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We establish weak convergence of the empirical process on the spherical
harmonics of a Gaussian random field in the presence of an unknown
angular power spectrum. This result suggests various Gaussianity tests with
an asymptotic justification. The issue of testing for Gaussianity on isotropic
spherical random fields has recently received strong empirical attention in the
cosmological literature, in connectioritivthe statistical analysis of cosmic
microwave background radiation.

1. Introduction. In recent years an enormous amount of attention has been
devoted to testing for Gaussianity for spherical random fields, especially in the
astrophysical and cosmological literature. The empirical motivation for these
studies can be explained as follows. The ongoing NASA satellite mission
MAP and the forthcoming ESA mission Planck will probe cosmic microwave
background radiation (CMB) to an unprecedented accuracy. CMB can be viewed
as a signature of the distribution of matter and radiation in the very early universe,
and as such it is expected to yield very tight constraints on physical models
for the Big Bang. For the density fluctuations of this field, the highly popular
inflationary scenario [see Peebles (1993) or Peacock (1999)] predicts a Gaussian
distribution, whereas alternative cosmological theories, such as topological defects
or nonstandard inflationary models, predict other types of behavior. The density
distributions of fluctuations are also instrumental for drawing correct inferences
on the physical constants which can be estimated from CMB radiation; indeed,
point and interval estimation procedures for cosmological parameters have been
based almost exclusively upon Gaussian assumptions, which of course need to be
validated before reliable statistical inference can take place. For these reasons,
many different Gaussianity tests were considered in the recent cosmological
literature, some of them based upon the topological properties of Gaussian fields
[Novikov, Schmalzing and Mukhanov (2000), Phillips and Kogut (2001) and Doré,
Colombi and Bouchet (2003)], others on higher-order cumulant spectra [Winitzki
and Wu (2000) and Komatsu and Spergel (2001)].
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1262 D. MARINUCCI AND M. PICCIONI

Let T (0, ¢) be a random field indexed by the unit sphé?e that is, for each
azimuth 0< 6 < 7 and elongation G ¢ < 2, T(0, ¢) is a random variable
defined on some probability space. Throughout this paper we assuniéthat)
has zero mean, finite variance, is mean square continuous, and is isotropic, that
is, its covariance is invariant with respect to the group of rotations. Furthermore,
we introduce the spherical harmonics, defined by

20+ 1 —m)!
+ ﬂP,m(cose)exp(imtp), form > 0,

Yl,m(ea(p)= 4 (l+m)!
(—1)mY1T_m @, ), form <O,

where the asterisk denotes complex conjugation &jgcosd) denotes the
associated Legendre polynomial of degtee, that is,

dm
Pin (x) = (=1)" (1 = x*"*——Py(x),
dx™m
dl
PO = o gt
A detailed discussion of the properties of the spherical harmonics can be found,
for instance, in Liboff (1998), Chapter 9, and in Varshalovich, Moskalev and
Khersonskii (1988), Chapter 5. The following spectral representation holds in the
mean square sense [see, e.g., Hannan (1970), Wong (1971) and Leonenko (1999)]:

«?-1,, m=0,12...,1,1=123,....

o0

I
(1) T, (P)=Z Z aimYim (0, ),

[=1m=-I
where the triangular arralyy;,, } represents a set of random coefficients which can
be obtained fronT (6, ¢) through the inversion formula

2r pm
@ an= [ [ T® 0¥, @ p)sin0dodp.
0 0
m=0,%+1,...,£,/=12,....

These coefficients are zero-mean and uncorrelated [see Wong (1971), pages
253 and 254]; hence, i’ (@, ¢) is Gaussian, as we shall always assume in this
paper, they have a complex Gaussian distribution, and they are independent
over/ andm > 0 (althougha; _,, = (=1)"aj,,), with varianceE|aj,|% = Cy,
m=0,%£1,...,+£l. The sequencf’;} denotes the angular power spectrum of the
random field; we shall always assume thais strictly positive for all values of.

Our purpose in this paper is to construct Gaussianity tests based on the empirical
distribution function for the triangular array of random coefficietits,,},
I=1...,.L,m=0,%£1,...,4l, asL — oo. In principle, expression (2) can be
used to recover the coefficientg, for any value ofi. In practical applications,
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however, L is finite and determined by the resolution of the experiment. For
instance, the coefficients,, may be contaminated by noise, with a decreasing
signal to noise ratio asgrows. Throughout this paper we adopt the simplifying
assumption that the noise is negligible only foe 1, ..., L, hence the higher-
order coefficients are discarded. The current status of technology in satellite
missions suggests that our assumption may provide a reasonable approximation
for L as large as several hundreds for the ongoing NASA experiment MAP,
a value which is likely to increase to a few thousands for the forthcoming ESA
experiment Planck.

Testing Gaussianity in a spherical field poses considerable extra difficulty vs.
testing in Euclidean spaces, since (fixed radius) spherical fields are never ergodic.
Our proposal is to consider the asymptotic behavior of the empirical process on the
triangular array{a;,, }, in the presence of infinitely many unknown parametéys,
in fact, the angular power spectrum is typically unknown in practice, and needs
to be estimated nonparametrically from the data [Miller, Nichol, Genovese and
Wasserman (2002) and Wasserman, Miller, Nichol, Genovese, Jang, Connolly,
Moore, Schneider and the PICA Group (2001)]. The presence of a growing
sequence of estimated parameters makes it hard to exploit the modern theory of
empirical processes, as presented for instance by van der Vaart and Wellner (1996)
or Dudley (1999); we hence resort to a more traditional approach, based upon
standard weak convergence theorems in the Skorohod glj@ic&]?, as presented
for instance by Bickel and Wichura (1971) or Shorack and Wellner (1986). We
refer to these works for the definition and topological properties of such a space.
For the sequel it is enough to recall that, in order to prove the weak convergence of
a sequencék (r, «)} of D[O0, 1]%-valued processes to the fielf(r, «), we need
to prove both convergence of all finite-dimensional distributions and tightness.
For the latter we will use a sufficient criterion due to Bickel and Wichura (1971).

