar to calculations associated with (3.25) and (3.26), looking for a solution

f = f0 + f1, with f0 = a1ψl1 + ... + amψlm, where f1⊥E0, (3.33)
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Sign-changing solutions of a semilinear heat equation 11

and substituting into the equation (3.23), multiplying by ψli, and denoting, as usual, s = p− pl ≈ 0+,
we obtain the following generating system of m algebraic equations:

ai = 4
s(N+l)2

∫
ρ|a1ψl1 + ... + amψlm|p−1(a1ψl1 + ... + amψlm)ψli ≡ Di (3.34)

for i = 1, 2, ...,m. Here p = pl. Denoting x = (a1, ..., am)T ∈ Rm, the system (3.34) is written as a
fixed point problem for the given nonlinear operator D = (D1(x), ...,Dm(x))T ,

x = D(x) in Rm. (3.35)

Above, we have studied the scalar case m = 1, which always gave a single (up to “±”) non-trivial
solution. Obviously, there are several other one-dimensional settings that lead to a scalar equation
for a single coefficient a in (3.34). However, since (3.35) admits an obvious variational setting for
the corresponding functional

H(x) = 1
p+1

4
s(N+l)2

∫
ρ|a1ψl1 + ... + amψlm|p+1 −

1
2

(a2
1 + ... + a

2
m), (3.36)

so that H′(x) = D(x) − x.
We have the following:

Proposition 3 The problem (3.35) has at least m distinct nontrivial solutions.

Proof. This follows by applying to the functional (3.36) the fibering method and using the fact that
the unit sphere in Rm has the category m, so (3.36) has at least m distinct critical values and points;
see Section 4 for details on L–S category/genus theory.

Of course, this result well corresponds to classic variational bifurcation theory [14, p. 412], so
that, at p = pl, there occur at least m = m(l) distinct pairs (with different signs, ±) of branches,
where m is the geometric multiplicity (the maximal number of linear independent eigenvectors in
ker

(
B − λlI

)
) of the eigenvalue λl = − l

2 . Note that some of these patterns may be identical up to
scaling and orthogonal (rotational) invariance.

3.5 Toward a classification of patterns and their nodal sets in R2

It follows from (3.33) that, locally, for p ≈ pl, the similarity profiles f (y) are structurally close to the
corresponding eigenfunctions of the linear operator (2.13). To verify possible shapes of such f (y),
for the case N = 2, so that the multiindex is σ = (σ1, σ2), we present the Hermite polynomials and
hence a possible classification of geometric shapes of global similarity patterns close to bifurcation
points (“∼” means equality up to a non-zero multiplier):

l = 0 : f0 ∼ ψ0 = F ∼ e−
1
4 (y21+y

2
2) (generic pattern);

l = 1 : f1,0 ∼ ψ1,0 = Dy1F ∼ y1 e−
1
4 (y21+y

2
2) (1-dipole pattern);

l = 2 : f2,0 ∼ ψ2,0 = Dy21
F ∼

(
− 1

2 y
2
1 + 1

)
e−

1
4 (y21+y

2
2),

f1,1 ∼ ψ1,1 = Dy1y2F ∼ y1y2 e−
1
4 (y21+y

2
2) (2-dipole);

(3.37)
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l = 3 : f3,0 ∼ ψ3,0 = Dy31
F ∼

( 1
4 y

3
1 −

3
2 y1

)
e−

1
4 (y21+y

2
2) (3-dipole);

f2,1 ∼ ψ2,1 = Dy21y2
F ∼

(
1 − 1

2 y
2
1
)
y2e−

1
4 (y21+y

2
2);

l = 4 : ψ4,0 ∼ Dy41
F ∼

(
− 1

8 y
4
1 +

3
2 y

2
1 −

3
2
)
e−

1
4 (y21+y

2
2),

ψ3,1 ∼ Dy31y2
F ∼

( 1
4 y

3
1 −

3
2y1

)
y2 e−

1
4 (y21+y

2
2) ((3,1)-dipole)

ψ2,2 ∼ Dy21y
2
2
F ∼

(
− 1

2y
2
1 + 1

)(
− 1

2y
2
2 + 1

)
e−

1
4 (y21+y

2
2); etc.

