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When is the average number of saddle points typical?
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Abstract – A common measure of a function’s complexity is the count of its stationary points.
For complicated functions, this count grows exponentially with the volume and dimension of
their domain. In practice, the count is averaged over a class of functions (the annealed average),
but the large numbers involved can produce averages biased by extremely rare samples. Typical
counts are reliably found by taking the average of the logarithm (the quenched average), which
is more difficult and not often done in practice. When most stationary points are uncorrelated
with each other, quenched and annealed averages are equal. Equilibrium heuristics can guarantee
when most of the lowest minima will be uncorrelated. We show that these equilibrium heuristics
cannot be used to draw conclusions about other minima and saddles by producing examples among
Gaussian-correlated functions on the hypersphere where the count of certain saddles and minima
has different quenched and annealed averages, despite being guaranteed “safe” in the equilibrium
setting. We determine conditions for the emergence of non-trivial correlations between saddles,
and discuss the implications for the geometry of those functions and what out-of-equilibrium
settings might be affected.
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Random high-dimensional energies, cost functions, and
interaction networks are important across disciplines: the
energy landscape of glasses, the likelihood landscape
of machine learning and inference, and the interactions
between organisms in an ecosystem are just a few exam-
ples [1–4]. A traditional tool for making sense of their
behavior is to analyze the statistics of points where
their dynamics are stationary [5–8]. For energy or cost
landscapes, these correspond to the minima, maxima, and
saddles, while for ecosystems and other non-gradient dy-
namical systems these correspond to equilibria of the dy-
namics. When many stationary points are present, the
system is considered complex.
Despite the importance of stationary point statistics

for understanding complex behavior, they are often calcu-
lated using an uncontrolled approximation. Because their
number is so large, it cannot be reliably averaged. The
annealed approximation takes this average anyway, risk-
ing a systematic bias by rare and atypical samples. The
annealed approximation is known to be exact for certain
models and in certain circumstances, but it is used outside
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those circumstances without much reflection [9–11]. In
a few cases researchers have instead made the better-
controlled quenched average, which averages the logarithm
of the number of stationary points, and found deviations
from the annealed approximation with important impli-
cations for behavior [12–18]. Generically, the annealed
approximation to the complexity is wrong when a non-
vanishing fraction of pairs of stationary points have non-
trivial correlations in their mutual position.

A heuristic line of reasoning for the appropriateness of
the annealed approximation is sometimes made when the
approximation is correct for an equilibrium calculation on
the same system. The argument goes like this: since the
limit of zero temperature in an equilibrium calculation
concentrates the Boltzmann measure onto the lowest set
of minima, the equilibrium free energy in the limit to zero
temperature will be governed by the same statistics as
the count of that lowest set of minima. This argument is
strictly valid only for the lowest minima, which at least in
glassy problems are rarely relevant to dynamical behavior.
What about the rest of the stationary points?

In this paper, we show that the behavior of the ground
state, or any equilibrium behavior, does not govern

61003-p1



Jaron Kent-Dobias

whether stationary points will have a correct annealed
average. In a prototypical family of models of ran-
dom functions, we determine a condition for when an-
nealed averages should fail and some stationary points
will have non-trivial correlations in their mutual posi-
tion. We produce examples of models whose equilibrium is
guaranteed to never see such correlations between thermo-
dynamic states, but where a population of saddle points
is nevertheless correlated. The Supplementary Material
annealed.nb recreates the data and figures of this paper.