First, for a generic “block’B = (a1, a2] x (r1, r2] C [0, 1)2, define the incre-
ments of the fieldK .,

Ki(B) =K (az,r2) — K (a2, r1) — Kp(a1,r2) + Kp (a1, 7r1).

We define two types of adjacent blocks:
Type | blocks

B1 = (a1, o] x (r1,r2],

B = (o, a2] x (r1, r2l, O<a1<a<a2=<10=<r1<r=<1l,
and Type Il blocks

By = (a1, ap] x (r1,r],

By = (a1, o] x (1, r2], O<a1<a2<1,0<r<r<rp<1.
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Bickel and Wichura (1971, Theorem 3) show that tightness of the se-
quence{K;} is satisfied if there exis > 1, y > 0 such that for all blocks;
andBo,

E([min{|K,(By)|, |KL(B2)}]") < C(u(B1U B))”,

which is implied by the stronger condition

()  E(IKL(BD|"'|KL(B2)|?) <C(w(B1UB2))’,  yi+y=1y.

where i is some finite measure of, 1] with continuous marginals. They
also show that for some particular class of processes (partial-sum processes)
we can restrict to blocks having corners [, 1] x {O,%,...,l}, so that
(ro—r), (r1 — ) > 1 always [see Bickel and Wichura (1971), page 1665].

The plan of this paper is as follows. In Section 2 we start from the case
where the angular spectrum is knowndatinen provide a formal definition of
the empirical process for spherical harmonics we are interested in, for which we
state the main weak convergence result. Section 3 presents the main steps of the
proof; Section 4 draws some conclusions, which are also illustrated by a small
Monte Carlo experiment, and points out some directions for further research.
Many technical lemmas are collected separately in the Appendix. In the sequel,
we useC to denote a generic, positive and finite constant, whose value may
vary from line to line. Also, throughout the paper we definédogx = oo and
(by continuity)x logx = x log?x = 0 for x = 0.

2. The empirical process with unknown angular power spectrum. We
start by assuming that the sequence of coeffici¢a¥3$,—=12 .. in the angular
power spectrum df (8, ¢) is known Now recall that, under Gaussianify;o|2/ C;
and{2|a;|%}/C; = {2|a1,_m|2}/C1 are mutually independent chi-square variables,
with one and two degrees of freedom, respectively. The special distributional
properties of the single teri;o|2 greatly complicates notation, whereas it can be
shown that this term has no effect on asymptotic distributions; hence in the sequel
we shall simply drop it and focus Qmm|2 form=1,2,...,1. Firstintroduce the
Smirnov transformation

2
(4) ulmzl—exp(—lalg| ) m=12...,1,1=12... L,
)

to convert the random variables,, to a triangular arrafu;,,} of i.i.d. random
variables with a uniform distribution ifD, 1]. We can hence define their empirical
distribution function over théth row,

1 [
Fi)=7 Y 1w <e).  Osa<1
m=1
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[1(-) denoting the indicator function], and the empirical process

1 (!
Gi@)=VI{Fi@) —a} =213 Lum<a)—ay, Osasxl
ﬂ m=1
In order to detect departures from the Gaussianity assumptions over some region
of the angular decomposition, we shall consider the doubly indexed, integrated
empirical process

[Lr]

1
KL a)dzefﬁ ; Gi(a).

G, (a) is zero-mean with covariance functidm; A a2)(1 — (a1 V a2)), as is well
known. The integrated proces§; (r, ) has independent incrementssinfrom
which it is easily obtained that its limiting covariance function should be

L'ENOO EKp(r1,00)Kp(r2, a2) = (ri Ar2) (a1 Aa)(1— (a1 vV a2)).

The Gaussian zero-mean procdgswith this covariance function is called the
Kiefer—Muller process oif0, 1)2. In fact it is a standard result tha; , whose
sample paths clearly belong @0, 1]2, converges weakly to this field &s— oco.

We will be concerned, however, with the much more interesting (and difficult) case
when the power spectrum is unknown and we have to estimate it nonparametrically
from the data. A natural candidate to repla€g is the maximum likelihood
estimate

o 1 2
C1=7 > laml.
m=1

Theu;,, are then replaced by the random variables

|alm|2
Yim = 1—expl ———= =1- exq_l%_lm),
C
|alm|2
El == . 5 m:1’27'~~’lv
" 22:1|alk|2
where (§/1, ..., &) no longer has independent components, but has a Dirichlet
distribution with parametersl, ..., 1), that is, it is uniformly distributed on
the unit simplex ofR!. For the sequel we recall that tig, i = 1,...,[, are
exchangeable with marginal distributions given by

(5) PlEn<al=1-(1-o''  «€l0,1],

and

6) PlEn<anéz<ot=1-(1—a) ' —@-a) '+ @—a1—ax)
o1, 02 € [0, 1].
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We define now

. 1[ <
Gi(a) = ﬁ[m;{ﬂ(yzm <a)-— a}}

=25 fa(m = -29) ]|

m=1

a representation which will be useful for the arguments to follow. Notice that,
as usual,G;(0) = G;(1) = 0. The process (7) is known in the literature as
the normalized uniform spacings process; see, for instance, Shorack and Wellner
(1986), pages 731-733, where its limiting behaviof as oo is derived. More
precisely, it is shown thaf; converges weakly irD[0, 1] t0 G, WhereG o is

a mean-zero Gaussian process with covariance function

@ EGoo(@1)G oo (@2) = (a1 A a2){1— (a1 V @)}
— (1 —a1)(1—a2)log(l— a1) log(l — ap).