(3.38)

Among this abundance of patterns, there are three radial ones for even l = 0, 2, 4:

(i) the first radial one is f0 ∼ F (l = 0);

(ii) the second one is generated by a linear combination of two eigenfunctions for l = 2:

f2 ∼ ψ2,0 + ψ0,2 ∼
(
1 − 1

2 (y21 + y
2
2)
)
e−

1
4 (y21+y

2
2) ≡

(
1 − 1

2 r
2) e−

1
4 r

2
;

(iii) for l = 4, the third radial pattern has the form

f4 = ψ4,0 +
1
2 ψ2,2 + ψ0,4 =

(
− 1

8 r
4 + 5

4 r
2 − 5

2
)
e−

1
4 r

2
.

All other bifurcation linearized patterns are not radially symmetric and generate non-radial similarity
profiles at p = pl.

4 Calculating global p-bifurcation branches: variational

fibering

4.1 Application of variational and category theory

We first note that global extension of bifurcation branches can be performed by classic theory [40,
41], so that, for the present potential operator (2.19), from all the bifurcation points, we obtain
bifurcation branches for p > pl for any l ≥ 0, which are globally continued in p > 1. Nevertheless,
according to global theory (see general results in [14, p. 401]), such branches are allowed to end up
at some further bifurcation points, say, at some p = p−s . This may lead to closed bifurcation branches
(loops) that actually occur in some problems including those for the semilinear heat equations with
absorption with a different choice of bifurcation parameters; see [33, § 6.4]. However, (3.28) shows
that such a subcritical bifurcation at p = p−s is not allowed, so the only way for a p-branch to be
globally non-extensible is to have a turning point or to blow-up. The latter can happen as p → p−S ,
i.e., for N ≥ 3 only.

We are now going to fully use the variational structure of the problem (2.10) and apply the
fibering method [50, 51] as a convenient generalization of previous versions [13, 54] of Lusternik–
Schnirel’man (further denoted by L–S) classic category theory [43]. Namely, by L–S theory, the
number of critical points of the functional (2.19) depends on the category (or genus) of the functional
subset on which fibering is taking place; see precise definitions and results in Berger [4, p. 378].
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Namely [50, 51], critical points of G are obtained via the radial fibering

f = r(v)v, (4.39)

where r(v) ≥ 0 is a scalar functional, and v belongs to the subset Ωp ⊂ H1
ρ(R

N) ∩ L2
ρ(R

N) given as
follows:

Ωp =
{
v ∈ H1

ρ ∩ L2
ρ :

∫
ρ|∇v|2 −

1
p − 1

∫
ρv2 = 1

}
. (4.40)

The new functional
H(r, v) = − 1

2 r
2 +

|r|p+1
p+1

∫
ρ|v|p+1 (4.41)

has the minimum point at

r̄(v) =
(∫

ρ|v|p+1
)− 1

p−1 , at which H(r̄(v), v) = −
p − 1

2(p + 1)
r̄2(v).

Therefore, introducing the new simpler functional

H̃(v) = [−H(r̄(v), v)]−
p−1
2 ≡

[ 2(p+1)
p−1

] p−1
2

∫
ρ|v|p+1, (4.42)

we arrive at a homogeneous non-negative convex and uniformly differentiable functional, to which
classic L-S theory applies, [41]; see also [14, p. 353]. Existence of critical points is guaranteed
by the compact embedding (3.21) under the hypothesis (3.20). As in [4, § 6.7], the number of the
critical points of H̃ on Ωp is associated with the category of Ωp. It follows from (4.40) that the
category of Ωp is equal to the total multiplicity of all the eigenvalues λl = − l

2 of the operator (2.12)
that satisfy

−λl = l
2 > c1 =

1
p−1 −

N
2 . (4.43)

Notice that the equality in (4.43) leads to the critical exponents as in (2.18). Obviously, (4.43)
implies that

catΩp = +∞ for any p > 1. (4.44)

In addition, the inequality (4.43) correctly explains that, for creating a set S k of a given category
k, only eigenfunctions ψβ with sufficiently large |β| > c1 can be used. This somehow reflects the
actual geometry of nodal sets of nonlinear eigenfunctions fl(y) and confirms the local structure of
pl-bifurcation branches from Section 2.3. Finally, the fibering method [51] (cf. another version in
[4, p. 376]) guarantees the following:

Proposition 4 For any 1 < p < pS, in view of (4.44), the functional (4.42), and hence the original
functional (2.19), has infinitely many distinct critical points in Ωp.

