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Abstract: We investigate the formation of transverse patterns in a
doubly resonant degenerate optical parametric oscillator. Extending
previous work, we treat the more realistic case of a spherical mirror
cavity with a finite–sized input pump field. Using numerical simula-
tions in real space, we determine the conditions on the cavity geometry,
pump size and detunings for which pattern formation occurs; we find
multistability of different types of optical patterns. Below threshold,
we analyze the dependence of the quantum image on the width of the
input field, in the near and in the far field.
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1. Introduction

Nowadays the optical parametric oscillator (OPO) has become a device with a broad
range of applications [1]. The standard descriptions of the OPO are based on a small
number of modes for the involved fields, which are characterized by their carrier fre-
quency. In the standard configuration one uses a single mode for each of the involved
fields (pump, signal and idler fields), which are coupled by some effective nonlinear
coupling constant. All the other modes in the cavity are usually neglected, as they are
assumed to be far off resonance or not coupled by the dynamics. In general this assump-
tion is not valid and several transverse or longitudinal mode pairs may contribute to the
dynamics. Recently models involving several modes have been developed [2-4]. In some
cases a large number of modes contribute, leading to new dynamical phenomena. For
the case of a resonator with planar mirrors, it has been demonstrated [5] that in gen-
eral one has a multimode situation with spatial instabilities leading to the spontaneous
formation of various types of transverse optical patterns. Interestingly, below threshold
these patterns are somehow still present, but hidden in the correlations of the quantum
noise (quantum images [6,7,8]).

In recent papers [2,4] we have shown that when using a resonator with nonplanar
mirrors and a finite–sized pump field, a new nonlinear coupling between different signal
and idler mode pairs exists. This introduces a strikingly different physical behaviour of
the system and leads to new and interesting phenomena such as the combined oscillation
of various modes above threshold with fixed relative phases. Even multistability between
different such solutions can be obtained and the squeezing properties of the emitted light
are modified [9]. In contrast to this treatment, which is restricted to a small number
of effectively contributing modes, we will consider here the case of quasidegenerate
cavity configuration with very small transverse mode splitting. In this limit a very large
number of coupled modes participate in the dynamics. This strongly influences the
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pattern formation, both above threshold on a classical level and below threshold on a
quantum level.

Apart from the possibility to have a prototype of a well–controlled, easy ac-
cessible and variable nonlinear dynamical system, there might also be some practical
applications in image processing, storage and amplification [10,11] or ultrafast opti-
cal (de-)multiplexing. Let us finally remark that the basic structure of the underlying
mathematical equations is very similiar to the Gross-Pitajewski equation governing the
(almost zero-temperature) dynamics of a Bose-condensate in an external trap, where
similiar features might be observable.

In this paper we analyze the case of a degenerate OPO with spherical mirrors
and finite–size input beams. On a classical level, we analyze pattern formation above
threshold, and show under which conditions some of the results of [5] extend to the
case of spherical mirrors. On a quantum level, we consider the case of the OPO below
threshold and study the variation of the quantum images in the near [12] and in the far
[13] field, when the width of the input beam is gradually reduced.

2. Model

Let us consider a cavity with spherical mirrors and a thin nonlinear χ(2)-crystal with an
effective nonlinear coupling strength χ. The cavity is coherently pumped by an input
field Ep at a frequency ωp from the outside and the single input/output mirror is assumed
highly reflective at the pump frequency as well as at the signal frequency ωs = ωp/2.
We consider the doubly resonant case of an OPO with a common cavity for the two
fields, which have a common Rayleigh length zr. For the overall geometry we restrict
ourselves to a quasi–planar or a quasi–confocal geometry. In this case, the effective
transverse mode spacing ξ is on the order of, or even less than, the cavity linewidths
κs and κp for the signal and pump field, respectively, and many transverse modes can
contribute to the dynamics [4]. We will concentrate on the classical aspects of the field
dynamics first. Eliminating the longitudinal dependence by using the paraxial and the
mean field approximations, we find the following equations for the transverse dynamics
of the slowly varying pump field amplitude Ap(r, φ, t) and the signal field As (r, φ, t) [7]:

∂

∂t
Ap (r, φ, t) =− (κp + iδp − iξLp)Ap (r, φ, t)−

χ

2
A2s (r, φ, t) + Ep (r, φ) +Wp (t) , (1)

∂

∂t
As (r, φ, t) =− (κs + iδs − iξLs)As (r, φ, t) + χAp (r, φ, t)A

∗
s (r, φ, t) +Ws (t) , (2)

where the transverse variables r and φ denote the distance from the axis of the system
and the angular variable, respectively. The effect of diffraction and spherical mirrors is
contained in the differential operator [12]:

Lk =
w2k
4
∇2T −

r2

w2k
+ 1. (3)

Here δk = ω
00
k −ωk (k ∈ {p, s}) is the detuning between the chosen carrier frequency of

the fields and the eigenfrequency of the TEM00-mode closest to resonance. Ep (r, φ) rep-

resents an externally applied pump amplitude and wk =
√
(2zrc) /ωk is the minimum

waist of the intracavity fields. The additive noise terms Wk have been introduced to
model fluctuations of the pump field or other noise sources. On one hand such noise are
helpful to speed up the convergence of the numerical solutions; on the other hand, for
a proper choice of the time-correlation functions of Wp and Ws Eqs. (1,2) are Langevin
equations which govern the dynamics of the system on a quantum level, in the Wigner
representation [7]. Without such noise sources, we have a trivial solution of these equa-
tions given by As = 0, Ap = Ep/ (κp + iδp). This solution is stable only below threshold.
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One notices that the eigenfunctions of each operator Lk are just the usual
transverse Gauss-Laguerre functions. Inserting the corresponding mode expansions for
all fields leads to the standard coupled mode equations [4]. Unfortunately, any analytical
treatment of these equations seems impossible at present. Let us, however, emphasize
here that for the ideal degenerate confocal cavity, i.e. for ξ = 0, the spatial differential
operator disappears from the above equations and we get independent OPO’s at each
spatial point. Such a system has quite intriguing physical properties, as e.g. localized
squeezing [14]. Note that on the other hand, in the limit in which a quasi–planar cavity
becomes an ideal planar cavity one has that ξ → 0 but, simultaneously, wk → ∞ in
such a way that ξw2k converges to a finite value, so that the effects of ∇

2
T (diffraction in

the paraxial approximation) do not vanish.
The case of finite mirror size can be treated by confining the action of the oper-

ators Lk to the mirror surface, and by avoiding periodic boundary conditions. Although
in practice one usually works in a regime where the mirror boundaries seem to play
no essential role, the spontaneous formation of optical patterns with broken rotational
symmetry could be very sensitive to even small boundary effects.

We will solve Eqs. (1,2) by numerical integration starting from zero for all three
fields, using a combination of a split-step and a modified mid-point method [15]. Special
care has to be taken concerning the noise part [7] as e.g. outlined in a recent work by M.
San Miguel and R. Toral [16]. In order to test the integration procedure, we have used
various boundary shapes (round, square) and sizes, as well as different noise intensities,
grid sizes and time steps to check that the physical properties are independent of the
numerical details of calculation.

3. Spatial patterns in a doubly resonant degenerate quasi–confocal OPO

We assume that the pump field has a simple Gaussian configuration with width we, i.e.
Ep (r, φ) = E0 exp

(
−r2/w2e

)
. In addition, we will assume a quasi-confocal cavity setup,

which implies inversion symmetry Ak (r, φ) = Ak (r, φ+ π) [or alternatively Ak (r, φ) =
−Ak (r, φ+ π)] of all intracavity fields; this cuts the number of points needed for the
numerical solution in half.

Depending on the pump–size, pump–strength, detunings and on the effective
transverse mode spacing (including the crystal) we find a great diversity in the physical
behaviour of the system. Varying the mode spacing (e.g. by changing the cavity geome-
try), we can control the number of effectively participating modes in the dynamics from
a nearly single mode case if ξ � κs to a large number of contributing modes for ξ � κs.
By varying the detunings we can choose the modes out of the transverse manifold which
are dominantly excited. Similarly, by changing the shape (e.g. the size) of the pump field
we can select which modes are effectively excited. In addition, via the pump–size we can
also control the nonlinear intermode coupling [2,4] from independent excitation (large
pump we � wp) to a strong mode coupling (we ≈ ws). Finally, we can influence the
dynamics by changing the pump strength.

