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Abstract: The present paper describes a fitting procedure capable of 
providing a smooth approximation of experimental data distributed on a bi-
dimensional domain, e.g. the typical output of an interferometric technique. 
The procedure is based on the optimization of an analytical model defined 
on the whole domain by the B-spline formulation. In the paper rectangular, 
circular and polygonal convex domains are considered in details, but, 
according to the need of the operating conditions, the procedure can be 
extended to domains of different shapes. The proposed procedure was 
initially calibrated by an analytical case study: a thin square plate simply 
supported along the edges and loaded by a uniform pressure. Subsequently, 
by the operative parameters defined by the analyses carried out on the 
analytic data, the fitting procedure was applied on experimental data 
obtained by phase shifting speckle interferometry. 
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1. Introduction 

Among the main advantages of interferometric techniques, the possibility to carry out full-
field measurements is certainly one of the most appealing. When interferometric techniques, 
like photoelasticity [1], moiré interferometry [2], speckle interferometry [3] or digital 
holography [4] are applied, the experimental data typically consist of fringe patterns which 
represent the contour map of a particular quantity. If a real full-field approach is desired it is 
necessary the application of a phase-shifting procedure [5,6], in order to obtain the phase 
maps by means of a number of fringe patterns. Actually the phase maps provide point-wise 
measurements, although an unwrapping procedure becomes necessary in order to remove the 
phase jumps always present when the optical path difference exceeds one wavelength. 

Aside from the drawbacks (many of which are nowadays overtaken) that arise by 
unwrapping a phase map particularly noisy [7], a residual noise on the measurements is still 
present. The entity and the origin of this noise is strictly dependent on the type of technique 
and on the operative experimental conditions. 

Many are the attempts available in the scientific literature to smooth the noise either in 
the space domain or in the spatial frequency domain [8-12], but, as it is shown in the papers 
dealing with these approaches, it is not possible to obtain a smooth distribution of the phase 
without fluctuations. 

The only way to obtain a smooth phase distribution consists in using an approach based 
on a fitting operation [13]. By this approach, very popular in the field of reverse engineering 
[14-15], it is necessary to define an analytical expression based on a number of parameters 
which must be evaluated by a proper optimization procedure. If a reliable analytical model is 
available for the problem under investigation the fitting can be carried out with high 
probability of success, otherwise the choice of the analytical model becomes a very crucial 
step of the whole fitting procedure. 

A typical analytical model is based on the use of polynomial functions which are 
particularly easy to manage and allow to obtain always a system of linear equations. On the 
other hand the need of higher modeling capability brings to increase the order of the 
polynomial and it implies unwanted fluctuations of the model, which does not follow the 
physical nature of the phenomena represented by the phase maps. The use of particular 
polynomial functions, like orthogonal Legendre or Zernike [16] polynomials, can improve the 
performance of the polynomial fitting, but the instabilities can be only lowered or shifted 
outside the domain of interest, not removed. Further improvements can be obtained by 
adopting different functions or nonlinear models [17] that lead to use particular solving 
algorithms. Finally it is important to say that, although most of mono-dimensional fitting is 
straightforward, when we handle interferometric data the problem becomes bi-dimensional 
with consequent increase of the calculation complexity. 

The present paper reports a bi-dimensional fitting procedure based on the use of B-spline 
functions [18] applicable to differently shaped domains. According to this model a number of 
piecewise polynomial functions, usually called blending functions, are defined and their 
existence is limited to a portion of the total domain. The number of the functions and the order 
of the polynomials can be chosen independently from each other; in this way a complex phase 
map can be fitted simply by increasing the number of functions without increasing the order 
of polynomials. The advantages of this approach are the linearity of the model to be 
optimized, the local control and the possibility to keep low the order of polynomial functions 
involved in the definition of the model. On the other hand the piecewise formulation implies a 
more complex mathematical model to be implemented, although it is easily achievable by the 
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actual software environments like MatLab [19] or Mathematica [20]. Moreover the 
application of the procedure to a non rectangular domain requires a space transformation 
consisting of further mathematical manipulations. 