We shall focus instead on the partial sum of empirical processes

_ 1 L
KL(Ol,")=ﬁ > G, 0<a<10<r=<1
=1

As we shall see, the asymptotic behaviokqf asL — oo does not follow trivially
from the asymptotics foG;; intuitively, this is due to the effect of higher-order
terms, which have to be controlled as they are summed lovarparticular we
shall now show that the proce&s, has a nonnull asymptotic bias. Define

Iog(l—a)) _a}

b1<a>=lE{ﬂ(szls— l

so that

~ 1
EGi(a) = ﬁbl(a)-

LEMMA 2.1. AS] — oo,
9) l"m bi(a)=(1—a)log(l—a)+ %(1 —) |092(1 —a)=b(a),
—00
and alsgasL — oo,

lim EK (o, r)=2Jrb(a).
L—o00
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ProOOF From (5) and fot suitably large,

Eﬂ(&u < W) —1- <1+ 'Og(l%“))l_l, @ el0.1].
Therefore
b =t{1-(1+ '09(1%“))1_1 ~al.
Using Lemma A.2, we have immediately (9). Also

[Lr] [Lr]
EKp(x,r)= Z {bl(a) b(a)} + Z
Now
[Lr]
l;oolijoi)z ! —b(a)f/ —du_zb(a)ﬁ.

Also, because lim, . b; (@) = b(a), for any§ > 0 there existdg such that, for
all I > lg, |b;(a) — b(a)| < 8; hence

Ll’] ﬁ
Z {bl(a) b(a)}s{ sup [bi(e)] + b(e >|}—+26f<s
1<i<ly VL
for any ¢ > 0, for L large enough, becauseis arbitrary. Thus the proof is
completed. O
We shall hereafter write for brevity
log(1— )

oelz—f for « € [0, 1].

The limiting behavior of the covariances was anticipated in (8); indeed, we have
the following.

LEMMA 2.2. Forall0<aq, a2 <1,
Jim Cov{Gi(an). Gi(az)}
(10) = (1 A o) {l— (a1 V ap)}
— (1 —a1)(1—oa2)log(1l —a1)log(l — az),
and asL — oo, forall 0<a1,a2<1,0<r1,r2 <1,

LIim Cov{ Kr(a1,r1), Kp(a2, r2)}
— 0

(11) = (ri Ar)[(a1 Aa){l— (o1 Vv a2)}
—(1—oa1))(1—a2)log(l—a1)log(l— a2)].
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ProOOF The first limiting result is standard in the theory of spacings [see
Shorack and Wellner (1986) and Shorack (1972)]; indeed, from (5), (6) and
Lemma A.1 the reader can check that

I|_I)f20 Covi1(§1 < ay), 1(§1 < az)}

= (a1 AN a2){1— (a1 Vv a2)},

lir’gol Cov{1(éi1 < ay), 1(§2 < az)}

= —10g(1 —a1)log(1 — a2)(1 — a1) (1 — o),
whence (10) follows easily. On the other hand, (11) is an immediate consequence
of the Kronecker lemma and (10)0
Now write
Ki(a,r)=Kp(@,r) —2/rb@),

and defineK*(«, r) as the zero-mean Gaussian proces§@®i] x [0, 1] with
covariance

EK*(a1,r1)K* (a2, 72)
= (ri Ar)[(ar A a){l— (a1 Vv a2)}
— (1= a1 —ap)log(l —a1)log(l - a2)].

To the best of our knowledge, the fieki*(«, r) has not appeared in the literature
so far, and we label it a modified Kiefer—Muller process. Our main result will be
the following.

THEOREM2.1. AsL — oo, weakly inD[0, 112,

K; = K",

= denoting weak convergence in the Skorohod sgaice 1]°.

The proof of this result will be given in the next section.

3. Theweak convergence proof.

PrROPOSITION3.1. ASL — o0,

K14 ke,

PROOF ConsiderCoy<---<ay<1,0<r1<---<r,<1,andlet

(12) Gi(a, B1=G(a, Bl — EG(a, B),

for 0<a < B < 1. Because of Lemma 2.1 the convergence ofsther vector
with componentsK; («;,r;) with i =1,2,...,s, j =1,2,...,¢, to the same
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components ofK*(«, r) is equivalent to the joint convergence of the centered
increments

Kr((ai, @iy1] X (rj,rjs1l) — EKp (i, oi11] X (rj,rj+1l)

1 [Lriy1] R R R R
=i > [Gieiz1) — Gi(e) — E{Gi(ati+1) — Gi(ai)}]
[=[Lr;]+1
1 %f]
=— G/ (ai, ait1]
ﬁ I=[Lri]+1

fori=0,...,sandj =0,...,r,wherewe have sely =r9=0,a511 =r;11 =1,
to the increments

K*((ati, il x (rj, rjs1l)
= K*(it1, rj+1) + K* (i, rj) — K* (i, rjy1) — K* (i1, 7j).

