Bannenberg et al. Journal of Mathematics in Industry (2022) 12:12 ® Journal of Mathematics in Industry
https://doi.org/10.1186/513362-022-00127-w a SpringerOpen Journal

RESEARCH Open Access

Reduced order multirate schemes in

Check for
updates

industrial circuit simulation

Marcus W.EM. Bannenberg'?’, Angelo Ciccazzo” and Michael Ginther!

“Correspondence:
bannenberg@uni-wuppertal.de
"IMACM, Chair of Applied
Mathematics and Numerical
Analysis (AMNA), Bergische
Universitat Wuppertal, GauB3stral3e
20,42119 Wuppertal, Germany
2STMicroelectronics, Str. Primsole
50, Catania, Italy

@ Springer

Abstract

In this paper the industrial application of Reduced Order Multirate (ROMR) schemes is
presented. This paper contains the mathematical foundations of the ROMR schemes
and elaborates on the construction of these schemes using specific Model Order
Reduction (MOR) techniques. Especially the Maximum Entropy Snapshot Sampling
method for generating a reduced basis and reduction by GauR-Newton with
Approximated Tensors (GNAT). This basis generation method is also used for
generating the basis for the gappy hyper-reduction method used for nonlinear
function evaluation. For the multirate integration part, a Backward Differentation
Formula approach to integration is used in conjunction with a coupled-slowest-first
multirate approach. After introducing the numerical approach to industrial circuit
simulation validation experiments are performed. First a simple academic model is
used, and then an industrial test case is simulated as presented by STMicroelectronics.
A significant speedup in simulation time is achieved whilst accuracy and
convergence is kept.

Keywords: Mulitrate; Model order reduction; Differential-algebraic equations;
Snapshot sampling

1 Introduction

In integrated circuit design, there are a significant number of design possibilities under
which the internal components need to be guaranteed to work. This leads to a whole
range of explorations to ensure sound functionality of the design. These explorations are
performed by numerical simulations of the circuits mathematical model. Due to the ever
increasing number of components, and thus the degrees of freedom in the model, the
required simulation times may become prohibitively large.

Besides the sheer number of components inside the integrated circuit, a large contribu-
tion to the complexity of the mathematical model originates form the method of deriving
these equations. As these models grow, generating a state-space model with a minimal
set of unknowns cannot be generated in an automatic way. Therefore, the mathematical
models have to be derived through use of algorithmic analysis. This automation comes at a
cost. The resulting system of differential-algebraic equations (DAE) is numerically harder
to solve, and may contain redundant network variables.
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To decrease these ever increasing simulation costs a multitude of different approaches
have been proposed in the past decades. For instance, the large original system can be
partitioned into subsystems which each have their own characteristic rate of evolution
through time. This property is capitalised upon by using multirate (MR) time integra-
tion. Another approach is to exploit redundancy in the mathematical model originating
from the network analysis by using model order reduction. This technique aims to solve
a model of reduced size that still approximates the solution of the original model. With
the main driver being that such large coupled systems eligible for both model order re-
duction (MOR) and MR techniques are encountered more often in industry, for instance
by STMicroelectronics. Thus is this paper specifically aimed at the combination of the
two previously mentioned techniques, and provides a review of the definition, with new
integration approaches.

In Sect. 2, the continuous DAE problem is introduced and is discretized to be solved
numerically. The backward differentiation formula as numerical method is covered and
the notion of multirate time-integration, [9], is introduced.

The model order reduction techniques considered in this paper are outlined in Sect. 3.
The specific type of model order reduction we discuss is nonlinear model order reduction
by reduced basis approaches. Specifically the Gauf3—Newton with approximated tensors
method [6]. This robust model order reduction method is a nonlinear Petrov—Galerkin
projection method equipped with a function-sampling hyper-reduction scheme. It oper-
ates at the level of the nonlinear arising at each time step, after discretization. In the last
part of this section the combination of multirate and model order reduction techniques is
described.

In the penultimate section numerical experiments are performed on both academic and
industrial test-cases. The academic test case is used to verify the implementation of the
circuit parser, and check the validity of the numerical scheme. Then, the implemented
circuit parser and simulator is applied to an industrial test case as provided by STMicro-

electronics. Finally, the last section offers conclusions and provides an outlook.

2 Problem formulation

Since the set of equations used to describe the electrical circuits is constructed accord-
ing to the topological structure of the network. This often results in a coupled system
of implicit differential and nonlinear equations, or more general a system of differential-

algebraic equations (DAEs)

0
fx,x,t)=0 with det % =0. (2.1)

This system may represent ill-posed problems and is in general more difficult to solve
numerically than the more standard systems of ordinary differential equations (ODEs).
To solve these systems numerically we start from the consistent initial values. Then the
time domain is discretised into time points £y, f1, ..., £y, and the solution for each of these
time points is approximated by an implicit linear numerical integration formula. A di-
rect approach, as proposed in [13], is by applying backward differentiation formula (BDF)
method. In this paper we restrict ourselves to using a first order BDF, but the idea can be

generalised for higher order methods taking some considerations into account about the
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smoothness. This multistep method is applied to a DAE system by using the e-embedding
method.

