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Abstract: Applicability of inverse scattering based imaging procedures can 
be broadened by developing new approaches exploiting only amplitude data. 
As a matter of fact, this can open the way to simpler and less expensive 
measurement set-ups. In this respect, a two-step based procedure for solving 
electromagnetic nonlinear inverse scattering problems from only amplitude 
measurements of the total field has been recently proposed [1,2]. However, 
in these latter both amplitude and phase of the incident field are still 
required. In this contribution, we show the possibility of achieving this 
information from the measured amplitude distribution of the incident field on 
the observation domain. In particular, a three steps imaging technique which 
exploits only amplitude measurements of the total and incident fields has 
been developed. The proposed procedure has been tested against benchmark 
experimental data available in the literature. The obtained results fully 
confirm the possibility of achieving faithful reconstructions of unknown 
targets without performing any phase measurements and any approximation 
on the scattering equations involved in the inverse scattering problems. 
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1. Introduction 

In inverse scattering problems, one looks for a quantitatively accurate description of the 
electrical and geometrical characteristics of an investigated region given a set of incident 
fields and measures of the corresponding total or scattered fields (both in amplitude and in 
phase) on a generic surface lying outside the region under test. Due to their wide range of 
potential applications, the development of accurate and reliable techniques for solving this 
kind of problems is nowadays a still important challenge [1-11]. 

By leaving aside peculiar characteristics of each approach, one of the main common 
drawbacks resides in the need of measuring both amplitude and phase of the scattered fields. 
As a matter of fact, in several areas of applied science it can be very difficult or very 
expensive or even not possible at all to perform a measure of the phase of a field. In 
particular, an accurate knowledge of the phase distribution involves sophisticated 
measurement equipments, which are increasingly expensive as the working frequency grows, 
so that phaseless measurements are indeed mandatory at optical frequencies. In addition, 
existence of minimally invasive (only amplitude) probes strongly suggests adoption of 
phaseless techniques also at microwave frequencies. In fact, these probes considerably 
simplify the electromagnetic scenario with respect to classical (amplitude and phase) probes, 
since they avoid multiple interactions and do not require probe compensation. For these 
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reasons, several approaches for solving inverse scattering problems from only amplitude 
distribution of the scattered [7-9] and of the total field [10,11] have been proposed in the 
literature.  

Within this framework, an approach based on only amplitude measurements of the total 
field has been recently proposed by the authors [1,2], first with reference to the case of 
measures taken on a closed curve surrounding the domain under test [1] and then to that of 
transmitters and receivers placed over two truncated lines somehow ‘enclosing’ the 
investigated domain [2]. This approach, which opposite to other contributions [7,8] tackles the 
inverse problem in its full nonlinearity, splits the problem into two steps. In the first one, the 
scattered field is estimated from the measurement of the square amplitude of the total field, 
while the second step is aimed at estimating the unknown dielectric properties from the 
estimated scattered field. Notably, the separation of the problem into two steps allows a better 
control of the overall non-linearity with respect to single step procedures [10,11]. In fact, as 
shown in [1,2] and briefly recalled in the following, a convenient exploitation of theoretical 
results on the inversion of quadratic operators [12] and on field properties and representations 
[13] allows to successfully solve the first step, while all the available knowledge about 
“standard” inverse scattering problems is exploited in the second step. On the other side, this 
imaging technique [1,2] still requires the knowledge of both amplitude and phase of the 
incident field on the measurement curve and within the investigation domain, so that, in a 
sense, is not a strictly phaseless method, as it happens instead for [10,11].  