Because of the independence oVave can restrict ourselves to a fixed interval
for r, by simplicity (O, 1], say. It is now clear that we have to use the
multidimensional central limit theorem (CLT) with independent but not identically
distributed summands. A suitable control on the fourth moments clearly implies
the Lindeberg condition, namely

1 L
(13) Z?E:EGﬂWJUHFGﬁﬂbaHﬂ2=0ﬂ) asL — oo,
=1

foranyi,k =0,...,t, possibly equal. Now in Proposition 3.2 it will be shown
that EG} (e, @i+11°G} (e, ax4+-112 is uniformly bounded by a constant, which will
allow us to complete the proof.[]

PROPOSITION3.2. For L=1,2,..., the sequence of fields; («, r) is tight
in DO, 1]2.
PrROOE We write
Kj(@,r)=Ki(a,r)— EKp(a,r)+ Kp(e, 1)
— Kp(o,r)+ EKp(a, 1) — 2J/7b(e),

where
- 1 Ll
14 Ki(a,r):=— Gi(f()),
(14) L, r) «/Z;_ 1(f1())
o, fora <1—1%2

(o) =
) 1, fora >1—1"%72,
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Notice that the modificationG;(;(«)) differs from the integrated empirical
processG, («) because it is tied down to zeroat=1—1"%2 [ =1,2,..., L.
The result will be clearly established if we can prove that the sequEpc¢e, r) —
EK (e, r)is tight, and ad — oo,

(15) suplK (o, r) — K1 (. 1) = 0p (1),
(16) SUPEK (o, 1) — 2/rb(a)| = o(D).

The proofs of (15) and (16) are given in Lemmas A.4 and A.5, respectively.
We shall hence focus on tightness; let us write
Kj(a,r)=Kp(a,r)— EKp(a, 7).

It is sufficient to establish that, for some probability measut¢ with continuous
marginals,

E(IK} (BDAIK} (B2)[?) < C(1u(BLU B2))?,

where B1, B> are either Type | or Type Il blocks. Let us consider Type Il blocks
first, for which

E{R} (1. 2] x (r1. 1)K} (@1, o] x (7. 72])°}
= E{R} (a1, a2] x (r1, /)2 E{ K} (@1, @2] x (1, 72])%).

Now recalling (12),

17)

~ 1 (Lr]
E{R} (@02l x ror)} == 30 EGP((e1,021N (0.1 —17%%)).
I=[Lr]+1

ForO<a <p <1,

1 [
Gi(a, Bl=—F% D Zim(a, Bl
m=1

Vi
whereZ;, («, Bl=Zim(B) — Zim(a) and

Zlm(a) = ]]-(Slm < —Iog(lf_a)) _ E]]-(Elm < _|Og(1+ot))

Thus
EG}?((a1, 221N (0,1 —17%2))
{0’ fora; > 1—173/72,
B EGi?((a1, 02 A (1—173/2)]), otherwise.
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ForO0<a <1 write (o) = A (1 —17%2), so that

EG?(a1, ()]

1L 1
=7 3 > EZiymy (a1, 11(02)) Zim, (01, i (2)]
m1=1mp=1

= EZ% (a1, w(a2) ]+ ( = VE Z (a1, u(@2)]) Zi2(a1, u(a2)].
Now note that
Elel(oz, ()]

=Var(l(e1 < ym < 1(22))) < El(e1 < yim < u(a2))

= pi(o1, 1(@2) < e®|ni(e2) — | < Claz — ),
the last step following from Lmma A.3. Also, from Lemma A.6,

(I = DEZj1(oe1, ti(a2)] Zi2 (01, i(a2)] < Cq(e1, t1(e2)) < Cq(ay, a2)

with

o

g(a1, a2) = / (1+1log(1 — y)|) dy:

aq
indeed,
g°(a,b)<Cq(a,b) forall0<a<b<1,

whereC does not depend anor b. Hence

E{R} (o1, a2l x (r1, r])?)

(Lr]
<— > Afle2—a|+qa1, )
I=[Lr1]+1
[Lr]—[Lri]
=C————llez — a1l +q(e1,02)}.

Note that, since we can restrictte — r1) > %

(Lr—(Lr) o0

This bound obviously holds faB, as well hence

E(K} (a1, 2] x (r1, r1)°K} (a1, 22] % (r, r2])°)

< C(rp— r){laz — a1| 4 g (a1, a2)}2.

1271
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Let us now consider Type | blocks: we have

E{IZ’L((al, al x (r1, rz])ZIZ’L((oz, az] x (r1, rz])z}

1 & 2 3/2
== Y. EG/*((a1.aln(0,1-1"%?)
I=[Lr]+1

x GF?((a, a2] N (0, 1—17%/?))

1 [Lr2]
+ {— > EG((a1,21N(0,1— 1—3/2])}
I=[Lr]+1

1 [Lr2]
X {— Z EG?Z((a,az] N (O, 1_1—3/2])}
I=[Lr1]+1

1 [Lr2]
+ [— Y EGi((a1,@]1N(0,1-17%3)
I=[Lr1]+1

2
x GF((a, 2] N (0,1 — 1—3/2])} .

The middle term is the same as for Type Il blocks, while the last term is bounded
by the former because of the Cauchy—Schwarz inequality. As far as the first term
is concerned, notice that

EG?((a1, 21N (0,1 — 1732 G?((a, 2] N (0,1 —17%/2)) =0,
if @ > 1—1~%2, Otherwise, the right-hand side is equal to

EG2(a1, ]G (e, 1i(a2)]

(18) = %Ez,zl(al, @122 (o, t(2)]

(19) + 2¥E2121(a1, a1 Zn (o, u(a2) | Zip(a, 1(a2)]

(20) + 2#15211«11, «1Zfi (@, u(@2)] Zi2(@1, @]

(21) + #(l —2)EZ% (a1, a1 Zi2(a, 7i(@2)]) Zia(a, T(a2)]
(22) + E(l — QEZf (o 1)) Ziz(, @) Ziz(o1, @]

l

-1
(23) + 4TE211(061, a1Zi1(a, 1(e2)| Ziz(a1, 21Zi2(er, T (o2)]
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I—1
(24) + TEz,zl(al, a1Z5(a, 1 (a2)]

+ 4#(1 —2
(25)
x EZp (a1, a1Zp (o, (o) | Zip(an, a1 Z2 (e, T(er2)

+ #(l —-2)(1-93)

(26)
x EZj1(o1, a1 Zp(a1, a]Zi3(er, T(02) ] Zia(er, 7 (a2)].