We study the mixed spherical models, which are mod-
els of Gaussian-correlated random functions with isotropic
statistics on the (N − 1)-sphere. Each model consists of a
class of functions H: SN−1 → R defined by the covariance
between the functions evaluated at two different points
σσσ1,σσσ2 ∈ SN−1, which is a function of the scalar product
(or overlap) between the two configurations:

H(σσσ1)H(σσσ2) =
1

N
f

(

σσσ1 · σσσ2

N

)

. (1)

We will further take the distribution of H to be centered,
i.e., H(σσσ) = 0 for all σσσ ∈ SN−1, which is equivalent to
the absence of any deterministic term (or spike) in the
function. Specifying the covariance function f uniquely
specifies the model. The series coefficients of f need to
be non-negative in order for f to be a well-defined co-
variance. The case where f is a homogeneous polynomial
has been extensively studied, and corresponds to the pure
spherical models of glass physics or the spiked tensor mod-
els of statistical inference [19]. Here our examples will be
models with f(q) = 1

2 (λq
3 + (1 − λ)qs) for λ ∈ (0, 1),

called 3 + s models1. These are examples of mixed spher-
ical models, which have been studied in the physics and
statistics literature and host a zoo of complex orders and
phase transitions [13,20–26].
There are several well-established results on the equilib-

rium of this model. First, if the function χ(q) = f ′′(q)−1/2

is convex then it is not possible for the equilibrium so-
lution to have non-trivial correlations between states at
any temperature [13,22]2. This is a strong condition on
the form of equilibrium order. Note that non-convex χ

1Though the examples and discussion will focus on the 3+s mod-
els, most formulas (including the principal result in (12)) are valid for
arbitrary covariance functions f under the condition that f ′(0) = 0,
i.e., that there is no linear field in the problem. This condition is
necessary to ensure that what we call “trivial” correlations are ac-
tually zero correlations: in the absence of a field, trivially correlated
points on the sphere are orthogonal. This simplifies our formulas by
setting the overlap q0 between trivially correlated configurations to
zero, which would otherwise be another order parameter, but reduces
the scope of this study. The trivial overlap q0 is also important in
situations where a deterministic field (or spike) is present, as in [15],
but deterministic fields are likewise not considered here.

2More specifically, convex χ cannot have an equilibrium order
with more than 1rsb order among the configurations. In equilibrium,
1rsb corresponds to trivial correlations between thermodynamic
states, but nontrivial correlations exist within a state at non-zero
temperature. When temperature goes to zero, 1rsb in equilibrium
reduces to replica symmetry among the lowest-lying states. Because
in this paper we focus on symmetry breaking between stationary

Fig. 1: A phase diagram of the boundaries we discuss in this
paper for the 3+s model with f = 1

2
(λq3+(1−λ)qs). The blue

region shows models which have some stationary points with
nontrivial correlated (rsb) structure, and is given by Gf > 0
where Gf is found in (12). The yellow region shows where
χ(q) = f ′′(q)−1/2 is not convex and therefore non-trivial corre-
lations between states are possible in equilibrium. The green
region shows where non-trivial correlations exist at the ground
state, adapted from [27]. We find that models where correla-
tions between equilibrium states are forbidden can nonetheless
harbor correlated stationary points.

does not imply that you will see non-trivial correlations
between states at some temperature. In the 3 + s mod-
els we consider here, models with s > 8 have non-convex
χ and those with s ≤ 8 have convex χ independent of
λ. Second, the characterization of the ground state has
been made [13,20,23,27]. In the 3+ s models we consider,
for s > 12.430 . . . non-trivial ground state configurations
(more than 1rsb) appear in a range of λ. These bounds on
equilibrium order are shown in fig. 1, along with our result
for where the complexity has non-trivial correlations be-
tween some stationary points. As evidenced in that figure,
correlations among saddles are possible well inside regions
that forbid them among equilibrium states.
There are two important features which differentiate

stationary points σσσ∗ in the spherical models: their en-

ergy density E = 1
NH(σσσ∗) and their stability μ = 1

N ·
TrHessH(σσσ∗). The energy density gives the “height” in
the landscape, while the stability governs the spectrum of
the stationary point. In each spherical model, the spec-
trum of every stationary point is a Wigner semicircle of
the same width μm =

√

4f ′′(1), but shifted by constant.
The stability μ sets this constant shift. When μ < μm,
the spectrum has support over zero and we have saddles
with an extensive number of downward directions. When
μ > μm the spectrum has support only over positive eigen-
values, and we have stable minima3. When μ = μm, the
spectrum has a pseudogap, and we have marginal minima.

points, we consider this form of rsb in equilibrium trivial because it
does not imply any non-trivial correlations between states.