To overcome this limitation, in this paper we show the possibility of estimating the 
required (complex) incident field from its amplitude distribution, as measured on the 
measurement curve, through the solution of a traditional Phase Retrieval (PR) problem 
[12,14-17]. This allows us to introducing a new three-step procedure wherein the huge amount 
of knowledge about PR problems [12,14-17] can be exploited in the first step, while the 
advantages of the original approach [1,2] are preserved in the following two steps, consisting 
in estimating the scattered field and the permittivity profile, respectively. In particular, 
different from [1], this latter task is pursued by making use of the Contrast Source - Extended 
Born (CS-EB) inversion method [19,20]. This recently introduced approach relies on a simple 
rewriting of the scattering equations which has been to some extent inspired by the work by 
Habashy and co-workers on the so-called Extended Born Approximation (EBA) [21].  
However, unlike the EBA, the CS-EB formulation does not introduce any approximation on 
the scattering equations. Hence, the CS-EB model describes inverse scattering problems in 
their full non-linearity and it has no theoretical restriction on the class of scatterers which can 
be dealt with. In addition, analytical studies [19] and experimental comparisons [20] have 
demonstrated that the CS-EB inversion method results to be less prone to false solutions (i.e., 
less dependent from the adopted initial estimate) than other inversion schemes dealing with 
the inverse scattering problem in its full non linearity. Therefore, we make use of the CS-EB 
inversion method in the final step of the proposed approach in order to further improve its 
overall effectiveness.   

The actual feasibility and performance of the new phaseless non-linear inversion method 
which is proposed has been tested against experimental data provided by the Institute Fresnel 
of Marseille, France, recently proposed as a benchmark test for inverse scattering methods 
[18]. 

2. Mathematical formulation and rationale 

For the sake of simplicity, we refer in the following to the 2D scalar geometry shown in Fig. 
1. The region under test D, which without loss of generality is assumed to be a circle, is 
embedded in a background medium of dielectric permittivity εb and encloses one or more 
homogeneous objects of complex dielectric permittivity equal to εr(r)εb. The magnetic 
permeability is everywhere equal to μo. As usual, χ(r)=[εr(r)-1] defines the contrast function.  
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Fig. 1. Reference geometry. 
 

Let us consider as incident fields TM-polarized unitary plane or cylindrical waves coming 
from a curve Γs encircling the targets and assume that measurement probes are located on 
circle Γo of radius Ro. According to the CS-EB model, the scattering problem at hand can be 
exactly formulated through the system of coupled integral equations [19]: 
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wherein the variables θi and θo denote the generic incidence angle and the generic observation 
angle, respectively and g(·) is the free-space Green’s function. For each θi, Einc,i is the incident 
field in D, J is the contrast source [5] induced by this latter in D, Einc,e and Etot are the incident 
and total field on Γo, respectively and Es is the scattered field from the unknown object. 

imod
A

 

and 
e
A  denote the integral operators relating the contrast source to the scattered 

fields outside and inside the domain under test, respectively, while the auxiliary function p is 
defined as [19]: 

1
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When considering the inverse scattering problem in the framework of the CS-EB model 
given by equations (1.a) and (1.b), the unknowns quantities are then given by the contrast 
source J and the auxiliary function p, in which the “usual” contrast unknown χ is embedded. 
It is worth to remark that, despite the CS-EB model is just a simple rewriting of the traditional 
Contrast Source model [5], it has proved to be a more effective tool to formulate and solve 
both forward and inverse scattering problems [19]. Notably, while its derivation was inspired 
by some mathematical and physical considerations related to presence of losses in the host 
medium and/or in the targets [19,21], processing of experimental data has shown that accurate 
and reliable results can be achieved also for lossless inhomogeneous targets in free space [20].  
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Traditionally, in standard inverse scattering problems, one assumes the knowledge of the 
total fields in both amplitude and phase. As incident fields are supposed to be known, this is 
equivalent to the knowledge of the scattered fields for each illumination. The problem we 
want herein to solve consists instead in retrieving the dielectric characteristics of a region 
under test from measurements of square amplitude distribution of the total and incident fields 
on the measurements domain Γo. Accordingly, no phase measurements are required.  

Formally, our aim is to determine the contrast function χ(r), or equivalently the auxiliary 
function p(r), starting from the knowledge of the square amplitude distribution of the total and 
incident field on Γo. In order to do that, under actual conditions, we have first to come to a 
convenient finite dimensional approximation of the problem. This approximation should be 
such to lead to a finite number of experiments and measurements, while possibly not 
excluding any useful information. In this respect, it proves fruitful to recall properties and 
possible representations of both scattered and incident fields, which will also allow to develop 
and discuss the three steps procedure outlined in the Introduction.  