Now for (18) note that

Ty < yn <a)l(a < y1<ap) =0,

(27) 5
pile, B) < pi(a, f) <1,
and then
EZZ (a1, a1 Z4 (o, 11(a2)]
= E{l(a1 < yn < @) — pi(a1, @)}
x 1@ < y2 < u(@2) — pi(e, u(@2)))?
< Cpi(a, a)pi(a, t(a2)) < Cla — ax| |z — af.
For (19), in view of (27), simple manipulations and Lemma A.6,
E{(1(c1 < yin < ) — pi(en, @))*Zin (. 1) Zia (e, ()]}
= (1-2pi(o1, @) E{L(o1 < yi1 < o) Zi1 (e, T (e2) ] Zi2(ex, T (e2) ]}
+ pi(ar, 2E{Zin (o, u(@2) ] Zio(, T(a2)]}
= —(1—-2pi(a1, @) pia, e2) E{1(cr1 < yi1 < @) Zp2(x, 11(ex2) ]}
+ pie, @)?E{ Zin (e, u(@2)] Zia(e, t(e2)])
< Cpi(ag, @)g(a, t(@2)) < Cla — a1lq(a, az).
The argument for (20), (23) and (24) is entirely analogous. For (21) we obtain
EZfi (1, @1 Zi2(e, mi(e2)] Zi3 (e, mi(e2)]
=(1— pie1, @) E{L(o1 < yi1 < @) Zi1 (e, T (a2)] Ziz(e, t(a2)]}
— pi(ar, ) E{Zj1 (o1, 21 Zp1 (e, Ty (@2) | Zi2 (e, 71 (022) |}
= (1—-2pi(a1, 0))E{Zi1 (1, @1 Zi1 (e, T (a2)] Ziz (e, 11 (2)]}
+ (1= pi(ag, @) pi(en, @) E{Zn (o, 11(@2)) Zi2 (e, 11 (2) ]}

C C
< sz(oel, a)q (a1, a)g(a,az) < TIoe —a1lg (a1, )g (e, ap),
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in view of previous results and Lemma A.7. The argument for (22) and (25) is
analogous. Finally, it is clear that for (26) it is sufficient to prove

EZp(a1, e1Zip(a, a1 Zia(a, 1 (a2) | Zia(a, 1(a2)]

C C
< l—zqz(al, @)g?(a, 1(ap)) < 1—261(0!1, a)q (o, o2),
aresult established in Lemma A.7. Hence each of the terms in (18)—(26) is bounded
uniformly by

Cllaz — a1] +g(a1, a2)).
The proof can then be completed by routine manipulations.

REMARK 3.1. It is immediately seen that the bounds of (18)—(26) given
previously hold for arbitrary nonoverlapping blocks. As such they can be used
to establish the Lindeberg conditi¢13) in the proof of Proposition 3.1.

4. Comments and conclusions. Theorem 2.1 is immediately applicable to
statistical inference procedures, and in particular, to tests for Gaussianity. For
instance, a Kolmogorov—Smirnov type of test is implemented, for any suitably
large L, if we evaluate

(28) Sp =suplK;j (a,r)l,
o,r

and compare the observed value with the desired quantile of the laSa, of

sup,., |[K*(a, r)|. In principle, the latter value can be derived by Monte Carlo
simulation, since the limiting distribution does not entail any unknown nuisance
parameter. Likewise, Cramer—\Von Mises and many other types of goodness-of-fit
statistics could be easily implemented.

Tests for Gaussianity on spherical maps have recently been considered by
several authors in the physics literature, as mentioned in the Introduction. The
focus of these papers is very much on the physical discussion rather than on
statistical methodology, so that any comparison seems inappropriate. We claim,
however, that our method enjoys some important advantages on any empirical
procedure in this literature. To mention a few, our procedure allows for a rigorous
asymptotic theory, which is made possible by the focus on harmonic coefficients;
it allows for inference completely free from nuisance parameters, whereas in other
papers test statistics are considered whose law depends on the values of the angular
power spectruntC;. Due to our study of the asymptotic behavior of the whole
field K7, many different testing procedures can be implemented; these procedures
provide information not only on departures from Gaussianity, but also on their
location in harmonic space; this is important, as different physical mechanisms are
known to operate at the various multipoles. Moreover, the distributional properties
of the normalized spherical harmonic coefficients may have some independent
interest for other cosmological applications.
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It is clearly of great interest to evaluate the power of our testing procedures
in non-Gaussian situations. With regard to this issue, a crucial point is the nature
of non-Gaussianity. In the cosmological tiure departures from Gaussianity are
occasionally generated by superimposing non-Gaussian structures over a Gaussian
map. For instance, it is possible to mimic a popular class of topological defects
models (the so-called “cosmic strings”) by setting

(29) T©O,0)=TC0, )+ T30, ),

whereT©(9, ¢) is a Gaussian map, arftf(6, ¢) is a map of Poisson-distributed
segments of randomly varying directions, length and level [for more details on
simulations of non-Gaussian spherical fields and their physical meaning, see
Hansen, Marinucci, Natoli and Vittorio (2002)].6(0, ¢) andTS(6, ¢) are taken

to be zero-mean and independent; we define the percentage of non-Gaussianity in
the map by

B ETS(9, ¢)?
" ETS0,¢9)2+ ETS®, ¢)2’

We fix L =500, a realistic value for the MAP experiment, and we evaluate the
threshold values for sizes = 10%, 5%, 1% by 500 Monte Carlo replications
of (28). we obtain 0.947, 1.012, 1.160, respectively. We then generate string
maps with 100, 500 and 1000 strings, and report the rejection frequencies for
100 replications of model (29) (with different percentages of non-Gaussianity)
in Table 1.

