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Abstract: We calculate the radiation torque exerted by a monochromatic
plane wave, either unpolarized or linearly polarized, on aggregates of
spheres and investigate the stability of the resulting rotational motion.
In fact, neglecting any braking momenta we calculate the component of
the electromagnetic torque orthogonal to the principal axis of maximum
moment of inertia through the center of mass (transverse torque), as a
function of the direction of propagation of the incident field. The aggregates
we study are composed of homogeneous spheres, possibly of different
materials. The electromagnetic torque is calculated through the transition
matrix approach along the lines of the theory reported in our recent paper [F.
Borghese, P. Denti, R. Saija and M. A. Iatı̀, Opt. Express 14, 9508 (2006)].
When the transverse component of the electromagnetic torque is small or
vanishes the rotational motion driven by the component along the principal
axis of inertia may be nearly stable.
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1. Introduction

The conservation of the angular momentum for the combined system of radiation field and par-
ticles implies that an electromagnetic wave impinging on a particle exerts a mechanical torque
on the latter [1]. This fact has found useful applications in the manipulation of micro- and nano-
particles [2, 3]. For instance, the torque experienced by propeller-shaped particles embedded
into a viscous fluid and trapped by optical tweezers induces rotations that through microrheo-
logic studies give information on the properties both of the fluid and of the particles themselves
[4]. The electromagnetic torque is also of interest for astrophysicists, because, according to the
suggestion of Purcell [5], it is considered as a relevant agent for the alignment of cosmic dust
grains, that is required to explain the linearly polarized component of the starlight [6].

The actual evaluation of the radiation torque requires calculating the radiation field in the
presence of the particles. For instance, Draine and Weingartner [7, 8] calculated through the
discrete dipole approximation (DDA) [9, 10] the field scattered by model cosmic grains and the
torque experienced by the latter. Unfortunately, due to the large amount of calculations required
by the DDA, it is not surprising that the above authors dealt with a few simple model particles
only.

The computational effort is more sustainable, even for particles with a complex structure, by
using the multipole expansion of the field in the framework of the transition matrix approach
[11]. As far as we know, the first complete solution to the problem of radiation torque in terms
of multipole fields is due to Marston and Crichton [12] who dealt with the torque exerted by an
elliptically polarized plane wave on a homogeneous sphere. More recently, the multipole field
expansion has been exploited by de Abajo [13, 14] to calculate the radiation torque on model
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nonspherical particles. The transition matrix approach was further extended by the present au-
thors to the case of particles shaped as aggregates of spherical scatterers [15, 16, 21, 22], the
stability of whose induced rotations has also been discussed to some extent. Our main con-
clusion was that when a circularly polarized plane wave impinges on a cluster composed of
identical spheres along one of the principal axes of inertia through the center of mass the in-
duced rotations are nearly stable even when the cluster lacks any symmetry.

Nevertheless, in laboratory experiments linearly polarized light is mostly used, whereas in
an astrophysical environment the light is mainly unpolarized. Moreover, the rotations driven
by radiation torque may be unstable, whatever the polarization, when the dielectric properties
of the aggregated spheres are not equal to each other. In fact, the mechanical properties of the
clusters, such as the moment of inertia tensor, are determined by the distribution of the masses,
whereas the electromagnetic torque is determined by the distribution of the dielectric properties,
mainly by the absorptivity of the component spheres. Therefore, the purpose of this paper is to
report a study of the rotational stability of clusters composed of spheres with different dielectric
properties, when the electromagnetic torque is due to an unpolarized plane wave or to a linearly
polarized plane wave.

Indeed, the problem of rotational stability has already been faced by Draine and Weingart-
ner in an astrophysical context by solving numerically the equations of rotational motion of a
particle of known morphology and refractive index [8]. Here, we adopt a simpler approach: we
calculate the electromagnetic torque exerted on the particles by a plane wave. Then, we calcu-
late the component of the torque in a plane orthogonal to the central axis of maximum moment
of inertia as a function of the direction of incidence of the incoming radiation. It is intuitive that
a nearly stable rotation around this axis cannot occur unless the transverse torque is small.

2. Radiation torque

In this section we report the essentials of the theory of the torque exerted by a monochromatic
plane wave on aggregated spheres. The interested reader is referred to our recent paper [15] and
to Ref. [16] for further details.