The fitting procedure proposed in the present paper was initially calibrated on analytical 
data by considering as case study the deformation field of a thin square plate supported along 
the edges and loaded by a uniform pressure. The out-of-plane displacements, calculated by an 
analytical solution of the problem, were fitted by varying the number and the order of the 
blending functions. The choice of these operative parameters was performed by the standard 
deviation evaluated on the difference between the analytical and the fitted data. Subsequently, 
the capability of the procedure to be noise tolerant was evaluated by introducing an additive 
and multiplicative noise (with uniform and gaussian distribution) of the same order of 
magnitude of the typical interferometric techniques. 

The results obtained for the analytical case study were applied to experimental data 
obtained by phase shifting speckle interferometry. The out-of-plane displacements, measured 
by a Michelson interferometer with a speckle reference beam, were fitted by 49 (7x7) bicubic 
blending functions. Again the performance of the fitting procedure was tested by evaluating 
the standard deviation on the difference between the best fit surface and the experimental data. 
The reference values for standard deviation were calculated by imposing a uniform tilting of 
the reference beam, that can be considered as known out-of-plane distributions. 

2. Mathematical formulation 

The mathematical formulation of the fitting procedure is based on the well-assessed B-spline 
formulation [18] according to which the generic point P(x,y) of a surface can be represented 
by the following equation: 
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where Ni,h(x) and Nj,k(y) are the mono-dimensional B-spline blending functions, Wi,j are the 
weights to be evaluated by the optimization procedure, (n+1) and (m+1) are the number of the 
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where ξi is the i-th element of the knot vector whose number of elements is equal to (n+k). By 
this approach a piecewise polynomial function of (k-1) degree is obtained, that is Ck-2 

continuous, and it spreads throughout (k+1) control points. 
By operating on the knot vector it is possible to obtain a non-periodic and non-uniform B-

spline. The non-periodic formulation is based on the repeated knots at the ends of the knot 
vector; by repeating these knots k times we obtain a curve starting and finishing from and to 
the ends knots. In the non-uniform formulation the intervals of the knot vector are not 
equispaced, and the internal knots can be even repeated. 

Figure 1 reports an example of the B-spline blending functions assuming a non-periodic 
uniform formulation on a rectangular domain; in this example parabolic functions (h=k=3) 
and 4x4 control points (n+1=4 and m+1=4) were used. It can be seen that each function 
affects only a limited portion of the whole domain. 
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2.1 The fitting procedure 

The optimization of the model is achieved by evaluating the weights Wi,j. The advantage of 
this approach consists in reducing the number of parameters to be optimized, and the low 
degree of the polynomial functions, that avoids unwanted fluctuations. 

The data obtained by an experimental technique are arranged on a bi-dimensional array, 
the dimensions of this array are the resolution of the sensors, typical values are: 640x480, 
768x576, 1024x768, 1280x1024 and also other formats are available. It is not important the 
exact resolution, what matters is that we have to deal with hundreds of thousands of 
experimental information, out of which any tens of parameters must be evaluated. 

The optimization procedure was carried out according to the following steps: 
1. Calibration of the spatial coordinates of the input data; 
2. Calculation of the blending functions; 
3. Construction of the model; 
4. Evaluation of the best fit parameters. 

In the first step of the fitting procedure the indices of the input matrix are transformed 
into the spatial coordinates of the object under investigation, or vice versa. Maybe it is better 
to work in the object reference system, but sometimes it could be convenient to use the indices 
of the input matrix. However, if there are not distortion effects, this step is very easy to carry 
out because it consists of an origin translation and a stretching (or a shrinkage) of the axes. 

In the second step the blending functions, like those reported in Fig. 1, are analytically 
evaluated in the specified domain. At the moment a rectangular domain is assumed, in the 
next sections this constrain will be removed. 

 
Fig. 1. Blending functions of a B-spline non-periodic uniform surface with h=k=3 (parabolic 
approximation), n+1=4 and m+1=4 (16 control points in all).The z-values of the functions are 
represented as phase maps just for a better visualization. 