Pne

TABLE 1
Power of the Kolmogorov—Smirnov test

SizeoftheTest\Pyg 0.1 0.2 03 04 05

100 cosmic strings

1% 28% 83% 98% 100% 100%
5% 38% 86% 99% 100% 100%
10% 42% 88% 100% 100% 100%

500 cosmic strings

1% 6% 41% 82% 92% 100%
5% 14% 49% 88% 97% 100%
10% 20% 56% 90% 99% 100%

1000 cosmic strings

1% 3% 23% 66% 95% 100%
5% 8% 35% 78% 97% 100%
10% 16% 40% 81% 97% 100%
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We leave several issues for future research. To increase the power of the
tests, it is useful to consider empirical processes constructed on several rows
[see the applied papers by Hansen, Marinucci, Natoli and Vittorio (2002) and
Hansen, Marinucci and Vittorio (2003)]. As these rows are independent under
the null of Gaussianity, the extension is conceptually straightforward, although
computationally burdensome. For cosmological applications, some additional
difficulties may arise in practical implementation; in particular, it may be the case
thatT (8, ¢) is subject to some measurement error, or that it is only incompletely
observed, or both. As mentioned before, with the current status of technology
on satellite- and balloon-boe experiments, it is known that observational error
is some order of magnitude smaller than signal, and thus can safely be ignored,
for [ as large as 1000 or more; we hence consider the asymptotic theory provided
in this paper to be valuable for the practitioner,/la®n the order of 19 (with
a total number of observed,, on the order of 18/10°) seems sufficient for the
asymptotic theory to yield applicable approximations. However, the approximation
of these sampling distributions can possibly be improved by bootstrap methods, to
take into account the nuisance parameters governing noise. The presence of gaps
in the observed field poses more challenging questions, and will be addressed
elsewhere.

APPENDIX

LEMMA A.1. Leta, be a sequence of real numbers such tmat,_, o n2a, =
—c < o0. Then

lim n((1+ay)" —1) =c.
n—o0

PROOF  The proof is trivial, writing(1 + a,)" = exp(n log(1+a,)) and using
the expansions, as— 0

2

(30) log(1+r) = r — % + 003,
(32) e =1+r+0@?. O

The proof of the following lemma was very much shortened thanks to
the comments of one referee.

LEMMA A.2. ForanyC > 0,as— oo,

2
l{x—(l—i—lo%)—xlogx—ﬂozg x”—)O.

sup

[—C<x<1
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PROOF  We have, uniformly in—¢ <x <1,

l{x—(l+|o?x)}:l x—exp((l—l)log(l+ Io%))}
logx log?x log®/
x—exp((l—l)( 2, +0( : )))}
logx log®x log®!
x—exp(logx— T Ty +0<—l2 ))}
B logx log®x log®!
VRSN

B logx log?x Iog‘U))}
_lx{l_(l_ I 2 +0< 2

log? log*!
— xlogx + 2~ 29x+0( gl] )

x log? x

~

~

=xlogx +
where we used (30) and (31)

+0(1),

LEMMA A.3. The marginal density o¥;,, = 1 — exp(—1&;,,) is bounded
uniformly bye? for [ > 2.
PrROOF The marginal density af;,, is

o == DL -0)"?101(0),
whence by the change of variable formula,

-1 log(1— y)\'~?

Sy Y) = Ia—y (1 + M) Ti0,1—exp—1)) ()
1 log(1— y)\'~?

=d-y <1+ oo 7 y)> 110,1-exp—1) (¥)-

Now letx = 1 — y and differentiate with respect tg we obtain
(1—2/(A+1tlogx) =3 — (1+1tlogx)'—2
2
X

(141 tlogx)' 31712 + logx)
_ , ,

X

which is equal to zero at = e~2; the latter is easily seen to be a unique maximum.
Hence

lo 6_2 -2
9 ) <é2.

fr ) < e2(1+ l
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LEMMA A.4. ASL — oo,
suplKr(a,r) — Kp(a, r)| = 0,(1).
o,r

PROOF By the definition ofK (, r) (14),

sup| Ky (o, r) — K1 (a, r)|_fz 21(1 1732 <y, < 1);

hence, using Lemma A.3 and Markov's mequahty,

L
Suplk\l‘(o{v r) - EL((X, r)| = OP(Z\/ZE{]I(OS e_lé:lm < 1—3/2)})

=1

:Op< 1 XL:]') (I(j/gZL) asL — oo.
O

In the sequel, recall that
Zim (o, BD) = L1 < yim < B) — pi(a, B),
pi(a, B) = E1(a1 < yim < B).

LEMMA A.5. AsL — oo,

SUp|lEK (o, r) — 23/Tb(a)| = o(1).

PROOF By the definition ofK; (, r),

EK(a, 1) — 2/rb(a)
1 [Lr]

- Z[ ll(Ot)] 2/7b(@)

1 L] Lrl 4

1
- Z = [bi (1)) = ble)] + b(a)[ﬁ l:zl T ZW},

whose absolute value is bounded by

(32) Z suqb, (t1(2)) — b(a)|

[Lr] 1

(33) + suplb(a)| su%
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Now for (33) we have that sypb(«)| < C, whereas approximating the sum with
the integral, it is easy to see that