We assume that the particle of interest is embedded into a homogeneous medium of refractive
index n. Then, a monochromatic wave exerts a torque on the particle given by

�Γrad = −
∮

n̂ · 〈TM〉× rdS , (1)

where n̂ is the unit outward normal to an arbitrarily chosen closed surface S that surrounds the
particle and

〈TM〉 =
1

8π
Re

[
n2E⊗E∗ +B⊗B∗− 1

2

(
n2E ·E∗ +B ·B∗)I] (2)

is the time averaged Maxwell stress tensor, I being the unit dyadic. Of course, in Eq. (2)

E = EI +ES, B = BI +BS,

i.e., E and B are the superposition of the incident and of the scattered fields.
We found convenient to choose the integration surface S to be a sphere of arbitrary radius

with its center within the particle, so that Eq. (1) becomes

�Γrad = −r3
∫

Ω
r̂ · 〈TM〉× r̂dΩ . (3)

Since r̂ · I× r̂ = 0, the last two terms in Eq. (2) give no contribution to the integral, and by
choosing the radius of the integration sphere to be large, possibly infinite, we can resort to the
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asymptotic expression of the fields. Nevertheless, it should be borne in mind that using the
customary far zone expression of the scattered field in terms of the scattering amplitude

ES =
exp(ikr)

r
f(k̂S, k̂I)

yields a vanishing result because r̂ · f = 0 [23]. Therefore, the correct procedure requires that,
after solving the problem of scattering, the fields be expanded for large r and all terms that give
contributions of order 1/r3 to the integrand in Eq. (3) be retained.

Since the polarization of the field is relevant, we introduce a pair of mutually orthogonal unit
vectors, say ûη , such that

û1 × û2 = k̂I ,

where k̂I is the direction of the propagation of the incident plane wave. Note that the vectors û η
may be either real (linear polarization basis) or complex (circular polarization basis). In case
the linear polarization basis is used the subscripts η = 1, 2 denote polarization parallel and
perpendicular to a fixed plane of reference through k̂I, respectively, whereas, when the circular
basis is used, η = 1, 2 denote left and right polarization, respectively.

Both the incident and the scattered field are expanded in a series of vector multipole fields
[16]. Accordingly,

EI = ∑
η

E0η ûη exp(ik · r) = ∑
η

E0η ∑
plm

J(p)
lm (r,k)W (p)

Iηlm , (4a)

ES = ∑
η

E0η ∑
plm

H(p)
lm (r,k)A(p)

ηlm , (4b)

where k = nkv, with kv = ω/c, is the propagation constant of the incident plane wave. We also
define the multipole fields in (4a) according to

J(1)
lm (r,k) = jl(kr)Xlm(r̂), J(2)

lm (r,k) =
1
k

∇×J(1)
lm (r,k), (5)

where Xlm(r̂) denotes vector spherical harmonics [1]. The multipole fields H (p)
lm (r,k) in (4b) are

identical to the J(p)
lm (r,k) fields (5) except for the substitution of the spherical Hankel functions

of the first kind hl(kr) in place of the spherical Bessel functions jl(kr). The (known) multipole

amplitudes of the incident field W (p)
Iηlm are defined in [15, 16], whereas the amplitudes of the

scattered field A(p)
ηlm are calculated by imposing the customary boundary conditions across the

surface of the particle. The amplitudes A(p)
ηlm bear the index η to recall the polarization of the

incident field, and are related to the W (p)
Iηlm by [16]

A(p)
ηlm = ∑

p′l′m′
S

(pp′)
lml′m′W

(p′)
Iηl′m′ . (6)

Equation (6) defines the elements S
(pp′)
lml′m′ of the so-called transition matrix of the particle [11].

Now, the particles the present study is going to deal with either actually are, or can be mod-

eled as aggregates of spheres. We calculate S
(pp′)
lml′m′ for such aggregates always starting with

the inversion of the matrix of the linear system that is obtained by imposing to the fields the
boundary conditions across each of the spherical surfaces [17, 18]. The order of the matrix to
be inverted is 2NlM(lM + 2), where N is the number of the spheres of the aggregate and l M is
the maximum value of l to be retained in the multipole expansions of the fields (4) in order to
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get convergence for the quantities of interest. The convergence of such kind of calculations is
studied in Ref. [17]. A comprehensive treatment of all the abovementioned topics related to the
calculation of the transition matrix can be found in Ref. [16]. Anyway, we are well aware that
other procedures for calculating the transition matrix elements have been devised, such as the
iterative procedures of Xu [19] and of Chew [20], but we never used them for reasons that are
fully expounded in Ref. [17].