Let us first consider the simple case of a perfect confocal cavity, where ξ = 0.
One easily finds that for points (r, φ) where the pump intensity is large enough so that

|Ep (r, φ)|
2
>
(
κ2p + δ

2
p

) (
κ2s + δ

2
s

)
/χ2, the OPO is above threshold. For instance, for

δs = δp = 0 and by choosing Ep real, one has in steady-state:

Ap (r, φ) =
κs

χ
, A2s (r, φ) =

2

χ

[
Ep (r, φ)−

κpκs

χ

]
. (4)

The intracavity pump field is clamped to a fixed value, and the intracavity signal field
intensity at the location of the nonlinear crystal reproduces the variation of the pump
field amplitude, reduced by a fixed quantity.
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In contrast, for points where |Ep (r, φ)|
2
<
(
κ2p + δ

2
p

) (
κ2s + δ

2
s

)
/χ2, the OPO is

below threshold. For δs = δp = 0 and Ep real one has, e.g.:

Ap (r, φ) =
Ep (r, φ)

κp
, As (r, φ) = 0. (5)

For a Gaussian pump, one therefore finds there exists a circular area around the origin
inside which the signal beam has the shape of the central part of Gaussian, and outside
which the signal field is zero, whereas the intracavity pump field intensity has the shape
of the outer part of a Gaussian outside the circle, and has a flat top inside the circle.

When ξ 6= 0, the treshold has to be determined numerically. In the following,
we will focus on a number of selected examples. In all calculations of this section we
have χ = 0.1κs and κp = 3κs. For such values, the plane wave threshold for a planar
cavity corresponds to Ep = 30κs for δs = δp = 0.

For ξ � κs, the results are qualitatively similar to those of the two-mode
treatment of the degenerate OPO. For a nonzero detuning of pump and signal fields,
situations arise that display spatially oscillating patterns, which might be related to the
self-pulsing found in [17]. The rotational symmetry is still preserved.

3.1 Resonant multimode case

We proceed directly to a more complex situation and consider a small (ξ ≈ κs), or
even very small (ξ � κs) transverse mode spacing. As we can see from Eqs. (1,2), this
decreases the influence of diffraction, which mediates spatial cross-coupling, and leads
eventually to individual spatial points oscillating independently. Let us for the moment
assume δp = δs = 0, the corresponding stationary signal field intensity distribution is
shown in Fig. 1.
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Figure 1. Modulus of steady-state field amplitude as a function of the transverse
position: (a) input field, (b) intracavity pump field, (c) signal far field and (d) signal
intracavity field for δp = δs = 0, we = 3wp, ξ = 0.05κs and Ep = 42κs. In the near
field plots the length scale is wp; in the far field diagram it is zλs/(2πwp), where z
is the distance from the cavity.

For a small transverse mode spacing ξ = 0.05κs, we see that inside a central
region, where the pump field is locally above threshold, the intracavity pump field is
clamped by the dynamics to its threshold value, yielding a flat top. This behaviour is
therefore very close to the one encountered in the perfect confocal configuration. In the
outside region, where the pump is below threshold, the intracavity pump field is merely
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proportional to the input. This behaviour gets more pronounced for smaller ξ and larger
we, where more and more modes contribute to the intracavity fields. The signal field
is strongly confined to the above threshold region, where its shape roughly corresponds
to the input pump field. Outside this region it is almost zero. The strong directional
confinement of the far field shows the transverse phase coherence of the total signal
field, which is still present despite the weak cross-coupling.

3.2 Detuned multimode operation: transverse patterns

In this section we discuss the most complex situation and allow for multimode operation
as well as a detuning of the signal carrier field with respect to the corresponding TEM00
mode. As it is known this leads to spatial instabilities and optical pattern formation [5]
in the case of flat mirrors and plane wave input field.