 
In the third step the model to be optimized is built as an over-determined system of linear 

equations by means of eq. (1). In this way a rectangular matrix M is obtained with a very high 
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number of rows (as many as the experimental data) and a reduced number of columns (as 
many as the parameters to be evaluated, the weights Wi,j). The elements of this matrix are the 
values assumed by the blending functions at each experimental datum location. The known 
vector V is simply the experimental data flattened in a column vector. So assuming the 
following form for the problem: 
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where each equation of the system is relative to the l-th datum, and p is the total number of the 
experimental data. According to this approach the unknown vector W is calculated as the 
pseudoinverse of M, that can be denoted as M*, multiplied by the known vector V. Another 
advantage of this formulation is that if more than one set of experimental data is carried out on 
the same object, the matrix M must be calculated and inverted only the first time, whereas the 
unknown vectors for each set of data will be evaluated by a simple multiplication between M* 
and V. 

2.2 Data distributed on a circular domain 

The blending functions can be easily modified in a cylindrical coordinate system simply by 
acting on the knot vectors. If for a rectangular domain is rather natural a non-periodic 
formulation in order to dispose of functions starting and finishing from and to fixed points, for 
a circular domain a periodic formulation along the circumferential coordinate is necessarily 
required, while along the radial coordinate a non-periodic approach remains more convenient. 

Figure 2 reports the blending functions defined on a circular domain with 6 control points 
along the radial coordinate and 16 control points along the circumferential coordinate. In the 
example reported in Fig. 2 cubic functions were used in both directions (h=k=4), hence the 
knot vectors are of 10 and 20 elements in radial and circumferential directions, respectively. A 
non-periodic formulation was used for the radial coordinate while a periodic formulation is 
necessary for the circumferential coordinate. In Fig. 2 only the 6 blending functions for a 
fixed circumferential control point were reported, because in the periodic formulation these 
functions are simply translated (and eventually rotated in cylindrical coordinates) when 
moving from a control point to another. In the example reported in Fig. 2 the blending 
functions relative to the next or to the previous control points are obtained by a rotation of π/8 
(=2π/16). 

It must be pointed out that the case of the circular domain can be applied also in presence 
of a hole in the center of the surface, in this circumstance the radial knot vector does not start 
from zero but from a finite value. 

2.3 Data distributed on a domain of any shape 

It is not unusual to deal with experimental data distributed on non regular domains, like a 
rectangle or a circle, in this case the application of the procedure is no more straightforward, 
but still possible. 

In order to achieve the purpose it is necessary to add one step more between steps 1 and 2 
of the procedure defined in section 2.1. Another coordinate transformation must be defined 
with the aim of transforming the initial any shaped real domain into a regular auxiliary 
domain. This transformation must be invertible, in order to bring back to the real domain the 
data after the application of the fitting procedure. This operation is not always possible, but in 
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most practical situations it is. In the following the way by which two cases could be faced is 
presented. 

 
Fig. 2. Cubic blending functions (h=k=4) of a B-spline surface defined on a circular domain. 
Non-periodic formulation and 6 control points were used in the radial direction, while periodic 
formulation and 16 control points were used in the circumferential direction, n+1=6 and 
m+1=16 (96 control points in all). Again the z-values of the functions are represented as phase 
maps just for a better visualization. 

 
In the first example a generic quadrangular domain is considered, in this case it is easy to 

define a bilinear transformation function to pass from a domain to the other. Thus, as reported 
in Fig. 3(a), it is possible to calculate the functions f and f–1 that allow the transformation 
between the two coordinate systems by simple geometric considerations as those reported in 
Fig. 3(b). 