Let us now define the vector �Γ such that

�ΓRad = Re
(
�Γ

)

and in terms of whose spherical components [24] the cartesian components of �ΓRad read

ΓRadx = Re
[ 1√

2

(
Γ−1 −Γ1

)]
, ΓRady = Re

[ i√
2

(
Γ−1 + Γ1

)]
, ΓRadz = Re

(
Γ0

)
, (7)

where
Γμ = ∑

ηη̄
IIη̄ηΓμ;η̄η , (8)

with IIη̄η = E∗
0η̄E0η . At this stage, the procedure fully expounded in [15] and [16] yields for

Γμ;η̄η the expression

Γμ;η̄η = Γ(ext)
μ;η̄η −Γ(sca)

μ;η̄η , (9)

where
Γ(ext)

μ;η̄η = cΓ ∑
plm

sμ;lmW (p)
Iηl,m−μA(p)∗

η̄lm , (10)

whereas the quantities Γ(sca)
μ;ηη̄ are identical to the Γ(ext)

μ;ηη̄ above, except for the substitution of

A(p)
ηlm in place of W (p)

Iηlm and for the change of the sign. In Eq. (10) we define c Γ = n2/8πk3 and

s−1;lm = −
√

(l−m)(l +1+m)
2

, s0;lm = −m , s1;lm =

√
(l +m)(l +1−m)

2
. (11)

In [15] we demonstrated that Eqs. (7)–(11), when applied to a homogeneous sphere, reproduce
the results of Marston and Crichton [12].

Let us assume that the particles we consider are freely rotating at a temperature T . Then,
their angular velocity is given by

ωT =
√

kBT/I ,

where kB is the Boltzman constant and I is the moment of inertia around the axis of rotation;
ωT ≈ 104 sec−1 at T = 100K for the particles we deal with. Therefore, according to the sug-
gestion of Draine and Weingartner [7, 8], it is reasonable to assume that at such an angular
velocity the particles should experience only a torque averaged over a complete rotation. In
Ref. [15] we explained as such average of the radiation torque can be calculated through an
analytic procedure, to which we will refer as axial averaging. The relevant formulas are

〈Γ(ext)
μ;η̄η 〉 = cΓ ∑plm sμ;lm ∑ p̄l̄ W

(p)
Iηl,m−μS̄

(pp̄)∗
lml̄m

W ( p̄)∗
Iη̄ l̄m

,

〈Γ(sca)
μ;η̄η 〉 = −cΓ ∑plm sμ;lm ∑ p̄ p̄′ ∑l̄ l̄′ ∑m′ S̄

(pp̄)
l,m−μ,l̄,m′−μW ( p̄)

Iη l̄,m′−μS̄
(pp̄′)∗
lml̄′m′ W ( p̄′)∗

Iη̄ l̄′m′ ,
(12)

where the bar over the elements of the transition matrix indicates that they are calculated in
a frame of reference fixed to the cluster. We stress that the formulas corresponding to (12)
reported in Refs. [15, 16] were written with wrong indices but that the calculations were per-
formed using the correct expressions above [21, 22].
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3. Radiation torque on aggregated spheres

Since in this paper we focus on the stability of the rotation driven by the radiation torque, we
resolved to neglect any other torque. For instance, we neglect the frictional torque due to the
surrounding medium and the braking torques due to magnetic fields. In the present case, we
assumed that the particles are embedded in vacuo and, accordingly, we set n = 1. We stress,
however, that the mechanical effects of the embedding medium as well as those of magnetic
fields should be taken into account when a realistic description of the dynamics of the particles
is required. In this respect let us recall that a steady rotation of a free particle can occur only
around one of the principal axes of inertia through the center of mass and that in case braking
momenta are applied a stable rotation may occur only around the principal axis of maximum
moment of inertia [25].

The quantity which we actually calculated is the adimensional vector

Tη =
8πk

IIσTη
�ΓRadη ,

where �ΓRadη is the radiation torque calculated for incident light with polarization η and σ Tη
is the extinction cross section of the particle concerned for polarization η . All the aggregates
that we consider hereafter are composed of five spherical homogeneous scatterers whose space
arrangement is chosen so that no symmetry is present, but each of the aggregated spheres is

Table 1. Densities in g/cm3 and dielectric constants at λ = 380nm of the materials that
compose the clusters