As usual, not all the critical points lead to essentially different solutions, which can coincide by
orthogonal transformations and other symmetries. In particular, Proposition 4 establishes a kind of
a one-to-one correspondence between infinitely many bifurcation points at the critical values (2.18)
and pl-bifurcation branches that appear at these. In other words, this once more confirms that all
pl-bifurcation branches are global in p > pl.
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14 V.A. Galaktionov, E. Mitidieri, S.I. Pohozaev

4.2 Nodal set classification of similarity profiles

Thus, for a fixed p ∈ (0, pS), we denote by S p the set of all critical points of (2.19):

S p = { fβ}|β|≥0, with critical values cβ = G( fβ) < 0; (4.45)

for G(v0) ≥ 0 there occurs blow-up in the rescaled equation, see below.
Note that {cβ} can be represented as a monotone increasing sequence of |β| and

cβ → 0− as |β| → +∞. (4.46)

We recommend [4, § 6.7C] for further details and examples of typical bifurcation diagrams with
unbounded and ordered branches; see also [57] for more recent results.

Finally, let us underline and specify some important properties of the constructed self-similar
stationary solutions:

(i) For N = 1, the set S p = { fk} satisfies the Sturmian property (a corollary of the Maximum
Principle): each profile fk(y) has precisely k zeros (sign changes) in R. Moreover, the even ones
{ f2k(y)} are even functions, while the odd ones { f2k+1(y)} are odd. The first profile f0 = f0(|y|) > 0 is
symmetric and is an unstable stationary solution of the rescaled parabolic flow (see (5.50) below).

(ii) For N ≥ 2, the L–S category construction of critical values and points makes the nodal set
of each fβ(y) more complicated as |β| increases. A simple logical characterization of such nodal sets
for general non-radial self-similar profiles fβ(y) for |β| � 1 is not easy.

For small β this can be done: e.g., f0(y) is always a positive radial solution, with an empty nodal
set (cf. (3.37)). The second dipole profile fβ1 , with, say, β1 = {1, 0, ..., 0}, has, as the nodal set, the
only hyperplane {y1 = 0} (cf. (3.37)) and can be constructed as the unique positive critical point of
the potential (2.19) in the half-space {y1 > 0} with the zero Dirichlet condition on this boundary.
Then the full resulting dipole profile is obtained by the negative reflection:

fβ1 (−y1, ...) = − fβ1 (y1, ...). (4.47)

For |β| = 2 in R2, the first pattern is radial, and has a unique nodal sphere; cf. the first one in
(3.37). The second one, as in (3.37), has nodal sets consisting in two hyperplanes:

{y1 = 0} and {y2 = 0}, (4.48)

so that the variational construction is performed in the corresponding “corner”, with zeros on the
boundary, giving a positive pattern therein, with further suitable negative (odd) reflections about the
hyperplanes to get a pattern in RN .

It follows from (3.37), (3.38), etc., that a similar radial and hyperplane reflection construction
can be done for some higher-order profiles fβ with |β| ≥ 3, but not for all of them. It is seen from
(3.38) that there appear stationary profiles with more complicated nodal sets, e.g., combining radial
and hyperplane structures on certain subspaces.
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N=1, m=1: the first  global similarity profile f

0
(y)>0 for p ∈ [3.01,4]
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Figure 2: The first profile f0(y) of (2.10) for N = 1 and p ∈ [3.01, 4].

However, we claim that, though such a “Sturmian” classification of nodal sets of various fβ(y)
gets rather complicated in RN , it is available and a complete nodal classification of S p actually exists
(though, probably, not being that useful).

Note that the complicated structure of nodal sets of fβ(y) for large |β| also reflects the increasing
co-dimension of their stable set according to the rescaled parabolic evolution via (5.50). Actually,
this co-dimension can be characterized by the Morse index (the number of positive eigenvalues) of
the linearized self-adjoint operator A′( fβ), which increases with |β|.

4.3 Numerical illustrations: similarity profiles and p-branches

Though the above rigorous results explain existence of an infinite number of p-branches, it is con-
venient to describe numerically the actual properties of profiles { fl(y)} and the corresponding p-
bifurcation diagrams.