As a numeric example let us consider the real domain reported in Fig. 3(a) and we 
suppose that ξ and η vary between 0 and 1. By assuming the following values for the end 
point coordinates of the real domain: 

                    
⎩
⎨
⎧

=
=

⎩
⎨
⎧

=
=

⎩
⎨
⎧

=
=

⎩
⎨
⎧

=
=

5

3

6

5

1

6

4

2

4

4

3

3

2

2

1

1

y

x

y

x

y

x

y

x ,                                         (4) 

the transformation functions assume the following expressions: 
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It is possible to recognize the coordinates of the real domain in the second set of equations 
(for transforming the auxiliary coordinates (ξ,η) into the real coordinates (x,y)), while the first 
set of equations (for transforming the real coordinates (x,y) into the auxiliary coordinates 
(ξ,η)) hides the geometric data used to generate them. This fact is due to the complexity 
introduced by the geometry of the problem, which however do not implies a complex 
algebraic formula, as it can be seen from eq. (5). 
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Fig. 3. A generic quadrangular domain: a) the geometric transformation of the coordinate 
system; b) the geometric constructions for the calculation of the transformation equations. 

 
In the second numeric example let us consider a convex domain whose boundary is a 

polyline, as that reported in Fig. 4(a). In this conditions it is not possible to define a single 
function able to transform all points inside the domain, but a single transformation can be 
defined on a number of sub-regions. This domain can be divided into triangle simply by fixing 
a point inside the domain and joining this point with each vertex, as shown in Fig. 4(a); in this 
way N triangles are obtained if N is the number of the edges of the domain. Finally, according 
to the Fig. 4(b) each triangle can be transformed into a circular sector by the following general 
formula: 
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where (xi,yi) and (x,y) are the coordinates of the triangle and the generic coordinates in the real 
domain respectively, (r,θ) are the generic auxiliary coordinates that vary in the ranges [0,1] 
and [θmin,θmax] respectively. 

 

          
Fig. 4. A generic convex domain whose boundary is a polyline: a) the geometric transformation 
of the coordinate system; b) the geometric constructions for the calculation of the 
transformation equations. 

 
It is worthwhile to mention the possibility to apply the same approach in the case of the 

same kind of domain with a hole. In this condition, by approximating the hole with a polyline 
with a number of edges equal to the number of the boundary edges, it is possible to obtain 
again a number of sub-regions each of which can be treated either as a rectangular regular 
region or as a circular sector starting form a non zero radius. This case is shown in Fig. 5, the 
formula are not reported for the sake of brevity. 
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Fig. 5. A generic convex domain whose boundary is a polyline with a hole: a) partition into 
sub-regions of the domain in the real coordinate system; b) transformation of a single sub-
region into a regular rectangular region; c) transformation of a single sub-region into a regular 
circular sector. 

 

3. Application of the procedure 

The present section reports two examples of application of the fitting procedure described in 
the paper. In the first example the procedure was applied on analytical data in order to identify 
some guidelines for the choice of the order and of the number of control points of the B-spline 
surface. Subsequently the same case study was used with the aim of evaluating the capability 
of the procedure to work in presence of noise. In the second example the procedure was 
applied on experimental data obtained by phase shifting speckle interferometry. 

Both the examples consider the out-of-plane displacements of a plate subjected to flexural 
loading condition, because often for these mechanical configurations these displacement 
components are enough to give an exhaustive description of the stress and strain fields; it is 
obvious that the fitting procedure can be applied to any displacement components or even to 
any bi-dimensional field. For the sake of brevity rectangular domains were considered in both 
examples. 

3.1 Application to analytical data 

The first case study is a square thin plate supported along the edges and loaded by a uniform 
pressure. For this problem the out-of-plane displacements can be evaluated analytically by the 
general following expression [21]: 
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where w(x,y) is the out-of-plane displacement at the generic coordinate, p is the pressure 
applied on the plate, E and ν are the Young’s modulus and Poisson’s ratio of the material, a 
and b are the length of the edges, t is the thickness, n and m are two indices used to sweep the 
odd integer numbers between 0 and infinity. The loading configuration and a typical phase 
map of the out-of-plane displacements are reported in Fig. 6. 

The first task of this section consists in defining a procedure for choosing the order of 
polynomials (h, k) and the number of control points (n+1, m+1) necessary to fit accurately the 
simulated experimental data. By eq. (7) the displacements were evaluated on a grid of 
300x300 elements, that is a proper number of information gathered by an experimental test. 
Then these data were fitted by varying the parameters (h, k) and (n+1, m+1) and for each 
values assumed by the fitting parameters the maximum error (Emax) and the standard deviation 
(σ) were evaluated. Because of the symmetry of the problem the same parameters were 
assumed along the x- and y- directions (h=k and n=m). Furthermore, as said in section 2, 
because of each blending function spreads throughout (k+1) control points the order of 
polynomials fixes the minimum number of control points. 