However, we want to solve system (2.1), which can be an implicit differential algebraic
system. Therefore, the multistep system for an implicit DAE system, Mx = f(x), is given
by

k k
MY ainsi=h Y Bif (ns)- (22)

i=0 i=0

In general form, applying Equation (2.2) to an implicit nonlinear system of DAEs at time

step t, yields

k
f(% Z %xnﬂ"xm tn) =0. (23)

i=0

This gives that the numerical solution of the system is thus reduced to the solution of the
system of nonlinear Equations (2.3). This system is solved iteratively for x, by applying
Newton’s method.

To set up the system of DAEs defined by Equation (2.2), Modified Nodal Analysis
(MNA), [8], is used to obtain network equations. The Kirchoff Current Law is applied
to each node, except the node that is considered the ground node. The incidence matrix is
then defined as a collection of incidence matrices related to each different type of element,

A= {AR,ALyAC;AVrAI}r

with Aq € {0, +1, -1}"*"2, where ng is the cardinality the set of each type of network
element. Using these incidence matrices, we can relate the branch voltages in a loop and
the currents accumulating in a node by applying both the Kirchoff Current Law and the
Kirchoft Voltage Law to each node, resulting in

Acg + ARR(Agu,t) + Apjp + Av v + Ai(t) = 0, (2.4a)
b-Alu=0, (2.4b)
v(t) —A\T/u =0, (2.4¢)
q-qc(Alu) =0, (2.4d)
¢ —¢(jr) =0. (2.4€)

The unknowns ¢, ¢, u, j and jy are the charges, fluxes, node voltages, inductor currents
and voltage source currents, respectively. All these quantities are time dependent, and are
combined into one state vector x(t) € R” of unknowns. The dimension of which is given
by the cumulative dimensions of the quantities. The network equations can now be stated
in compact form

d ,
d—tq(x(t)) +j(%(t)) =0, (2.5)

where g and j are mappings from R™ to R™ related to the network elements.
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The previously seen numerical integration method is considered a singlerate time-
integration method, as it integrates each part of the equation with the same step-size. Op-
posed to this classical approach there are the multirate time-integration methods, which
use a different step-size, or even integration method, for parts of the equations with dif-
ferent dynamical behaviour.

First, it is necessary for a multirate method to partition the variables of the dynamical
system into sets with different temporal characteristic. This partition can be made either
by manual selection, or automatically. For now, we partition the full system into a fast and
a slow partition. This can be extended to a partitioning into k subsystems, but for con-
venience, a two subsystem partitioning, i.e. a fast and slow subsystem, is used as example
here.

Using this partitioning on the compact form, Equation (2.5), let B € {0, 1}"#** and
Bs € {0,1}"s*M be selection operators where mp + ms = M and the following orthogonal
properties: BgBy = If, BsB = Is and BBy = BsB} = 0, where Ijps, is the identity matrix
with the respective subsystems dimension i or mg. Then the variables and functions of
each subsystem can be split into parts xg(£) € R™F, x5(¢t) € R™”s. Applying this partition to
the network equations (2.5) results in the following systems

d

0 = E ((IF(t, BFx’BSx)) +jF(t! BFx’BSx)’ (263)
d ,

0=~ (qs(t, Bex, Bsx)) + s (t, Bex, Bsx), (2.6b)

where we have the following definitions

x = By xp + Bg xs, (2.7a)
q(t,x) = B{ qr(t, Bex, Bsx)) + B{ qs (¢, Bex, Bsx) (2.7b)
j(t, %) = B{ je(t, Bex, Bsx)) + B js(£, Bex, Bsx)), (2.7¢)

To apply multirate time-integration methods to DAEs it is assumed that all the subsystems
in itself are well posed, which means that the DAE-index should be less than or equal to
that of the full DAE. As we are partitioning network equations of circuit models, it is
known that they are composed of sub-circuits or natural phenomena in a hierarchical
way. If we partition based on this hierarchy, we can check easily if the subsystems fulfil the
index requirements and obtain viable partitions.

As there are several different approaches available to implement multirate time-
integration methods, we specify in this subsection which approach is used. As has been
shown in [1] and [2] a feasible method is given by the coupled-slowest-first integration
approach coupled with the implicit Euler method specified by a first order BDF method.

First the whole system is solved for the macro-step, t, — t,,1 = t, + H,

1 o
f(z Z Exnﬂ':xm tn) =0. (28)

However, the fast components, x¢ from the full state solution x are inaccurate, thus they
are discarded. Then by using interpolated values for the slow system between ¢, and .1,
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the following system is solved for the fast solutions. Here we have that H = /4 - f;,, where

finr is known as the multirate factor.

k k
1 o 1 o _
0 =G| tustekym 7 D, = KEmsttoisims 7 9 = Ese(tsiim | (2.9)
hiz Bi hiz Pi
—jF(tn+(l+k)/m:xF,n+([+/<)/m:9_CF,n+(l+/<)/m)' (2.10)

For stability reasons, the interpolated values Xs (i), are obtained by constant interpo-
lation based on xs,.x, then the coupled-slowest-first Euler approach is unconditionally
A-stable.