With reference to the geometry of Fig. 1, it can be proved that the scattered field 
corresponding to a given incident field can be accurately represented with a number of Fourier 
harmonics given by 2βa, a being the radius of the minimum circle enclosing the target 
[17,22]. As a Fourier series can be turned into a Dirichlet sampling series [17], 2βa samples 
uniformly spaced in angle accurately represent each scattered field as well. By using 
reciprocity, one can also prove that the number of non-superdirective independent incident 
fields impinging on the domain under test is 2βa as well [23]. Hence, by excluding 
superdirective sources, 2βa plane waves uniformly spaced in angle form a complete family of 
independent incident fields.  Therefore, as a function of θi and θo, the scattered field can be 
accurately represented by a number of samples given by (2βa)×(2βa)=(2βa)2. Note that, by 
virtue of reciprocity, only one half of these samples is actually independent [23]. 

As far as the incident fields as measured on Γo are concerned, a different result holds true. 
In fact, by paralleling the above reasoning on the representation of the incident field in D, one 
can prove that each incident field on Γo can be accurately represented by 2βb Dirichlet 
samples (b being the radius of the circle Γo, see Fig. 1), and that 2βb (non-superdirective) 
independent incident fields (constituted by plane waves uniformly spaced in angle) exist 
therein. Therefore, as discussed for the scattered field, the incident field on Γo as a function of 
both θi and θo can be accurately represented by a number of samples given by 
(2βb)×(2βb)=(2βb)2. Note that also in this case only one half of these samples is actually 
independent by virtue of reciprocity [23].  

Let us explicitly observe that, when considering the square amplitude patterns of the 
above fields, the number of samples required for a faithful representation becomes four times 
larger (with respect to amplitude and phase measurements) as the sampling step has to be 
halved along each of the two coordinates.  

3. A three steps “phaseless” inverse scattering approach  

3.1 First step: estimating the incident filed  

The first step of the approach aims at estimating the incident field given its amplitude 
distribution on the measurement domain (and possibly in some additional points). Note that 
this information plays a key role in both the following steps, as the knowledge of the incident 
field on the measurement domain is required to estimate the scattered field, while the 
knowledge of the incident field within the domain under test is needed in the inverse 
scattering procedure. 

First, let us assume that the primary source adopted to generate the different incident field 
is always the same for each fixed θi, so that a single estimation problem has to be dealt with. 
Note this assumption entails no loss of generality, as 2βb different estimation problems of the 
same kind would have instead to be solved in case of different primary sources. Then, by 
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exploiting an expansion into cylindrical harmonics, the field radiated by this primary source 
(i.e., the incident field) can be accurately represented as: 

( ) ( ) ( ) ( )2, exp
P

inc n n
n P

E r a H r jnθ β θ
=−

′ ′ ′ ′= ∑ ,   (3) 

wherein r′ and θ′ are the polar coordinates of the generic observation points in a reference 
system centred on the primary source, and 

NcP Δ+= β2 ,     (4) 

wherein c is the radius of the minimum circle enclosing the source, and ΔN controls the 
approximation error of the representation (3), which decays exponentially fast with increasing 
ΔN [24]. 

Since, provided r’ is larger than half a wavelength [24], expansion (3) is valid for any pair 
(r′,θ′), from the knowledge of the {an} coefficients we can obtain the required information, 
i.e., the incident field in both amplitude and phase on the measurement domain Γo as well as 
within the domain under test D. Hence, the problem at hand is now that of estimating the 
2P+1 coefficients {an, n=-P,…,-1,0,1,…P} from only amplitude measurements of the incident 
field itself on Γo (or part of it).  

The above problem can be regarded as a PR problem, as the knowledge of the incident 
field phase and the knowledge of the coefficients {an} are each other equivalent.  

PR problems have received great deal of attention in different fields, as testified by the 
many contributions present in the literature [14-17]. In particular, it has been shown that PR of 
radiated (or scattered) fields under actual measurement conditions is indeed possible [25-27]. 
These results rely on the circumstance that (radiated or scattered) fields are essentially band-
limited functions with respect to observation variables and, as a consequence, their squared 
amplitude distributions are band-limited as well. Therefore, provided data are properly 
sampled, there is no loss of information (but for very negligible approximations comparable to 
noise) associated to the fact that data are sampled. Then, the presence of noise on data can be 
conveniently dealt with by defining a suitable ‘generalized solution’ as the global minimum of 
a cost functional [25]. Accordingly, the coefficients of the representation (3) can be 
determined by iteratively minimizing the squared distance between the computed square 
amplitude distribution of the incident field on Γo and the measured one M2(r,θ), i.e., 