Table 1 reports the values obtained for Emax and σ and provides quantitative information 
to choose the fitting parameters. For example if a maximum error less than 0.1% is desired it 
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is necessary to use 10 control points for h=k=3 or 7 control point for h=k=4, while more than 
12 control points are necessary if a linear approximation (h=k=2) is adopted. 
 

 
Fig. 6. Geometry of the loading configuration: a) square thin plate (L/t=100, ν=0.3) simply 
supported along the edges and loaded by a uniform pressure; b) simulated wrapped phase map 
of the out-of-plane displacements obtained by eq. (7). 

 
It is worthwhile making some further remarks about the choice of the degree of the 

polynomials. The degree to be adopted depends on the shape of the 2D field to approximate: if 
the field does not present change of concavity a parabolic approximation should be enough, 
while the presence of flexes requires the use of at least a cubic approximation. If more than 
one flex is present and they are close it is necessary to increase the degree of polynomials or 
to insert at least one control point between a pair of flexes. Furthermore a linear 
approximation (k=2) is not in general a good choice, especially when a displacement 
component must be fitted, because it provides very poor strain fields which must be evaluated 
by derivative operations. 

The second step consists in evaluating the capability of the procedure to be noise tolerant. 
To perform this task an additive and a multiplicative noise with flat and gaussian distribution 
were superimposed to the data generated analytically. Then the fitting procedure was applied 
to the noisy data and the performance of the fitting was evaluated by calculating the standard 
deviations reported in Tab. 2. 

In particular the standard deviations are evaluated on: a) the difference between the fitted 
surface and the data without noise, σ1; b) the difference between the fitted surface and the data 
with noise, σ2; c) the noise as is, σ3. In the simulations the level of noise was increased by 
increasing the standard deviation of the random data, which was varied between 0.02/30.5 and 
0.10/30.5 by 5 steps. These values, calculated as r/30.5, are adopted in order to have a flat 
distribution in the range [-r, r] which results to have the same standard deviation of gaussian 
distribution. Obviously for the additive noise the mean value of both distributions is 0, while 
for the multiplicative noise the mean value is 1. The parameter r is expressed as a fraction of 
the maximum displacement observed, in the simulations of the noise its value is varied until 
10%, which represents a particularly severe noise. 

By observing the standard deviation reported in Tab. 2 it is possible to state that the 
fitting procedure is able to filter the noise very efficiently. The differences between the fitted 
surface and the data without noise are very small, in fact the value σ1 is more than one order 
of magnitude less than σ2 and σ3. For the additive noise the value σ2 is practically equal to σ3, 
and it means that the noise is not able to bring to fail the procedure. For the multiplicative 
noise this fact does not happen because in this case it is necessary to take into account the 
distribution of the displacement; nevertheless the standard deviation σ1 is still very small. 
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Table 1. Maximum error and standard deviation (expressed as percentage of the maximum displacements) obtained 
by varying the order of the polynomial (h,k) and the number of control points (n+1,m+1). 

  (n+1, m+1) 

(h,k)  (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10) (11,11) (12,12) 

Emax 34.67 13.53 9.805 5.629 3.972 2.945 2.196 1.802 1.370 1.211 
(2,2) 

σ 6.871 3.062 1.711 1.093 0.755 0.553 0.423 0.334 0.270 0.223 

Emax  3.414 1.275 0.649 0.348 0.208 0.134 0.091 0.064 0.046 
(3,3) 

σ  1.098 0.364 0.167 0.088 0.053 0.034 0.023 0.016 0.012 

Emax   0.675 0.253 0.083 0.031 0.017 0.010 0.006 0.005 
(4,4) 

σ   0.211 0.068 0.024 0.013 0.007 0.003 0.002 0.002 

Emax    0.250 0.040 0.020 0.008 0.004 0.004 0.004 
(5,5) 

σ    0.077 0.012 0.007 0.003 0.001 0.001 0.001 

Emax     0.027 0.012 0.005 0.004 0.004 0.004 
(6,6) 

σ     0.009 0.004 0.002 0.001 0.001 0.001 

 

Table 2. Standard deviation evaluated on the data with various type and levels of noise generated numerically. 