ER TS (5 PR
and
l L 1 r 1
27 = / ol
2 Lr] 1
VLT LEVT-OIL
Hence

2
B <C—=0(D asL — oo.

VL
On the other hand, for (32) it is enough to prove that
sup b1 (11 () — b(a)|

O<ax1

< sup |b(a(@) —b@)|+ sup |b(w)]
O<a<1-[-9/2 1-1-32<q@<1
is 0(1) asl — oo. For the second term on the right-hand side, continuity(af
ata = 1 is enough. For the first, we talke= 1 — «, so that we need to establish
that

lim sup
I=00)-32 <1

-1
l{x—(l—l—lo?x) }—%xlogzx—xlogx =0,

which follows from Lemma A.2. Thus the proof is completedl
LEMMA A.6. ForO<ap<as<1—1"%2 0<pB1<pBr<1—1"%2 wehave

C
| CovV{l(1 < yi1 < 2), L(B1 < yi2 < B2)}| < 74(061, a2)q(B1, B2),

where

b
q(a,b>=fa {1+ [log(L — y)[} dy

1-a
:/ {1+ |logx|}dx
1-b

is a finite measure and does not depend dna, 8.
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PROOF After a change of variable we have

l-a1 pl-p1
Covil(ar <y <a2),1(B1 =<y <PB2)} = /1 - hi(x1, x2) dx1dxp,
—02 —P2

where the covariance densfiy(x1, x2) is given by
_ _ 1-3
1 {(l DI -2 <1+ |ng1xz>

12 [

(- 1)2< |ng1)l_2( Ingz)l_z}
— 1 1
12 T T

= Aj(x1, x2) x Bi(x1, x2),

3 2 2,-1
Al(xl,xz):{<1+ Iog]#) (1+|0§;X1) (1+|0§;x2) }

1 | !
y (1+ 09;61)62) ’

X1X2

X1X2

for

— 11 -2 | 20 2
B, xz) = | =2 (14 28 ) (14 282)

- 12 (141 tlogx1)2(1+ 1~ tlogxy)2 }
12 (1+1"tlogxyxp)! ’

1732 <x1,x0< 1.

Now for A;(x1, x2) we have

(1+ Iogxlxz)’ < Xx1x2,
because
(34) 1+|O§]x 5exp<|0?x>,
always. Also

3 2 2y-1
sup {<l+log;c1x2) (1+Iog;x1) (1+Iog;x2) }

1732 <x1,x0<1

3 4, -1
4 | 2 1

uniformly for! > 1. ThusA;(x1, x2) is bounded uniformly inc andi. Now call
(-1 -2) (I — 1)?
= c2

12 ’ ' [

€1,
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ThusB;(x1, x2) becomes
logx1 log?x1 logxs  log?xs
1+2 142
02,1< + / + 2 )( + ] + 2 )

logx1 logx, )’
_ 14 9M1Yr2
Cl’[( + 1241 logx1xo

(35)

and becausky; —c1] <171,

lo log? lo
(36) [l0gx] <1, gzx < logx| v ai 1732 < x <1,
32<x<1 ! ) )
( logx1 logx, )l 1 Xl: (1) ( logx1logxs )"
12 +1logxixa) = k) \12 +Ilogxyx,
logx; lo ! logx; lo k
n gx1 QX2+Z(1)(293€1 QX2)’
I +logxixo k 1+ 1llogxixo

k=2
we obtain

C
(@9 = lezs — el + Al logxy| + [logxz| + |logxs| | logxzl}
!

3 <1)< logx1logx, )"
k) \I12 4+ 1logxyx,

k=1

+c1

=

{1+ [logxi| + [logxz| + [logx1]| [logoxz|}

/

5 (1) <||ng1|09x2|)k_l
k) \I12+1logxyx,

|logx1] | Iogle{ 1
k=2

[ —3log! i

|

C
< 7{1+ [logxa| + [logxz| + [logxa| [ logx2l}.
The last step follows from

1< /1) /|logxilogxsl \f1
sup 1 Z (k) <12+llogxlx2)

1782<x1,x0<1 " j=2

< sup
1782 <x1,xp<1 =2

! 27\ k=1
_ Z%((Q/@Iog l) -c
i kI\N =3 log!
because logy /(I — 3log!) is uniformly bounded ii. O

Lokt ( |logx1 logaxa| )k‘l
k! \I2+1logxixp
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LEMMA A7. Forall 0<ai <ap<1—1"%2 0<pBr<pBr<1—-1372
O0<y1<yp<1—1"%20<681 <8<1—1"32 we have

|EZ1(a1, a2]Z12(B1, B1Zi3(y1, 2l

(37) c

< 761(061, a2)q(B1, B)g(y1, v2),
and
38) |EZj1(a1, @21Zi2(B1, B1Z13(y1, y21Z14(81, 821

C
< l—ZCI(Oél, a2)q(B1, B)q(y1, v2)q(d1,82),

whereC does not depend an, 8, y, 8 or [.

PrROOF For the sake of brevity, we give only the proof of (38); the proof
of (37) is similar, indeed slightly simpler, and can be found in Marinucci and
Piccioni (2003). After a change of variable we have

EZj (a1, 02]1Z2(B1, B1Zi3(v1, v21Z14(81, 82]
1— a1 1— /31 1- V1 1- 51
/ / / hi(x1, x2, X3, x4) dx1dx2dx3dx4,
1-ap J1— 1- 1-
where the four-term covariance densiiyx1, x2, x3, x4) iS given by, for/=3/2 <

X1,x2,x3,x4 <1,

1 (-DI-20-3U1-2 logx1xoxzxs\ >
i (120

X1X2X3X4
(I =121 -2)1—-23)

4
B Z 14

x]x2x3x4l 1
1 I i 1 #i logx
« ( 0gx ) ( Z] og J)

3 4 13 _ N
1 (I —1)3%1 -2 <1+ Iogx,>
14 I

XYIX2X3X4 20 i Zit

« <1+ %x,) <1+7Z"¢”; J k)