In Figure 2, we show the first positive profile f0(y) for N = 1 in the supercritical range p > p0 = 3
(for p ≤ p0, f0 is nonexistent). The N-dependence of the first radially symmetric profile f0(y) for
p = 4 is explained in Figure 3.

We next explain in Figure 4 typical features of higher-order profiles fl(y) for N = 1, p = 4,
belonging to different global pl-branches that appear at supercritical pitchfork bifurcation points
p = p+l . By symmetry of the ODE for N = 1, the profiles f2k(y) are even and f2k+1(y) are odd. By
classic theory, the Sturmian zero property holds: each solution fl(y) has l sign changes (zeros) for
y ∈ R.

Since p = 4 > pl for any l ≥ 0, all the profiles { fl}l≥0 are available in this case. Let us present the
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m=1: the first  global similarity profile f
0
(y)>0 for p=4 and N=1,2,3

N=1

N=2

N=3

Figure 3: The first profile f0(y) of (2.10) for p = 4 in dimensions N = 1, 2, 3.

necessary parameters obtained numerically: for even solutions in (a),

f0(0) = 0.7018..., f2(0) = 1.741..., f4(0) = 2.445..., f6(0) = 3.047..., f8(0) = 3.5903... .

For odd solutions in (b):

f ′1(0) = 1.367..., f ′3(0) = 4.1949..., f ′5(0) = 8.05828... .

For N = 1 and p = 2, first six profiles fl(y) are shown in Figure 5. Note that, since

p = 2 < p0 = 3, p = 2 ≤ p1 = 1 + 2
1+1 = 2, and p2 =

5
3 < 2,

the profiles of the type f0(y) and f1(y) are nonexistent for p = 2, while all others are available,
according to the structure of their p-diagrams to be shown later on. Parameters: for even solutions
in (a),

f2(0) = 1.215..., f4(0) = 4.88..., f6(0) = 10.13... ,

while for odd ones in (b),

f ′3(0) = 4.675..., f ′5(0) = 17.415..., f ′7(0) = 41.53... .

Finally, in Figure 6, we show the actual structure of the global p-branch of the first similarity
profile f0(y), while Figure 7 explains the corresponding p-deformation of f0 in this parameter range.
Other pl-branches with pitchfork bifurcations at p = p+l for all l ≥ 1 look similar.
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(b) odd profiles f1,3,5

Figure 4: Eight profiles fl(y) for N = 1, p = 4: even profiles (a) and the odd ones (b).
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Figure 5: Six profiles fl(y) for N = 1, p = 2: even profiles (a) and the odd ones (b).
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Figure 6: The p-branch of the first profile f0(y) of (2.10) for N = 1 and p ∈ [3, 50].
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5 Countable family of global linearized patterns

5.1 Stable manifold patterns

This construction is easier and is based on standard and well established stable manifold techniques;
see Lunardi [44]. Namely, we perform the same scaling (2.9) of a global solution u(x, t) of (1.2) for
t � 1,

u(x, t) = t−
1
p−1 v(y, τ), y = x√

t
, τ = ln t, (5.49)

to get the rescaled equation (the same as in (3.29)) with the operator A in (2.10):

vτ = A(v) ≡ Δv + 1
2 y · ∇v +

1
p−1 v + |v|

p−1v. (5.50)

It follows that

A′(0) = B + c1I, where c1 = 1
p−1 −

N
2 =

N(p0−p)
2(p−1) > 0 for p < p0. (5.51)

Therefore, the derivative A′(0) has an infinite-dimensional stable subspace,

Es = Span
{
ψβ : λβ + c1 ≡ − |β|

2 + c1 < 0, i.e., |β| > 2c1
}
. (5.52)

Thus, using good spectral properties of the self-adjoint operator B [6], by invariant manifold theory
for parabolic equations [44, Ch. 9], we arrive at the following (see [23] as a sample for an absorption-
diffusion equation):

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

y

f(y)