3Saddle points with a subextensive number of downward direc-
tions also exist via large deviations of some number of eigenvalues
from the average spectrum.
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D(μ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

2
+ log

(

1

2
μm

)

+
μ2

μ2
m

, μ2 ≤ μ2
m,

1

2
+ log

(

1

2
μm

)

+
μ2

μ2
m

−
∣

∣

∣

∣

μ

μm

∣

∣

∣

∣

√

(

μ

μm

)2

− 1− log

⎛

⎝

∣

∣

∣

∣

μ

μm

∣

∣

∣

∣

−
√

(

μ

μm

)2

− 1

⎞

⎠ , μ2 > μ2
m.

(4)

The number N (E, μ) of stationary points with energy
density E and stability μ is exponential in N . Their com-
plexity Σ(E, μ) is defined by the average of the logarithm
of their number: Σ(E, μ) = 1

N logN (E, μ). More often
the annealed complexity is calculated, where the average
is taken before the logarithm: Σa(E, μ) = 1

N logN (E, μ).
The annealed complexity has been computed for these
models [24,28], and the quenched complexity has been
computed for a couple examples which have non-trivial
ground states [13,16]. The annealed complexity bounds
the complexity from above. A positive complexity indi-
cates the presence of an exponentially large number of
stationary points of the indicated kind, while a negative
one means it is vanishingly likely they will appear. The
line of zero complexity is significant as the transition be-
tween many stationary points and none.
In these models, trivial correlations between stationary

points correspond to zero overlap: almost all stationary
points are orthogonal to each other. This corresponds to
replica symmetric (rs) order. The emergence of nontrivial
correlations, and the invalidity of the annealed approxima-
tion, occurs when some non-vanishing fraction of station-
ary point pairs have a non-zero overlap. This corresponds
to some kind of replica symmetry breaking (rsb). Here
we restrict ourselves to a 1rsb ansatz, which corresponds
to two kinds of pairs of stationary point: a fraction x of
pairs have the trivial zero overlap, and the remaining frac-
tion 1 − x have a nontrivial overlap q1. In the annealed
or replica-symmetric case, x = 1 and all but a vanishing
fraction of stationary points are uncorrelated with each
other. Since other kinds of rsb order encompass 1rsb,
we are guaranteed that Σ ≤ Σ1rsb ≤ Σa. We will discuss
later in what settings the 1rsb complexity is correct.
When the complexity is calculated using the Kac-Rice

formula and a physicists’ tool set, the problem is reduced
to the evaluation of an integral by the saddle point method
for large N [16]. The complexity is given by extremizing
an effective action,

Σ1rsb(E, μ) =

lim
n→0

∫

dq1 dxS1rsb(q1, x | E, μ)enNSrsb(q1,x |E,μ)

= extremum
q1,x

S1rsb(q1, x | E, μ) (2)

for the action S1rsb given by

S1rsb(q1, x | E, μ) = D(μ) + extremum
β̂,rd,r1,dd,d1

{

β̂E − rdμ

+
1

2

[

β̂2[f(1)−∆xf(q1)] + (2β̂rd − dd)f
′(1)

−∆x(2β̂r1 − d1)f
′(q1) + r2df

′′(1)−∆x r21f
′′(q1)

+
1

x
log((rd−∆x r1)

2+dd(1−∆x q1)−∆x d1(1−∆xq1))

− ∆x

x
log((rd − r1)

2 + (dd − d1)(1− q1))

]