( ) ( ) ( ) ( )
22

2 (2), exp ,
P

n n o
n P

M r a H r jn rθ β θ θ
=−

− ∈Γ∑ .  (5) 

However, from the huge amount of results available on 1D PR problems, it is known that 
the problem of estimating the coefficients of (3) has not generally a unique solution when 
using a single measurement surface [12]. Therefore the problem arises to achieve a 
“convexification” of (5), meant to lead the optimization process to the actual solution, i.e., the 
actual phase distribution of the incident field.  

In order to overcome this not trivial difficulty, two different strategies can be devised. 
The first one consists in providing a reasonable starting guess for the optimization process 
and/or to exploit a priori information about the primary source used in the experimental set-
up. Of course, this “software” strategy strictly depends on the availability of a ‘off line’ 
characterization of the source as much reliable and accurate as possible. Alternatively, a more 
robust “hardware” strategy can be devised in which two sets of independent measurements of 
the amplitude distribution of the incident field are exploited [12]. Hence, the PR problem is 
solved without the need of a priori information, [but for the size and shape of the source, 
which allow to fixing the number of terms to be retained in (3)]. On the other hand, in order to 
achieve independent information, the two scanning surfaces should be sufficiently spaced in 
terms of the wavelength and their distance must be known with wavelength accuracy [12]. 
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This latter requirement, which may seem problematic, is indeed not surprising if one takes 
into account that a sub-wavelength reconstruction accuracy is required at the end of the 
overall reconstruction process. 

As a final comment, let us explicitly note that, while the present paper is devoted to 2D 
inverse scattering problems, thus dealing with 1D phase retrieval problems in this first step, 
actual 3D inverse scattering problems, which are the final goal, will require to deal with 2D 
phase retrieval problems, wherein convexification of functional (5) is much simpler [12]. 

3.2 Second step: estimating the amplitude and phase of the scattered field  

The second step of the procedure is aimed at retrieving the amplitude and phase of Es from the 
measurements of |Etot(θo,θi)|

2. As |Etot|
2 = |Einc,e|

2 + |Es|
2 + 2ℜe[Es (Einc,e)

*], where ℜe[°] denotes 
the real part of its argument, and the incident field Einc,e is now available on the observation 
domain Γo (in amplitude and phase), the problem can be pursued by simply imposing the 
equality amongst the measured values of the square amplitude of the total field and the one 
corresponding to the current value of the scattered field. While enforcing such an equality, it 
is convenient that both terms are deprived from |Einc,e|

2 [1], as this latter choice allows to avoid 
the oversampling which would result in the discretization of the initial equation because of  
the properties of |Einc,e|

2
. Accordingly (see also [1]), by defining the quadratic operator B as: 

( )*2

,( ) 2s s s inc eE E e E E
Δ

⎡ ⎤= + ℜ ⎢ ⎥⎣ ⎦
B ,                                           (6) 

the problem of estimating Es is formulated as the inversion of the nonlinear equation: 

22

,( ) ( , ) ( , )s tot o i inc e o iE E Eθ θ θ θ= −B .                                      (7) 

wherein |Etot(θo,θi)|
2 and |Einc,e(θo,θi)|

2 are the measured amplitudes of the total and incident 
fields, respectively. Then, one can estimate the complex scattered field by minimizing a 
functional given by the norm of the discrepancy between the measured amplitude distribution 
pattern, given by the right hand side of (7) and the one calculated using (6). In particular, the 
unknown scattered field is represented by means of a finite dimensional expansion (Fourier 
harmonics in the following) and the coefficients of the representation become the unknowns 
of the problem in the second step. 