N=1, m=1: p−deformation of the profile f
0
(y) for p ∈ (3,50]

p=3.02

p=50

Figure 7: Deformation of the first profile f0(y) from Figure 6, N = 1, p ∈ [3, 50].
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Proposition 5 For any multiindex |β| = l > 2c1, equation (5.50) admits global solutions with the
asymptotic behaviour as τ → +∞

vβ(y, τ) = e(λβ+c1)τϕβ(y)(1 + o(1)), where ϕβ ∈ Span{ψβ : |β| = l}, ϕβ � 0. (5.53)

In the original variables (5.49), the global patterns (5.53) take the form:

uβ(x, t) = t−
N+|β|

2 ϕβ
( x√

t

)
(1 + o(1)) as t → +∞. (5.54)

5.2 Nonexistence of center manifold patterns

Such patterns may occur if

λβ + c1 = 0 =⇒ l = |β| = 2c1 > 0, or p = pl. (5.55)

Studying the centre manifold behaviour of the simplest 1D type

v(τ) = al(τ)ψl + w⊥ as τ → +∞, (5.56)

we obtain from (5.50) the following equations for the expansion coefficient:

ȧl = κl |al|p−1al(1 + o(1)), where κl = 〈|ψl|p−1ψl, ψ
∗
l 〉 (p = pl). (5.57)

However, by (3.24), κl =
∫

ρ|ψl|p−1ψlψl =

∫
ρ|ψl|p+1 > 0, so that the asymptotic ODE (5.57) de-

scribes the unstable (actually, blow-up-like) behaviour and no global orbits approach the centre
subspace. Overall, it seems that finding a nontrivial centre subspace global behaviour for (5.50) is
hopeless. But this can exist for higher-order equations with absorption [23, 30], where we present
new examples of such logarithmically perturbed asymptotic patterns.

Finally, let us mention that both countable families of global solutions of (1.5) given by (2.9)
and (5.54) exhibit some clear similarity-like scaling invariance, which is crucially necessary for
solutions to remain in a given subclass for any t > 0 and hence to be global in time. This explains
why any “linear” λ-scaling applied to initial data u0 in [7, 8] (or any other that is not coherent with
the above “self-similar” ones) will lead to blow-up of the corresponding solutions.

6 Some structural properties of the set of global solutions via

critical points: blow-up, transversality, and connecting orbits

6.1 Blow-up and global solutions via a Lyapunov function

Let us write down (5.50) in the divergence form:

vτ = A(v) ≡ 1
ρ
∇ · (ρ∇v) + 1

p−1 v + |v|
p−1v for τ > 0, v(0) = v0. (6.58)
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We naturally introduce two sets of initial data: (i) the global set,

G = {v0 ∈ H2
ρ(R

N) ∩C(RN) : (6.58) has a global solution v(τ)}, (6.59)

and the blow-up set:

B = {v0 ∈ H2
ρ(R

N) ∩C(RN) : the solution of (6.58) blows up in a finite time.}, (6.60)

It follows that there exists a direct decomposition:

H2
ρ(R

N) ∩C(RN) = G ⊕ B. (6.61)

Next, as is well known, (6.58) is a smooth gradient system with the monotone in time Lyapunov
function denoted by L(v)(τ) ≡ −G(v)(τ) (see (2.19)), i.e.,

d
dτ L(v)(τ) ≡

d
dτ

( 1
2

∫
ρ|∇v|2 −

1
2(p − 1)

∫
ρv2 −

1
p + 1

∫
ρ|v|p+1

)
= −

∫
ρ(vτ)2 ≤ 0. (6.62)

Some of our “structural” conclusions follow from the next simple and well known blow-up
result.

Proposition 6 The following holds,

L(v0) < 0 =⇒ finite-time blow-up in (6.58). (6.63)

Proof. Multiplying (6.58) in L2
ρ by v and vτ, after simple standard manipulations, which are well

known since 1970s, one obtains that

1
2

d
dτ

∫
ρv2 ≥ −2L0 +

p − 1
p + 1

∫
ρ|v|p+1, where L0 = L(v0). (6.64)

Thus the fact that the solution blows up in finite τ, follows by applying the Hölder inequality leading
to a simple ordinary differential inequality for the L2

ρ-norm of v(τ):

1
2

d
dτ

∫
ρv2 ≥

p − 1
p + 1

∫
ρ|v|p+1 ≥

p − 1
p + 1

‖ρ‖−
1−p
2

L1

( ∫
ρv2

) p+1
2 . (6.65)

Corollary 1 The following hold for the Cauchy problem (6.58):

L(v0) < 0 =⇒ v0 ∈ B,
v0 ∈ G =⇒ L(v0) ≥ 0.