}

, (3)

where ∆x = 1− x and

see eq. (4) above

The details of the derivation of these expressions can be
found in [16]. The extremal problem in β̂, rd, r1, dd,
and d1 has a unique solution and can be found explic-
itly, but the resulting formula is unwieldy. The action
can have multiple extrema, but the one for which the
complexity is smallest gives the correct solution. There
is always a solution for x = 1 which is independent of
q1, corresponding to the replica symmetric case, and with
Σa(E, μ) = S1rsb(E, μ | q1, 1). The crux of this paper will
be to determine when this solution is not the global one.
It is not accurate to say that a solution to the saddle

point equations is “stable” or “unstable”. The problem
of solving the complexity in this way is not a variational
problem, so there is nothing to be maximized or mini-
mized, and in general even global solutions are not even
local minima of the action. However, the stability of the
action can still tell us something about the emergence of
new solutions: when a new solution bifurcates from an
existing one, the action will have a flat direction. Un-
fortunately this is difficult to search out, since one must
know the parameters of the new solution, and q1 is uncon-
strained and can take any value in the old solution.
There is one place where we can consistently search for

a bifurcating solution to the saddle point equations: along
the zero complexity line Σa(E, μ) = 0. Going along this
line in the replica symmetric solution, the 1rsb complexity
transitions at a critical point where x = q1 = 1 [16]. Since
all the parameters in the bifurcating solution are known
at this point, we can search for it by looking for a flat
direction. In the annealed solution for points describing
saddles (with μ2 ≤ μ2

m and therefore the simpler form
of (4)), this line is

μ0 = −2Ef ′f ′′

zf
−
√

2f ′′uf

z2f

(

log
f ′′

f ′
zf − E2(f ′′ − f ′)

)

,

(5)
where we have chosen the lower branch as a convention
(see fig. 2) and where we define for brevity (here and else-
where) the constants

uf = f(f ′ + f ′′)− f ′2, vf = f ′(f ′′ + f ′′′)− f ′′2,
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Fig. 2: Stationary point statistics as a function of energy den-
sity E and stability μ for a model with f(q) = 1

2
( 1
2
q3 + 1

2
q5).

The dashed black line shows the line of zero annealed com-
plexity and enclosed inside the annealed complexity is positive.
The solid black line (only visible in the inset) gives the line of
zero 1rsb complexity. The red region (blown up in the inset)
shows where the annealed complexity gives the wrong count
and a 1rsb complexity in necessary. The red points show where
detM = 0. The left point, which is only an upper bound on
the transition, coincides with it in this case. The gray shaded
region highlights the minima, which are stationary points with
μ ≥ μm. Emin is marked on the plot as the lowest energy at
which saddles of extensive index are found.

wf = 2f ′′(f ′′ − f ′) + f ′f ′′′, yf = f ′(f ′ − f) + f ′′f,

zf = f(f ′′ − f ′) + f ′2. (6)

When f and its derivatives appear without an argument,
the implied argument is always 1, so, e.g., f ′ ≡ f ′(1). If
f has at least two non-zero coefficients at second order
or higher, all of these constants are positive. Though in
figures we focus on the lower branch of saddles, another set
of identical solutions always exists for (E, μ) �→ (−E,−μ).
We also define Emin, the minimum energy at which saddle
points with an extensive number of downward directions
are found, as the energy for which μ0(Emin) = μm.

Let M be the matrix of double partial derivatives of the
action with respect to q1 and x. We evaluate M at the
replica symmetric saddle point x = 1 with the additional
constraint that q1 = 1 and along the extremal complexity
line (5). We determine when a zero eigenvalue appears,
indicating the presence of a bifurcating 1rsb solution, by
solving 0 = detM . We find

detM = −
(

∂2S1rsb

∂q1∂x

∣

∣

∣

∣ x=1
q1=1

)2

∝ (ay2 + bE2 + 2cyE − d)2,

(7)

where y = − 1
2zfμ− f ′f ′′E is proportional to the square-

root term in (5) and the constants a, b, c, and d are defined
by

a =
wf

(

3y2f − 4ff ′f ′′(f ′ − f)
)

− 6y2f (f
′′ − f ′)f ′′

(ufzff ′′)2f ′

b =
f ′wf

z2f
, c =

wf

f ′′z2f
, d =

wf

f ′f ′′
.