 NOISE STANDARD DEVIATION 

TYPE OF NOISE 
3

02.0  
3

04.0  
3

06.0  
3

08.0  
3

10.0  

σ1 0.00037 0.00052 0.00074 0.00128 0.00129 

σ2 0.01157 0.02309 0.03467 0.04631 0.05752 Additive flat distribution 

σ3 0.01157 0.02309 0.03467 0.04632 0.05754 

σ1 0.00038 0.00063 0.00082 0.00114 0.00157 

σ2 0.01153 0.02314 0.03457 0.04605 0.05791 Additive gaussian distribution 

σ3 0.01153 0.02315 0.03458 0.04606 0.05793 

σ1 0.00027 0.00032 0.00037 0.00038 0.00054 

σ2 0.00590 0.01178 0.01768 0.02355 0.02951 Multiplicative flat distribution 

σ3 0.01154 0.02307 0.03460 0.04619 0.05776 

σ1 0.00026 0.00033 0.00036 0.00043 0.00056 

σ2 0.00589 0.01176 0.01770 0.02347 0.02959 Multiplicative gaussian distribution 

σ3 0.01156 0.02315 0.03465 0.04607 0.05779 

 

3.2 Application to experimental data 

The experimental case study is an isotropic plate subjected to the flexural loading 
configuration reported in Fig. 7(a): the plate is supported on the three points S1, S2 and S3 and 
loaded by a punctual force F. The experimental data are acquired only on a reduced area of 
the specimen because the loading fixture creates patches of shade. The specimen is a square 
with an edge of 50 mm, while the observed area is a square chosen in the middle of the 
specimen with an edge of about 35 mm, the experimental data consists of 400x400 pixels. The 
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specimen is inserted along one arm of a Michelson interferometer capable of measuring out-
of-plane displacements, according to the layout reported in Fig. 7(b). The reference beam is 
obtained by a rough surface fixed to a three degrees of freedom PZT actuator able to perform 
a uniform translation along its axis (necessary for phase shifting) and two tilting around an 
axis belonging to a plane parallel to the reference surface. 

 

 
Fig. 7. a) Geometry of the loading configuration: S1, S2 and S3 are the support points, F is a 
punctual load applied in the middle of the specimen. The area observed by the interferometer is 
emphasized by projecting on it an experimental fringe pattern. b) Layout of Michelson 
interferometer for measuring out-of-plane displacements. 

 
As for the analytic case study it is necessary to define an index of performance of the 

fitting algorithm when it is applied to experimental data. Unfortunately a known deformation 
field it is difficult to generate straightforwardly, apart from elementary loading configurations 
for which a complex fitting operation would be unnecessary. 

Another kind of reference solution consists of a numerical simulation of a linear elastic 
body subjected to mechanical loads, in fact the solutions of these problems are nowadays well 
assessed and perfectly reliable. Nevertheless a very accurate simulation requires the exact 
knowledge of the mechanical configuration, i.e. location of constraints and loads, geometry, 
properties of material. For example the assumption of a punctual load or a punctual constrain 
is an approximation which can lead to substantial differences in the proximity of these zones 
between numeric and experimental data. Even if all these information are available with 
precision other sources of uncertainty are present that can produce systematic errors. Except 
for the electronic noise, which introduce a random error easily filtered by the fitting 
procedure, a rigid body motion is always present because of the compliance of the loading 
device. In fact as far as the deformation field is known it is difficult fix exactly the 
deformation, because also the constraints, which typically are zero displacement points, are 
compliant and spatially extended. 