(6.66)
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6.2 Transversality of intersections

First of all, these issues have been recently solved only for a scalar reaction-diffusion equation on a
circle

ut = A(u) ≡ uxx + g(x, u, ux), x ∈ S 1 = R/2πZ, (6.67)

where the nonlinearity g(·) satisfies necessary conditions for existence of global classical bounded
solutions for arbitrary bounded smooth initial data. Namely, it is known that if f is a hyperbolic
equilibrium of A, A( f ) = 0, known to be generic (or a rotating wave), then the global stable and
unstable subspaces of A′( f ) span the whole functional space Xα = H2α(S 1), α ∈

( 3
2 , 1), where the

global semiflow is naturally defined, i.e.,

Ws(A′( f )) ⊕Wu(A′( f )) = Xα, (6.68)

so that these subspaces intersect transversely. It is crucial that such a complete analysis can be
performed in 1D only, since it is based on Sturmian zero set arguments (see [25] for main references
and various extensions of these fundamental ideas), so, in principle, cannot be extended to equation
in RN . We refer to most recent papers [12, 20, 37], where earlier key references and most advances
results on the transversality and connecting orbits can be found.

Of course, even knowing (assume, for a moment) the whole set of equilibria { fβ} for the problem
(6.58) in RN , obtained in Section 4, we do not have any chance to establish a suitable and general
transversality result for a generic hyperbolic equilibrium fβ. However, curiously, we can do some-
thing like that close to the bifurcation points p ≈ pl in (1.4) by using bifurcation theory from Section
3:

Proposition 7 (i) Fix, for a given p ≈ pl, p � pl, a hyperbolic equilibrium fβ, with a |β| = l, of the
operator A in (6.58). Then the transversality conclusion holds:

Ws(A′( fβ)) ⊕Wu(A′( fβ)) = H2
ρ(R

N). (6.69)

(ii) Particularly, for l = 0, for any p ≈ p0, p � p0, the first equilibrium f0(y) is hyperbolic, at least,
for any N ≤ 10.

Proof. (i) It follows from (6.58) and the expansion (3.28) that, for p = pl + ε, with ε � 1,

A′( fβ) = 1
ρ
∇ · (ρ∇) + 1

p−1 I + p| fβ|
p−1I

= (B − λlI) + ε(N+l)2

4
[ 1
κl
N+l+2
N+l |ψβ|

2
N+l − 1

]
I + O(ε2).

(6.70)

Therefore, for p = pl, the following analogy of (6.69) is valid:

A′( fβ) = B − λlI =⇒ Ws(B − λlI) ⊕Wu(B − λlI) ⊕Wc(B − λlI) = H2
ρ(R

N), (6.71)

and dimWc(B − λlI) is equal to the algebraic multiplicity (3.31) of λl = − l
2 : By the assumption of

the hyperbolicity of fβ, and in view of small perturbations (see, e.g., [6, 38]; this is a standard result
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in spectral theory of self-adjoint operators) of all the eigenfunctions of A′( fβ) for any |ε| � 1, ε � 0,
which remain complete and closed as for p = pl, we arrive at (6.69). Recall that, since by (6.70),
A′( fβ), with eigenfunction {ψ̂β}, is a small perturbation of B − λβI (eigenfunctions {ψβ}) and, in
addition, the perturbation is exponentially small as y → ∞, the “perturbed” eigenfunctions remain
a small perturbation of the Hermite polynomials in any bounded ball, and sharply approximate
those as y → +∞. Therefore, close to p = pl, there is no doubt that the well-known condition of
completeness/closure of {ψ̂β} (the so-called stability of the basis) is, indeed, valid:∑

(β) ‖ψβ‖ρ ‖ψ̂β − ψβ‖ρ < 1.