By addressing the reader to [1,2] for a more detailed discussion, let us here recall the 
differences of the above estimation problem with the one faced in the first step. First, note that 
in this case both the unknown, i.e., Es(θo,θi), and the data, i.e., |Etot(θo,θi)|

2, of the problem are 
functions of two variables (i.e., θi and θo). Therefore, this latter procedure is eventually related 
to 2D PR problems which, unlike 1D ones, have got a unique solution, but for a zero measure 
set of cases and trivial ambiguities [12]. In this respect, as discussed with more details in [1], it 
is important to remark that a key point in the correct setting of the scattered field retrieval 
procedure is indeed that of correctly sampling the (possibly noisy) data. When these sampling 
rules are fulfilled, and a generalized solution has been defined in order to take into account 
noise on data, one can expect that, within the required accuracy, the continuous problem and 
its discrete counterpart are equivalent (as discussed at the end of previous section), so that 
only the possible occurrence of false solutions has to be avoided [1]1.  

As a second obvious distinction, note problem (7) differs from the usual PR one [12] as 
the operator B  to be inverted has both a non-linear term (due to the square amplitude of the 
scattered field, i.e. the unknown of the problem) and a linear one (given by the interference 
between the incident field and the unknown scattered field). As a consequence, whenever the 
                                                           

1 It also interesting to note that in case aspect-limited data are dealt with, such a circumstance is compensated 
from the fact that an aspect limited part of the scattered field is also looked for. As a matter of fact, it is possible to 
show that the scattered fields can be still correctly retrieved on the measurement limited domain but for some 
(negligible) degradation on the border of the measurement region [2].  
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intensity of the scattered field does not overcome that of the incident one, the linear term is 
dominant in the operator to be inverted, so that, by using this information, solution of (7) is 
relatively simple. Unfortunately, this hypothesis is not generally satisfied, so that the problem 
at hand is non-linear. Therefore, besides requiring some form of regularization to tackle ill-
posedness, the inversion of operator B  is subject to possible false solutions corresponding to 
local minima of the cost functional whose global minimum defines the solution. Luckily, a 
second difference with respect to standard PR problems comes into play. As a matter of fact, 
the interference between the incident and scattered fields, by virtue of previously discussed 
properties, makes the essential dimension of the space of the data larger as compared to the 
case wherein only the square amplitude of the unknown function is given [1,2]. This 
circumstance comes out to be of the outmost importance, as it has been proved that in solving 
quadratic inverse problems of this kind false solutions can be avoided provided that a 
sufficiently large ratio between the number of (linearly) independent data and the number of 
unknowns is available [12]. Accordingly, the presence of a linear term (the interference) is of 
help in successfully reconstructing the unknown scattered field, as by properly choosing the 
incident field one can greatly enlarge the number of independent data, thus avoiding at all any 
false solution problem. 

For the geometry at hand (see Fig. 1), implications arising from this latter circumstance 
have been extensively discussed in [1], leading to the following important results: 

(i) for any given values of a and b, one can fix locations of primary sources and 
measurements probes such to collect all the available information while being non 
redundant;  

(ii) for any given a, one can choose the value of b in an optimal fashion i.e., such to 
avoid false solutions while reducing as much as possible the number of required 
experiments (and measures) and the effect of measurements noise as well. In 
particular, such a value must satisfy the simple rule b>bcr=(-1+√6) a; 

(iii) for any given a, as discussed in the following, one can determine the maximum 
amount of information which can be extracted in the inverse scattering step.  

Therefore, provided the above rules are fulfilled, solution of the inverse problem (7) can be 
safely performed, i.e., avoiding occurrence of false solutions. Note that, by properly taking 
into account the different geometry, similar kind of rules can be derived also in the case of 
aspect limited data [2]. 
 In summary, the main idea of the method proposed in [1] and adopted in the 
following is indeed that of taking advantage of the above mentioned sampling criteria together 
with results on quadratic inverse problems to determine which the proper number of data 
which have to be collected. As shown in [1,2] and in the results of the present paper, it seems 
that the proposed method (and the corresponding rules) allow robust and reliable 
reconstructions of the scattered field amplitude and phase patterns. 

3.3 Third step: estimating the permittivity profile 

Given the scattered field Es and incident field Einc,i estimated in the previous steps, the last 
step of the procedure consists in the reconstruction of the unknown dielectric profile.  

As mentioned in the introduction, in this step we make use of the CS-EB inversion 
method [19,20]. This method, which has proved to be an effective and robust tool to solve 
inverse scattering problems in their full-nonlinearity [19,20], consists of two parts. First, one 
aims at  determining the auxiliary function p from the (reconstructed) scattered field data, 
then, from the knowledge of this latter one achieves the dielectric profile, i.e., the contrast 
function χ, by inverting point-wise equation (2). 