1 -1 4 [ -2 [ -2
_3 ( ) (1+ ngl) <1+ ng2>
x1xox3xg 14 l l

[ -2 [ -2
x (1+ O%x‘?) (1+ O%x“) .
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Define
(B ()
Cll = l4 9 CZI = 1—45
(l—1)2(1—2)(l—3) I-DU—-2U-3H1 -4
c3] = l4 , Cq4] = l4 .
We have

hy(x1, x2, x3, X4)

4 3 4
=Y {C41€1 =Y camadu+ Yy Y cabijidiji — 364151611},
i=1

i=1j=i+1
where
logx
Y= é“flaz (rpxoxaxg) >, aj(x) =1+ Tg
3 4 2 3 4
&= (nalz(x,))(n 1_[ GIB(X,'XJ'))( 1_[ 1_[ af(x,-xjxk)>,
i=1 i=1j=i+1 i=1j=i+1lk=j+1
4 3 4
nit = (Halz(xj)) (H H “zB(Xixj)>< 1_[ af(xixjxk)>015(x1x2X3X4),
J#i j=lk=j+1 J ki
0:ji =( I1 af(xw)( I1 a?(xkxn)
ki, ki, j

ll=k+1m=I+1

J
2 3 4
X( 1_[ H af(xkxlxm))als(mmmm),
k=
3

4 2 3 4
§ = ( H a?(xixj)) (1_[ H 1_[ af'(x,-xjxk)>a,5(x1x2x3x4),

i=1j=i+1 i=1j=i+1lk=j+1
and
i -<z+|ogx,-)(l+logn,-¢,-x/>]’
it= 12+ [logx1x2x3X4 '
P s logx;) (I +logx;)(I + 109 Tk ; xk)}l
= L I3+ 12logx1x2Xx3%x4 ’

[ (I +logx1) (I + logx2) (I 4 logxs) (I + Iogm)}’
dj = .
4+13 logx1x2x3x4
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Now note that
P Xl: <1) [Iogx,-(zﬁé,- Iong)}k
i = k) |12 +1logxixoxsxs

logx; (34 logx;)
logx;; logx; |,
+ I+ |nglxz)C3X4 te gx ]2#; gx]

where

e (Iogx,-; > Iong>’
J#
!

1\ [logx; (3" ;4 logx;) 7
=12 () [ s omsarsn

= + llogx1x2x3x4

_C l(l—l)[logx,-(zﬁé,- Ing")]z‘exp{g log?! }
— 2] ]2 1—[-16log! 4 1 —6logl

cl3 4 2

51—2<Z > |Iogx,-|||ogx4,-|> .
i+l j=i+1

Also

logx; N log? x;
l I

2 2
logx; +0<Iog X; ;Iog xj)’

alz(xi) =1+2
logx;
3
l + l
Iog;]xi +4Iog;xj +4Iog;xk

2 2 2
. 0<Iog X; +Ioglzxj + log xk>’

al?’(xix]') =1+3

al4(xl-x1~xk) =1+4

5 4 4_ lo zxi
ap (x1xox3xs) = 1+ 7 > logx; + O <Z,_11729)
i=1

where theO(-) bounds on the remainders are uniform oyxgr Counting terms
then gives

log x;
l

4
§l:1+(2+3x3+3x4)2 + pri(x1, x2, X3, X4)
i=1

4
=1+423)"
i=1

logx;
l

+ pi(x1, x2, X3, X4),
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3 4
C
|ogi(x1, x2, X3, x4)| < —ZZ >~ llogx;||logx;l.
=1;=i+1

ni=1+3x4+3x3+5) gx’

logx;

+(2+2x4+3x3+5)z
J#i

+ oy (Xis Xj, Xp, Xp)

logx; logx;
=1+26 (‘? S +24)° gl Lt ot (x5 X, X, 1),

J#
c3 4
Pt (Xis X, Xk, Xp) < —ZZ |logxi|[logx;l,
i=1j=i+1
whence
Iogxl
Zmz—4+982 (122 > |Iogxllllogx]|>
i=1j=i+1
Likewise, fork,l #1, j,
logx; +logx; lo lo
61 = 1+ 26295 T100%) | 5g/00%k +100

l l

+0<IZZ > Ilogx;| |Iogx,l)

i=1j=i+1

Z Z 6ij1 = 6+ 1532 'ng’

i=1j=i+1

+ O<12 > Z |Iogxl||logx,|)

i=1j=i+1

Finally,

4
lo x,-
£§=1+26) (‘? (lZZ > llogx;| |logx; |)
i=1

i=1j=i+1
Now combining all terms, we obtain that the covariance density is bounded
uniformly in absolute value by

|logx;|
l

lcar — 4cgr + 6cr — 3cu| + | — 23 + Scar — e Z
i=1
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|
+ 123¢4) — 98c3) + 1535 — 78c11|2|09x’|

i=1

+0<IZZ > |Iogxllllogx]|>

i=1j=i+1
Now
cay — 4ez + 6cy — ey
(=11 —-2)1—=3)1—4) — 401 —121 —2)(I —3)
6( —1)3(1—2)—3(—-1)*
+ 4
l
52 _4(17)/°+6x9—3x6
3 -3
=pt o173).
Similarly,

lim {—2c3; + 5¢o — 3¢y}
[—o00

_ i —20=D%0-2)( =3 +50 - D —2) —3¢ — D*

[—00 l3

1 —2
=7+0(l )

llim |23c4 — 98c3; + 153y — 78cyy|
—00

3 -3

It can thus be concluded that the four-term covariance density is bounded
uniformly by

C
hy(x1, x2, X3, X4) < 12{1+Z|Iogxl|+z > llogx;||logx;|
i=1 i=1j=i+1

%]f[{l-l—illogm},

i=1

and thus the proof is completed]
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