(ii) For l = 0, we can easily estimate κ0 in (3.24) and substitute into (6.70). Then, the O(ε)-term
therein takes the form

... + εN2

4
[N+2
N2 4N+3π

N+4
2

(N+2
4N

) N
2 |F(y)| 2

N − 1
]
, (6.72)

where F is the rescaled Gaussian (2.15). Eventually, at the origin y = 0 (and hence in a sufficient
neighbourhood around, in our weighted metric), we estimate this square bracket as follows:[

·
]
(0) = N+2

N2 26π2(N+2
N

) N
2 − 1, (6.73)

and the positivity for small ε > 0 (and a strict negativity for ε < 0) is clearly seen for N ≤ 10 as the
following table shows:

Table 1: Values of [·](0) in (6.73) for N = 1, 2, ..., 1000
N [·](0)
1 3281.2
2 1262.3
3 754.06
4 531.96
5 409.16
6 331.72
7 278.60
8 239.96
10 187.61
100 16.3415
1000 0.7187

In view of such large positive values at y = 0 for any N ≤ 10, the Gaussian (F(y))
2
N in (6.72)

spreads out such a positivity in a sufficient neighbourhood of the origin, which, in the metric of L2
ρ

will guarantee that no centre subspace is available for any |ε| > 0 small enough.
Note also that, as Table 1 shows, even for N = 100, we also observe a rather strong positive (for

ε > 0) dominance of the perturbation. Moreover, only for N ∼ 1000 this becomes not that clear,
i.e., the negative part of the perturbation associated with “−1” in (6.72) may reduce an eigenvalue of
A′( f0) to zero creating its centre subspace.
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Corollary 2 Under the conditions of Proposition 7, there exists an explicit expression of the Morse
index M(A′( fβ)), with |β| = l ≥ 0 (the number of positive eigenvalues) of the self-adjoint operator
A′( fβ):

M(A′( fβ)) =
∑

(k≤l)Ck
N+k−1. (6.74)

Obviously, the Morse index is given by a direct summation of all the multiplicities (as in (3.31))
of positive eigenvalues λ̂l ≈ λl.

Thus, close to any bifurcation point p = pl, we precisely know not only the dimensions of the
unstable manifold of A′( fβ) of any hyperbolic equilibrium fβ (and, sometimes, we can prove the
latter), we also approximately know the corresponding eigenfunctions {ψ̂β}:

by continuity, for all p ≈ pl : λ̂l ≈ −λl = l
2 and ψ̂β ≈ ψβ, (6.75)

where convergence of eigenfunctions as p→ p−l is guaranteed in L2
ρ and uniformly in RN .

Furthermore, moving along the given bifurcation p-branch, the transversality persists until a
saddle-node bifurcation occurs, when a centre subspace for A′( fβ) occurs, and hence (6.69) does
not apply. If such a “turning” point of the p-branch this does not appear, the transversality persists
globally in p. In other words, this question is directly related to the strict monotonicity of p-branches,
a problem, which was studies for a number of semilinear elliptic equations; see [4, § 6.7C] and [57]
for typical examples and results.

6.3 Connecting orbits for p < p0: a first step

The above analysis makes it possible to claim some first general connecting orbit principles in the
rescaled problem (6.58). First of all, since blow-up in the subcritical Fujita range (1.3) is a generic
property for even arbitrarily small initial data, we then expect the following:

(I) Any v0 ∈ Wu(A′( fβ)) leads to finite time blow-up;
(II) For p ≈ pl, the stable subspace Ws(A′( fβ)) connects fβ with some “higher-degree” (cate-

gory) equilibrium fγ, where |γ| ≥ |β|;
(III) Moreover, in view of a simple differentiating nature of eigenfunctions (2.16) of B and the

approximation result (6.75), connections within manifolds of the same degree (category) are not
possible, i.e., always |γ| > |β| in (II).

(IV) Looking again at the generating formula (2.16) and to (2.14), (2.16), etc., one can observe
that connecting orbits

fγ → fβ, with |γ| > |β|,

can be achieved provided that a simplification of symmetries of equilibrium occurs on the connec-
tion. For instance, if fγ(y) is anti-symmetric relative a hyperplane, then fβ(y) can be symmetric
(even) relative to it, but not vice versa. Evidently, this is explained by different stabilities of these
two configurations in a natural linearization sense (the even one is always “more” stable than the
odd one).