ρ εr εi

Si 3.30 3.012 0.1005
C 1.85 2.773 2.766
Al 2.70 -16.49 2.856
Ag 10.49 -3.2 1.65

Table 2. Composition of the clusters and radii of the component spheres in nm

A 4 Si bSi=50 1 Al bAl=50
B 4 C bC=50 1 Al bAl=50
C 4 C bC=50 1 Ag bAg=50
D 4 C bC=50 1 Ag bAg=28

in contact with at least one other sphere of the aggregate. The materials we chose to build the
aggregates under study are the so-called astronomical silicates and amorphous carbon [26] to
which we added aluminum [27] and silver [28] because their density and/or dielectric function
are the most different from those of the other materials. The composition of the aggregates is
given in Table 2 where the radii of the component spheres are also reported. In this respect we
stress that in cluster D the radius of the sphere of Ag is 28 nm, so that its mass equals that of
a sphere of carbon. Table 3 reports, for all the clusters we investigated, the coordinates in nm
of the centers of the spheres, with respect to a frame of reference with origin in the center of
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Table 3. Coordinates of the centers of the spheres (in nm) with respect to the frame of
reference with origin at the center of mass. The principal moments of inertia are also given
in g · cm2 ×1028

Cluster A
x 37.945 37.771 -52.580 -141.093 124.855 I xx = 3.056
y 102.858 2.876 -37.061 -3.717 -46.254 I yy = 8.011
z -3.041 -1.160 -19.663 14.312 9.000 I zz = 10.000

Cluster B
x 41.771 32.317 -61.312 -146.417 114.447 I xx = 2.336
y 87.298 -12.249 -43.445 -2.367 -69.346 I yy = 4.652
z -1.741 -0.860 -19.856 14.357 8.901 I zz = 6.327

Cluster C
x -45.118 12.972 109.499 162.765 -29.401 I xx = 4.013
y -30.826 50.570 30.477 -47.477 141.221 I yy = 5.949
z -0.457 -0.563 -20.447 14.400 8.802 I zz = 8.892

Cluster D
x 36.207 36.414 -53.759 -142.421 123.711 I xx = 1.456
y 81.736 3.757 -36.662 -3.545 -44.941 I yy = 4.465
z -3.983 -1.148 -19.471 14.447 9.252 I zz = 5.372

mass and the axes along the principal axes of inertia, the z axis being chosen along the axis of
maximum moment of inertia. We also report the values of the principal moments of inertia.

All our calculations were performed using lM = 12 in order to ensure the complete cover-
gence of the quantities of interest [16, 17].

The results of our calculations for the transverse component of the radiation torque on clus-
ters A–D are reported in Figs. 1–4, both for unpolarized light and for linearly polarized light.
More precisely, panels (a) of each figure show a sketch of the geometry whereas panels (b)
report T⊥ = (T 2

x + T 2
y )1/2 for unpolarized light and panels (c) and (d) for linearly polarized

light with η = 1, 2, respectively, as a function of the direction of incidence of the incoming
radiation, given by the polar angles ϑ I and ϕI. The plane of reference for the linear polarization
is the meridional plane defined by kI and the z axis.

First, we note that the transverse component T⊥ does not vanish for incidence either parallel
(ϑI = 0◦) or antiparallel (ϑI = 180◦) to the axis of maximum moment of inertia, and that,
in linear polarization, it is not constant as ϕI varies. On the other hand, all the graphs show
a minimum for some value of ϑI. In our opinion, the first feature stems from the mismatch
between the distribution of the masses and the distribution of the dielectric properties. In fact,
we already stressed in Ref. [16] that the vanishing of the transverse torque can occur only
when the aggregate has a cylindrical symmetry axis coincident with the axis of rotation and the
incident wavevector is along this axis. In turn, the existence of the minima for ϑ I �= 0 suggests
that the rotation may be stable when the incidence is not along a principal axis of inertia.

4. Axial averages

The graphs presented in Sect. 3 give the dependence of the transverse torque T⊥ as a function
of the direction of incidence of the field. As regards the dependence on ϕ I, it may be useful to
remark that it gives information on the behaviour of T⊥ as a function of the orientation of the

#82709 - $15.00 USD Received 7 May 2007; revised 28 Jun 2007; accepted 28 Jun 2007; published 5 Jul 2007

(C) 2007 OSA 9 July 2007 / Vol. 15,  No. 14 / OPTICS EXPRESS  8966



−150

−100

−50

0

50

100

150

−50

0

50

100

150

−50

0

50

x

(a)

y

z

0

90

180

90
180

270
360

0

0.5

1

1.5

θ

(b)

φ

0

90

180

90
180

270
360

0

0.5

1

1.5

θ

(c)

φ 0

90

180

90
180

270
360

0

0.5

1

1.5

θ

(d)