For all these reasons, excluding the numerical simulation, the only way to dispose of a 
known deformation field as accurate as possible consists of a uniform tilting of the specimen 
obtained by imposing a tilting to the reference surface fixed on the PZT actuator. According 
to this approach for an imposed tilting given to the reference surface we obtain a phase map 
whose exact approximation is a plane. By fitting this phase map with a plane of any 
orientation three parameters are obtained out of the number of information gathered 
experimentally (usually hundreds of thousands, 400x400 in the example reported in the 
present section). If the error superimposed to the measurements has a zero mean distribution, 
as the errors due to the electronic noise and to the decorrelation of the speckle patterns can be 
assumed, the best fit plane can be considered the exact deformation field. By this plane and by 
the experimental data the standard deviation can be evaluated and considered as a synthetic 
index of performance, that can be compared with the standard deviation evaluated by a best fit 
surface and the corresponding experimental data. The standard deviation obtained on the 
deformation field of known shape can be seen as a synthetic parameter for identifying the best 
fitting attainable, if a fitting performed on a deformation field of unknown shape is 
characterized by the same standard deviation it means that the two experimental conditions 
(known and unknown deformation field) are the same in term of noise (essentially due, for a 
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phase shifting speckle interferometry technique, to the electronic noise and to the 
decorrelation). 

By this approach two different levels of load were applied to the specimen and a bi-cubic 
(h=k=4) B-spline surface with 7x7 control points were used, results are reported in Fig. 8 and 
Fig. 9. Figures 8(a) and 9(a) report the experimental data without any manipulation or fitting 
operation, while Fig. 8(b) and Fig. 9(b) are the fitted data represented as phase maps in order 
to be compared more easily with the experimental data. Figures 8(c) and 9(c) are the 
histograms of the error evaluated as the difference between the experimental and the fitted 
data for the known (continuous line) and unknown (dots) deformation field. In both cases the 
two error distributions, which are symmetric and have a mean equal to zero, are slightly 
different but they have the same standard deviation. In the upper-right corner of Fig. 8(c) and 
Fig. 9(c) there are the experimental phase maps obtained by tilting the reference surface which 
determine the same standard deviation of the fitted surface, while in the upper-left corner are 
reported the standard deviations of known (σk) and unknown (σu) deformation field. These 
quantities are expressed in radians because all the quantities are evaluated as phase variation, 
as also the errors used for plotting the histograms of Fig. 8(c) and Fig. 9(c); for the scope of 
the present paper it is not necessary the exact calibration in terms of the physical units of the 
measured quantity. 
 

 
Fig. 8. Low level of load: a) experimental data; b) fitted data; c) histogram of the error for 
known (continuous line) and unknown (dots) deformation field, experimental phase maps of 
the known deformation field in the upper-right corner, standard deviation of the known (σk) 
and unknown (σu) deformation field in the upper-left corner. 

 

 
Fig. 9. High level of load: a) experimental data; b) fitted data; c) histogram of the error for 
known (continuous line) and unknown (dots) deformation field, experimental phase maps of 
the known deformation field in the upper-right corner, standard deviation of the known (σk) 
and unknown (σu) deformation field in the upper-left corner. 
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4. Conclusions 

The paper presents a fitting procedure able to provide a smooth approximation of a bi-
dimensional distribution of a general quantity. The procedure is based on a global approach 
according to which a linear model was defined by the geometry of the surface and by the 
approximation functions called blending functions. Then this model is inverted and applied on 
the experimental data to evaluate the best fit parameters, which represent the weights of the 
blending functions. 

The proposed procedure, that can be applied on domains of several shapes, is based on a 
B-spline formulation by which the blending functions are built by piecewise polynomials 
defined in sub-regions of whole domain; the order of polynomials and the number of blending 
functions can be chosen independently from each other. In the paper a procedure to evaluate 
these parameters and the equations for studying some type of domains are proposed. 

Finally the fitting procedure was tested on two sets of experimental data obtained by an 
out-of-plane speckle interferometer. The performance of the procedure was evaluated by 
calculating the standard deviation of the difference between the experimental and the fitted 
data. This standard deviation was compared with that calculated by fitting a known 
deformation field, obtained by imposing a uniform tilting to the reference beam of the 
interferometer. 
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