Of course, these first conclusions, which are not easy to prove at all, require further study and
extensions.
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7 On evolution completeness

This issue is principal: do the two countable families of global solutions (2.9) (with their stable
manifolds) and (5.54) describe all possible global solutions of the problem (1.2), (1.3)? In other
words, are these families (plus stable manifolds if any) evolutionary complete2 in the whole set
of global solutions? If the answer is “yes”, this leads to a simple blow-up conclusion: any other
solution with data not on the corresponding manifolds blows up in finite time3.

Proving evolution completeness in the case, where the whole set of patterns consists of, on
one hand, nonlinear ones (2.9) being self-similar solutions of (1.2), and, on the other hand, of
non-similarity linearized patterns (5.54) (assuming centre manifold patterns nonexistent, which also
needs a proper proof) is a difficult problem. However, for the present variational and gradient case,
there is a definite hope that such a goal can be achieved. Here, we briefly discuss such an opportunity
by developing a general view to such a problem, and do not pretend for a full analysis.

Thus, consider the rescaled equation (5.50) for an arbitrary proper global orbit {v(·, τ)}. There
are two cases:

7.1 Case 1: uniformly bounded orbit, |v(τ)| ≤ C

This is an easy case: as we already know, (5.50) is a smooth gradient system with the monotone
in time Lyapunov function L(v)(τ) ≡ −G(v)(τ) in (2.19) given by (6.62). Therefore, the ω-limit
set ω(v0) consists of stationary points [34], so that, those are either nontrivial similarity profiles
as in (2.9), or the orbit approaches zero, so gets into the framework of the linearized construction
leading to patterns (5.53) (modulo centre manifold ones). In the last case, the completeness-closure
of the eigenfunctions {ψβ} guarantees that no other asymptotic patterns can appear when the orbit
approaches the trivial equilibrium.

7.2 Case 2: blow-up at infinity

This means that the global orbit is unbounded as τ → +∞, so that there exists sequences {xk} ⊂ RN

and {τk} → +∞ such that

supx∈RN |v(x, τk)| ≡ |v(xk, τk)| = Ck → +∞ as k → ∞ (7.76)

monotonically. This case is more difficult, since it is known that blow-up at infinity is available, but
in the critical Sobolev case p = pS ; see [28] for history, references, and typical results. However,
this does not concern us, since, by (3.20), we have to be in the subcritical range.

Let us show how the critical Sobolev exponent actually appears in the study of global unbounded
solutions (GUS). The analysis is based on a scaling argument; see [29] for earlier references and

2See [24] for first examples of evolutionary complete sets of “nonlinear eigenfunctions” in quasilinear parabolic problems.
3We use here the fact that in the Sobolev subcritical range, blow-up in infinite time is not available (see comments below);

for p = pS, this is already not the case,[28].
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results. Namely, we perform the scaling:

v = Ckw, y = yk + akz, τ = τk + bks, where ak = C
− p−1

2
k , bk = a2

k , (7.77)

so that the sequence of functions {wk(z, s)} solves the following perturbed equation:

ws = Δw + |w|p−1w + δk
( 1
2 y · ∇w +

1
p−1 w

)
, where δk = a2

k = C
1−p
k → 0. (7.78)

By construction, each wk(z, s) is uniformly bounded for all admissible s < 0 and

|wk(z, s)| ≤ 1 for s ≤ 0 and supz |wk(z, 0)| = 1. (7.79)

By classic parabolic regularity theory [21, 17], it follows by passing to the limit k → ∞ in (7.78)
that

wk → ŵ, where ŵs = Δŵ + |ŵ|p−1ŵ, (7.80)

and ŵ(z, s) satisfies the same estimates (7.76) for all s ≤ 0. In other words, ŵ is an ancient solution of
(7.80) (in R.S. Hamilton’s terminology). Indeed, (7.80) is a simpler gradient system in the L2-metric,
so that ω-limit sets of uniformly bounded orbits must consist of equilibria. The set of equilibria for
the equation (7.80) changes their structure precisely at the critical Sobolev exponent given in (3.20).
Recall that existence of a GUS in [28] was established for p = pS only.

In other words, for p < pS , the set of stationary solutions of (7.80) is too “poor” to support
existence of a suitable ancient solution satisfying (7.79) under the assumption that the orbit {ŵ(s)}
is global in time. This explains how pS occurs in this analysis, but not proves the evolution com-
pleteness in the general case.
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