φ

Fig. 1. T⊥ as a function of the angles of incidence ϑI and ϕI for cluster A of four spheres of
astronomical silicates (gray) and one sphere of aluminum (blue) whose geometry is shown
in (a). The light is unpolarized in (b), and linearly polarized with η = 1, 2 in (c) and (d),
respectively.
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Fig. 2. Same of Fig. 1 for cluster B of four spheres of amorphous carbon (gray) and one
sphere of aluminum (blue) whose geometry is shown in (a).
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Fig. 3. Same of Fig. 1 for cluster C of four spheres of amorphous carbon (gray) and one
sphere of silver (blue) whose geometry is shown in (a).
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Fig. 4. Same of Fig. 1 for cluster D of four spheres of amorphous carbon (gray) and one
sphere of silver (blue) whose geometry is shown in (a). The radius of the silver sphere is
28nm so that its mass is equal to the mass of a sphere of carbon.
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Fig. 5. Axial averages 〈T⊥〉 and 〈T‖〉 as a function of θI for cluster A.

particle around the axis of maximum moment of inertia (z axis). Therefore, provided the particle
is rotating around the z axis with a sufficiently high speed, it makes sense to consider the axial
averages around the axis of rotation. Accordingly, in Figs. 5–8 we present the axial averages
〈T⊥〉 =

√〈Tx〉2 + 〈Ty〉2 and 〈Tz〉 for the aggregates considered so far, both for unpolarized light
and for linearly polarized light with η = 1, 2. 〈Tz〉 gives the torque that actually drives the
rotational motion of the aggregate around the z axis.

We first note that in all the cases we considered the transverse torque vanishes for ϑ I =
0◦ and for ϑI = 180◦, i.e., for incidence along the axis of maximum moment of inertia. For
this incidence 〈Tz〉 never vanishes thus indicating that the particle is driven to accelerate its
rotational motion. This result is not surprising because, according to Ref. [16], performing the
axial average is equivalent to consider an average particle that is akin to an axially symmetric
particle. When the axis around which the average is performed coincides with the direction of
kI the result quoted in Ref. [16] follows at once. Moreover, the average of the transverse torque
has a deep, nearly vanishing minimum also for values of ϑ I that depend on the morphology of
the cluster and on the polarization. At these values of ϑ I the driving torque 〈Tz〉, may be small
but never vanishing.

It may be interesting to compare the results for cluster C and cluster D reported in Figs. 7
and 8, respectively. Actually both clusters have the same composition but the spheres of cluster
C are all of the same volume, whereas those of cluster D all have the same mass. In view of the
high density of silver, this implies that the principal moments of inertia of cluster C and D are
quite different from each other and, as a result, the values of ϑ I at which the average transverse
torque becomes nearly vanishing are different. In particular, we note that 〈T⊥〉 for cluster C
nearly vanishes at ϑI ≈ 100◦ for whatever polarization, whereas 〈T⊥〉 for cluster D does not
show an analogous deep minimum when the incident light is linearly polarized with η = 2.
For both clusters, however, the average driving torque does not vanish neither for incidence
along the axis of maximum moment of inertia nor at incidence at which the transverse torque
vanishes. We also notice that the driving torque is larger for cluster C that contains more silver
and has thus a higher absorptivity.
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Fig. 6. Same as Fig. 5 for cluster B.
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Fig. 7. Same as Fig. 5 for cluster C.

5. Conclusive remarks

The results that we presented in Sects. 3 and 4 show that, at least for the cases we considered, the
rotational stability under the affect of the radiation torque may be attained for incidence either
parallel or antiparallel to the axis of maximum moment of inertia (z axis). In fact, although
the instantaneous transverse torque does not vanish, its axial average does. Thus, provided the
initial rotational speed around the z axis is large enough, one could expect that the torque exerted
by the incident radiation has the only effect of increasing the angular speed. Of course, this
increase of rotational speed cannot go on indefinitely. Nevertheless, we recall that any braking
torque has been neglected, and that the presence of braking torques increases the stability of
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Fig. 8. Same as Fig. 5 for cluster D.

the rotational motion [25]. This problem has been already discussed by Marston and Crichton
[12].

We do not pretend that our present results apply to particles of any shape. Nevertheless,
the choice of the cluster model may help approximating the shape of particles that are often
met in practice. In this respect, let us recall that several particles of astrophysical interest are
believed to be composed of aggregated spheres, possibly of different dielectric properties, and
that the stability of alignment of the particles is relevant both for the dichroic polarization of
the starlight (see, e.g., [29]) and for the occurrence of photochemical reactions both on their
surface and in their interior.
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