As far as the first part of the inversion method is concerned, this is formulated as the 
problem of finding, for a fixed frequency, the global minimum of the cost functional: 
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wherein the first two terms directly descend from the CS-EB formulation eqs. (1.a) and (1.b), 
while the third one is the Tichonov regularization [28], whose weighting parameter τ is 
iteratively updated during the minimization process, being in each iteration equal to the value 
of the cost functional normalized to the mesh dimension. In this way, the effect of the 
regularization term is more relevant at the beginning of the minimization process, while its 
contribution decreases for increasing iterations. Note that, due to the large number of 
unknowns involved in (8), the minimization is performed using a CG-FFT based scheme 
[19,20].  

In (8), Nv is the total number of illuminations, i.e., the number of scattering experiments. 
Of course, this latter should be such to collect all the available information about the targets, 
while being non redundant. From the field properties recalled in Section 2, it immediately 
descends that 2βa incident fields (plane waves or cylindrical waves) have to be considered at 
least.  

4. Testing on experimental data  

The performances of the proposed three-step phaseless approach have been tested using the 
experimental data provided by the Institute Fresnel of Marseille [18]. In these experiments, 
measurements are collected under an aspect limited configuration in which, for each position 
of the primary source θs∈[0°,360°], measurements are gathered over an open arc θo∈[θs 
+60°,θs+300°]. In particular, we have considered the FoamDielIntTM.exp data-set [18] which 
is concerned with an inhomogeneous target embedded in free space. The target is made of two 
purely dielectric cylinders, the outer one of relative permittivity 1.45±0.1 and radius 0.04m 
and the inner one (which is completely embedded in the first one) of relative permittivity 
3±0.3 and radius 0.015m. At the working frequency of 4GHz, a square investigated region of 
side 0.2062m, subdivided in 50×50 pixels has been assumed. The overall number of scattering 
experiments is Nv=72 and M=61 measurements are collected for each one of them.  

As the data-base provides amplitude and phase of the total and incident fields as 
measured over the observation domain, we can conveniently exploit it to check the accuracy 
of all the three steps of the proposed approach.  

In the first step, by using the measured square amplitude distribution of the incident field, 
we have solved the problem described in Section 3.1. Since the incident field is the same for 
all the scattering experiments [18], it is sufficient to solve the estimation problem for the case 
θs=0° and θo∈[60°, 300°]. The incident field has been modelled using the expansion (3), with 
P=7 and the pertaining coefficients have been determined by minimizing the cost functional 
(5). The minimization has been initialized by assuming a field having the measured amplitude 
and a constant (zero) phase on the measurement surface, i.e., from the blue-dotted pattern of 
Fig. 2. In Fig. 2 we compare the real (Fig. 2.a) and the imaginary parts (Fig. 2.b) of the 
measured incident field (red dotted-line) provided by the data-set, the estimated one (green 
solid-line) and the starting guess (blue dotted-line). As it can be observed, notwithstanding the 
starting guess is quite different from the actual pattern, a good reconstruction is achieved. As 
expected, a slightly worse estimation is obtained at the end of the observation arc due the 
truncation of the measurement domain [17]. Also note that similar results can be obtained by 
using the field radiated by a line source as starting guess.  

On the other side, it has to be noted that other starting guesses (such as for example 
completely random patterns) do not allow a faithful reconstruction of the incident field. 
However, a large number of numerical simulations (measured data were not available) has 
shown that by using two sufficiently different measurement surfaces (which can also be  
achieved by moving the source) the incident field is accurately retrieved even starting from a 
completely random initial point (see also [12]). 
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(a) (b) 

Fig. 2. Real (a) and imaginary (b) part of the measured incident field (red-dotted line), the 
estimated one (green-solid line) and the starting guess (blue-dotted line). 

 
In the second step, by using the estimated incident field as computed on Γo through (3) 

and the measured square amplitude distribution of the total field, we have solved the problem 
(7). The complex scattered field has been modelled as a superposition of Fourier harmonics 
[1], whose number is related to the electrical dimension of the investigated domain [17]. The 
coefficients of this representation [i.e., the actual unknowns of problem (7)] are evaluated by 
minimizing the squared distance between the actual total field and the experimental one, as 
measured on the 240° arc. A random distribution for the unknowns has been used as starting 
guess in the minimization procedure.  