Let us first look at the case of a TEM00 input field. Many modes are excited
and we have a fairly strong cross-coupling between the different modes. This leads to a
fixed relative phase operation of several modes, yielding various rather smooth spatial
distributions, which can in some sense be interpreted as an effective oscillating mode.
This notion is, however, somewhat artificial as the effective mode depends on the pump
strength and pump shape. An example is shown in Fig. 2, where we plot the stationary
intracavity pump and signal fields for a small transverse mode spacing.
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Figure 2. Same as in Fig. 1 except for we = wp, ξ = 0.2κs, δs = −2.5κs,
Ep = 65κs: (a) input field, (b) intracavity pump field, (c) signal far field and (d)
signal intracavity field.

The signal far field exhibits a ring-shaped distribution, which closely reminds
the below threshold results found in [7], while the near field configuration is Bessel-like.
Only in the case of a very small mode coupling ξ = 0.075κs, we find a pattern with
broken rotational symmetry, similar to the roll patterns discussed just below.

For a wider input pump field (we � wp) again many modes are possibly excited,
but the relative phase coupling is less strong and there is more room for dynamical
adjustment of the fields. This allows for breaking rotational symmetry and for the
spontaneous dynamical formation of various optical patterns. The situation is richer
than in the plane wave case. In the following we will show this on some specific examples.

Close to threshold one finds a roll (stripe) pattern as shown in Fig. 3, where we
have small mode coupling, broad resonant pump and negative signal detuning.
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Figure 3. Same as in Fig. 2 but for we = 4wp, ξ = 0.25κs, δs = −1.5κs: (a) input
field, (b) intracavity pump field, (c) signal far field and (d) signal intracavity field.

Once such stripes in some direction have formed, they only very slowly change
their direction, driven by the input noise. However, comparing many different runs,
starting each time at zero field with a small amount of “white” noise the stripes are
randomly oriented, but show a well defined modulation length depending on δs and Ep.
In some rare cases a ring shape pattern appears. Once such a pattern has formed, it
seems to be stable against the formation of stripes even for a fairly large amount of
noise and for slow changes of the system parameters. As one might expect, the stripe
pattern leads to a two-peaked intensity distribution in the far field.

For an increased pump strength other types of patterns appear. Roughly at
1.75 times threshold, spiral shaped patterns form frequently, as shown in Fig. 4. Once
formed they show a slow rotation, i.e. the end of the arms grow. Again, these turn
out to be quite stable against noise and slow changes of the system parameters. The
rotation speed depends on Ep and wp and is much slower than the other time scales
in the system. For these parameter ranges stripes and spirals are stable at the same
time. Even seeding a stripe pattern into the input for an existing spiral has no effect,
as the modification of the pump field induced by the spiral prevents gain for the seeded
stripes, and vice versa. Hence there is multistability of various patterns induced via the
backaction of the existing pattern on the pump field.

Figure 4. The movie shows the formation of a spiral pattern for the same values
of the parameters as in Fig. 3 but for E0 = 70κs.

Even further above threshold new patterns, cointaining a number of point–like
structures, appear. Typical examples in the near field are shown in Fig. 5.
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Figure 5. Various quasi–stationary patterns found for the signal field for
we = 4wp, ξ = 0.25κs, δp = 0, δs = −1.5κs and E0 = 85κs.

In all this, the shape of the mirror seems to have little influence; it is the
finiteness and size of the pump, which plays the most important role.

4. Quantum images below threshold

In this section we consider a quasi–planar cavity, instead of quasi–confocal. Below
threshold, and not too close to threshold, the pump depletion can be neglected. If
moreover, as in [12], [13] we assume that the pump field is not reflected at all by the
cavity mirrors, the quantity Ap in Eq. (2) can be expressed as a given function of r, φ
equal to the input field Ein. Hence, Eq. (2) becomes self-contained for the signal field
As (r, φ, t), and Eq. (1) can be dropped altogether.