(8)

Changing variables from μ to y is convenient because the
branch of (5) is chosen by the sign of y (the lower-energy
branch we are interested in corresponds to y > 0). The
relationship between y and E on the extremal line is g =
2hy2 + eE2, where the constants e, g, and h are given by

e = f ′′ − f ′, g = zf log
f ′′

f ′
, h =

1

f ′′uf
. (9)

The solutions for detM = 0 can be calculated explicitly
and correspond to energies that satisfy

E±
1rsb =

sign(bg − de)
(

− cg ±
√

∆f

)

√

2c2eg + (2bh− ae)(bg − de)∓ 2ce
√

∆f

, (10)

where the discriminant ∆f is given by

∆f = c2g2 + (2dh− ag)(bg − de). (11)

This predicts two points where a 1rsb solution can bifur-
cate from the annealed one. The remainder of the tran-
sition line can be found by solving the extremal problem
for the action very close to one of these solutions, and
then taking small steps in the parameters E and μ un-
til it terminates. In many cases considered here, the line
of transitions in the complexity that begins at E+

1rsb, the
higher energy point, ends exactly at E−

1rsb, the lower en-
ergy point, so that these two points give the precise range
of energies at which rsb saddles are found. An example
that conforms with this picture for a 3+5 mixed model is
shown in fig. 2. In that figure, the range of μ with 1rsb or-
dering at any fixed E is extremely small. With increasing
s the range also increases (see the example of the 3 + 16
model in [16]), but we do not have any intuition for why
this happens.
The discriminant ∆f inside the square root of (10) is

proportional to

Gf = f ′ log
f ′′

f ′
[3yf (f

′′ − f ′)f ′′′ − 2(f ′ − 2f)f ′′wf ]

− 2(f ′′ − f ′)ufwf − 2 log2
f ′′

f ′
f ′2f ′′vf . (12)

If Gf > 0, then the bifurcating solutions exist, and there
are some saddles whose complexity is corrected by a 1rsb
solution. Therefore, Gf > 0 is a sufficient condition to
see at least 1rsb in the complexity. If Gf < 0, then there
is nowhere along the extremal line where saddles can be
described by such a complexity, but this does not defini-
tively rule out rsb: the model may be unstable to different
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Fig. 3: The range of energies where rsb saddles are found for the 3+s model with varying s and λ. In the top row the black line
shows Emin, the minimum energy where saddles are found, and in the bottom row this energy is subtracted away to emphasize
when the rsb region crosses into minima. For most s, both the top and bottom lines are given by E±

rsb, but for s = 14 there
is a portion where the low-energy boundary has q1 < 1. In that plot, the continuation of the E−

rsb line is shown dashed. Also
marked is the range of λ for which the ground state minima are characterized by non-trivial rsb.

rsb orders, or its phase boundary may simply not have a
critical point on the extremal line. We discuss the former
possibility later in the paper. The range of 3 + s models
where Gf is positive is shown in fig. 1.

Figure 3 shows the range of energies where non-trivial
correlations are found between stationary points in sev-
eral 3 + s models as λ is varied. For models with smaller
s, such correlations are found only among saddles, with
the boundary never dipping beneath the minimum en-
ergy of saddles Emin. Also, these models have a transi-
tion boundary that smoothly connects E+

1rsb and E−
1rsb,

so E−
1rsb corresponds to the lower bound of rsb complex-

ity. For large enough s, the range passes into minima,
which is expected as these models have non-trivial com-
plexity of their ground states. Interestingly, this appears
to happen at precisely the value of s for which non-trivial
ground state configurations appear, s = 12.430 . . . . This
also seems to correspond with the decoupling of the rsb

solutions connected to E+
1rsb and E−

1rsb, with the two phase
boundaries no longer corresponding, as in fig. 4. In these
cases, E−

1rsb sometimes gives the lower bound, but some-
times it is given by the termination of the phase boundary
extended from E+

1rsb.
There are implications for the emergence of rsb in equi-

librium. Consider a specific H with

H(σσσ) =

√
λ

p!

∑

i1···ip

J
(p)
i1···ip

σi1 · · ·σip

+

√
1− λ

s!