From the comparison between the retrieved scattered field and the actual one (which is 
available in the considered data set) for all the illuminations, it can be observed that a good 
reconstruction for both the amplitude (see Fig. 3) and phase (see Fig. 4) distribution is 
achieved, although, similarly as before, a slightly worse reconstruction is achieved at the end 
of the observation arc, due to the truncation of the measurement domain [2,17].  

It is interesting to note that since the radius of circle wherein the receivers are located is 
rm=1.765m and bcr=0.2113m, the condition rm>bcr [1] holds. In agreement with the analysis in 
[1], this condition indeed prevents local minima occurrence. In the minimization process the 
scattered field is represented through a 2D Fourier expansion where 9x9 coefficients represent 
the actual unknowns of the problem.  

 

  
(a) (b) 

Fig. 3. Amplitude distribution of the measured scattered field (a) and of the estimated one (b) 
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(a) (b) 

Fig. 4. Phase distribution of the measured scattered field (a) and of the estimated one (b) 
 
The third and final step of the proposed phaseless imaging technique deals with a 

standard inverse scattering problem. Of course, the estimated scattered and incident fields are 
necessary as input data in this step. The “background” (better to say, an initial contrast 
function slightly different from zero) has been used as starting guess in the minimization of 
(8). The very accurate reconstruction of the real part of the contrast function which is 
achieved is shown in Fig. 5.a. Note that the corresponding imaginary part has not been 
displayed as, in agreement with the lossless nature of the targets, this latter is indeed 
negligible with respect to the real part. The total number of iterations required in the 
minimization process is 176 and the final value of the cost functional is 4.54e-3. The 
numerical procedure is stopped when the difference between the previous value of the cost 
functional (8) and the actual one is less than 1e-4. The maximum value of the estimated 
contrast function is 1.84, which is within the measurement accuracy [18].  The overall 
computational time is about of 10 minutes with an AMD-Athlon 64 800MHz Processor.  

As final remark to the above results, note that the considered experimental data-set is 
known in the literature as a benchmark for non-linear inverse scattering methods, as linearized 
approaches are understood to fail when applied to it [18]. 

It is worth to note that a comparable reconstruction is actually obtained when using the 
measured (amplitude and phase) scattered fields, thus confirming the possibility of performing 
a faithful phaseless quantitative imaging without any loss of accuracy.  

It has also to be remarked that, while the Marseille data are usually elaborated by using 
multi-frequency (i.e., broad-band) data [18], the accurate results achieved herein only rely on 
monochromatic data. Of course, use of multi-frequency information can further improve the 
final result also in this case. To show this, we have considered data at 4GHz and 8GHz. In 
particular, after applying the three-step procedure to the 4GHz data, we have repeated the first 
two steps (i.e., estimating the incident and scattered fields, respectively) with the 8GHz data 
and then we have tackled the final inverse scattering step exploiting a frequency hopping 
scheme [20] in which the reconstructed contrast at 4GHz has been used as a starting guess for 
the inversion at 8GHz. In this latter case, the total number of iterations is 92, the final value of 
the cost functional is 1.02e-2 and the final maximum value of the contrast function is 1.89. As 
it can be observed from Fig. 5.b a further improvement of the reconstruction is achieved as the 
contrast now appears to be sharper, both in terms of maximum value and shape 
characterization. Also note that the position of the inner cylinder is much more accurate. 
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(a) (b) 

Fig. 5.Real part of the estimated contrast function at f=4GHz (a), and f=8GHz (b) 
 

5. Conclusions  

A new three-step imaging technique based on phaseless measurements has been presented and 
tested against experimental data. The good results achieved with experimental data commonly 
adopted to benchmark inverse scattering procedures have fully confirmed the possibility of 
performing a faithful phaseless nonlinear imaging by properly combining different “know-
how”, ranging from results on phase retrieval problems to advanced electromagnetic inverse 
scattering techniques. It is interesting to remark that the processing required to extract the 
information needed by the inverse scattering procedures (i.e., the incident and the scattered 
field complex distributions) represents a negligible part of the overall computational time. 
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