If we consider any circle C centered on the system axis, at steady-state below
threshold, any observable O (r, φ, t) is uniform on average over the circle because of the
cylindrical symmetry and is constant in time. However, if we consider the spatial corre-
lation function at steady-state F (r,∆φ, t) = 〈O (r, φ, t)O (r, φ′, 0)〉 where r is the radius
of circle C, we obtain a function of ∆φ = φ − φ′ which exhibits a spatial modulation.
This structure, visible in the spatial correlation function, has been called “quantum
image” [6,12]. The same is true for the spectrum associated with the correlation

F̃ (r,∆φ, ω) =

∫ +∞
−∞

dt e−iωtF (r,∆φ, t) . (6)

As in [12,13], we will consider as observable a quadrature of the signal field, O =
As exp(−iϕL) + A∗s exp(iϕL), for an appropriate phase ϕL of the local oscillator field
used to detect the quadrature. While in [12,13] the input field was a plane wave, we
assume here that it corresponds to a gaussian profile of width we, and analyze how the
result changes when we decrease gradually we from infinity (plane wave case) to values
on the order of ws. In particular, we want to see whether the main phenomena identified
in [12,13] persist, or are washed out by the finite size of the pump.

The calculation of the correlation function is carried out with the help of an
expansion of the signal field in terms of Gauss-Laguerre modes [12,13]. In the present
case, however, the finiteness of we couples the modes [2,4]; a complete description of
the calculation will be given in a future paper [18]. Figures 6 and 7 show the spectral

density F̃ (r,∆φ, ω) [normalized to F̃ (r,∆φ = 0, ω)] for ω = 0. In the near field [i.e. in
Figs. 6(a) and 7(a)] we take r = ws and ϕL = 0. In the far field [Figs. 6(b) and 7(b)], on
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the other hand, we evaluate the correlation function at a distance z = 20zr from cavity

center, and we take r = ws

[
1 + (z/zr)

2
]1/2

and [19]

ϕL =
r2

w2s

[
1 +
(
z
zr

)2] zzr − (qc + 1) tan−1
(
z

zr

)
+
π

2
, (7)

where qc is the order of a frequency-degenerate family of Gauss-Laguerre modes which
is exactly resonant with the signal frequency ωs [12] and q = 2p + l, where p and
l are the radial and angular indices of the Gauss-Laguerre functions, respectively. In
both figures 6 and 7 we have qc = 3. The value of the input field is measured as
a dimensioneless parameter Ein = Einχ/κs; in the plane wave limit we → ∞, the
threshold value is Ein = 1.

When the OPO is below but close to threshold the main feature is the pres-
ence of a regular modulation in the correlation as a function of ∆φ. For the value
of Ein considered in Fig. 6, the system is 10% below threshold in the plane wave
limit we → ∞. As shown in [12] for we = ∞, when approaching the threshold the
contribution of the resonant family becomes dominant and, because the circle C is
chosen in such a way that the modes p = 1, l = 1 vanish, the correlation func-
tion F̃ (r,∆φ, ω = 0) /F̃ (r,∆φ = 0, ω = 0) arises only from the contribution of the two
modes p = 0, l = 3, so that getting close to threshold the curve approaches the function
cos (3∆φ), as shown by the red line in Fig. 6(a). Reducing we, the modulation becomes
less regular and less pronounced, but it is still quite remarkable for we = 1.4ws. It
must be taken into account, in addition, that decreasing we the threshold value for Ein
increases.
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Figure 6. The correlation function F (r,∆φ, ω) divided by F (r,∆φ, ω = 0) is
plotted as a function of ∆φ for a quadrature component with the phase φL specified
in the text. We fix ω = 0 and the value of r as described in the text. We set
Ein = 0.9, ξ = 0.5κs, and δs = −1.5κs. (a) Near field, (b) Far field. Red curve:
we →∞, blue curve: we = 2.8ws, black curve: we = 1.4ws.
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Figure 7. Same as in Fig. 6, but for Ein = 0.6, ξ = 0.1κs, and δs = −0.3κs.

On the other hand, well below threshold the interesting feature arises in the
far field [13]. Precisely, as shown by Fig. 7(b), there is a peak for ∆φ = π higher than
the peak in ∆φ = 0. As shown in [19,20] this is a purely quantum effect which provides
evidence from a spatial viewpoint of the twin photon emission in the OPO. Figure 7
shows that this feature (which becomes more and more pronounced as ξ is decreased) is
quite robust with respect to the reduction of we, up to when we becomes on the order
of ws. The correlation as a function of ∆φ becomes broader as we is decreased.
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