∑

i1···is

J
(s)
i1···is

σi1 · · ·σis , (13)

where the interaction tensors J are drawn from zero-mean
normal distributions with (J (p))2 = p!/2Np−1 and likewise
for J (s). Functions H defined this way have the covariance
property (1) with f(q) = 1

2

(

λqp+(1−λ)qs
)

. With the J ’s
drawn in this way and fixed for p = 3 and s = 14, we can

Fig. 4: Examples of 3+14 models where E−
rsb (top) is the lower

bound and (bottom) is not the lower bound of energies with
rsb saddles. In both plots the red dot shows E−

rsb, while the
solid red lines show the transition boundary between rs and
1rsb complexities. The dashed black line shows the rs zero
complexity line, while the solid black line shows the 1rsb zero
complexity line. The dashed red lines show the spinodals of the
1rsb phases. The dotted red line shows a discontinuous phase
transition between different 1rsb phases. Top: λ = 0.67. The
transition line that begins at E+

rsb does not intersect E−
rsb but

terminates at a higher energy. E−
rsb is a lower bound on the

energy of rsb saddles. There are two competing 1rsb phases
among saddles. Bottom: λ = 0.69. The transition line that
begins at E+

rsb terminates at a lower energy than E−
rsb, and

therefore its terminus defines the lower bound.
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vary λ, and according to fig. 1 we should see a transition
in the type of order at the ground state. What causes
the change? Our analysis indicates that stationary points
with the required order already exist in the landscape as
unstable saddles for small λ, then eventually stabilize into
metastable minima and finally become the lowest lying
states. This is different from the picture of existing un-
correlated low-lying states splitting apart into correlated
clusters. Where uncorrelated stationary points do appear
to split apart, when λ is decreased from large values, is
among saddles, not minima.

A similar analysis can be made for other mixed models,
like the 2 + s, which should see complexities with other
forms of rsb. For instance, in [16] we show that the com-
plexity transitions from rs to full rsb (frsb) along the
line y = mx+ b

μ = − (f ′ + f ′′(0))uf

(2f − f ′)f ′f ′′(0)1/2
− f ′′ − f ′

f ′ − 2f
E, (14)

which can only be realized when f ′′(0) 
= 0, as in the 2+ s
models. For s > 2, this transition line always intersects
the extremal line (5), and so rsb complexity will always be
found among some population of stationary points. How-
ever, it is likely that for much of the parameter space the
so-called one-full rsb (1frsb), rather than frsb, is the
correct solution, as it likely is for large s and certain λ
in the 3 + s models studied here. Further work to find
the conditions for transitions of the complexity to 1frsb
and 2frsb is necessary. For values of s where there is
trivial rsb in the ground state, we expect that the 1rsb
complexity is correct.

What are the implications for dynamics? We find that
non-trivial correlations tend to exist among saddle points
with the largest or smallest possible index at a given en-
ergy density, which are quite atypical in the landscape.
However, these strangely correlated saddle points must
descend to uncorrelated minima, which raises questions
about whether structure on the boundary of a basin of
attraction is influential to the dynamics that descends
into that basin. These saddles might act as early-time
separatrices for descent trajectories of certain algorithms.
With open problems in even the gradient decent dynam-
ics on these models (itself attracted to an atypical sub-
set of marginal minima), it remains to be seen whether
such structures could be influential [28–30]. This struc-
ture among saddles cannot be the only influence, since it
seems that the 3 + 4 model is “safe” from non-trivial rsb
among saddles.

We have determined the conditions under which the
complexity of the mixed 3 + s spherical models has dif-
ferent quenched and annealed averages, as the result of
non-trivial correlations between stationary points. We saw
that these conditions can arise among certain populations
of saddle points even when the model is guaranteed to lack
such correlations between equilibrium states, and exist for
saddle points at a wide range of energies. This suggests

that studies making complexity calculations cannot reli-
ably use equilibrium behavior to defend the annealed ap-
proximation. Our result has direct implications for the
geometry of these landscapes, and perhaps could be influ-
ential to certain out-of-equilibrium dynamics.
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