3 Nonlinear model order reduction

Due to the differential-algebraic structure of the generated network equations, standard
techniques used for ODE model order reduction, such as a direct reduction through a
Galerkin projection scheme, may yield unsolvable reduced order models.

To circumvent this and preserve the solvability of the numerical model, the Gauf3—
Newton with Approximated Tensors (GNAT) model order reduction approach is utilized,
[6]. This is combined with a gappy data reconstruction method, [14], for hyper-reduction.

These reduced basis model order reduction approaches utilise a basis obtained by the
Maximum Entropy Snapshot Sampling (MESS) method, [10], as proposed in [2]. To illus-
trate this approach, this section contains an overview of the reduction, hyper-reduction
and basis-construction methods.

3.1 GauB-Newton with approximated tensors

As GNAT operates on a discrete level, we assume that Equation (2.1) is solved by a linear
implicit time integrator, see the next section for a more detailed description. Then for #;
time steps, a sequence of n; systems of nonlinear equations are to be solved, with each

system defined at time step
R(x) =0, (3.1)

where x € RM and the residual mapping R : R — RM. For ease of notation, the time
dependencies have been omitted as we consider only one time instance and one input
vector.

The GNAT approach for reduction is to use a projection to search the approximated
solution in the incremental affine trial subspace 2% +V c RM, with the initial condition
1% € RM. The incremental subspace is used for consistent Petrov—Galerkin projections,
Appendix A [6]. This reduced state vector is then given by

%=a"+ Vex,, (3.2)

where V, € RM*" is the r-dimensional projection basis for V, which is not yet defined,
and x; denotes the reduced incremental vector of the state vector. Substituting Equation
(3.2) into Equation (3.1), results in an overdetermined system of M equations and r un-
knowns. Since V, is a matrix with full column rank, it is possible to solve this system by a
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minimisation in least-squares sense through

min |R(X)|[,. 3.3
&EMOH)” ( )”2 (33
This approach by residual minimisation is equivalent to performing a Petrov—Galerkin
projection where te test basis is given by % (V%), [5]- This nonlinear least-squares problem
is solved by the Gau3—Newton method, leading to then iterative process for k = 1,..., K,

solving
k gk k
s:;$%W\Qa+R 2 (3.4)
and updating the search value w* with
Wil =k ok, (3.5

where K is defined through a convergence criterion, initial guess w?, R* = R(x° + V,w¥) and
Jk= %(xo, Vxx’,< ). Here J* is the full order Jacobian of the residual at each iteration step k.
Since the computation of this Jacobian, which is used in circuit simulation to solve for the
next step, scales with the original full dimension of Equation (3.1) this is a computational
bottleneck. This bottleneck can be circumvented by the application of hyper reduction
methods, for which this paper utilises a gappy data reconstruction method.

3.2 Hyper-reduction by gappy data reconstruction

The evaluation of the nonlinear function R(x° + walr‘ ) has a computational complexity that
is still dependent on the size of the full system. To reduce the complexity of this evaluation
a gappy data reconstruction, based on [7], is applied. Like the GNAT approach gappy data
reconstruction uses a reduced basis to reconstruct the data. Gappy data reconstruction
starts by defining a mask vector # for a solution state x as

nj=0 if y; is missing,

nj=1 if u; is known,
where j denotes the j-th element of each vector. The mask vector # is applied point-wise
to a vector by (#,x); = nx;. This sets all the unobserved values to 0. Then, the gappy inner
product can be defined as (a,b), = ((n,a), (n, b)), which is the inner product of the each
vector masked respectively. The induced norm is then (||x|,)? = (x,%),. Considering the

reduction base obtained by MESS Vj,, = {¥/}/_;, now we can construct an intermediate
“repaired” full size vector # from a reduced vector u with only g elements by

i~y b, (3.6)
i=1

where the coefficients b; need to minimise an error E between the original and repaired
vector, which is defined as

E=|lu—all} (37)
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This minimisation is done by solving the linear system

Mb =f, (3.8)
where
M = (vi, 1/)”, and f;= (u, vi)n. (3.9)

From this solution # is constructed. Then the complete vector is reconstructed by map-
ping the reduced vectors elements to their original indices and filling the rest with the
reconstructed values.

3.3 Reduced basis generation

As stated previously, both the nonlinear model order reduction method and the hyper-
reduction method use a reduced basis. To generate such a basis, generally snapshot back-
ended reduced basis methods are used. A prominent method for this in literature is the
proper orthogonal decomposition method.

However, as shown in [3, 10], the way the proper orthogonal decomposition framework
extracts information from the high-fidelity snapshot matrix is inherently linear. When
used for nonlinear problems, it removes high-frequency components that are present and
relevant to the dynamical evolution of these systems. Therefore, the MESS method for

reduced basis generation is used.

3.3.1 Maximum entropy snapshot sampling

Let m and n be positive integers and m >> n > 1. Define a finite sequence X = (x1, %5, ...,%,)
of numerically obtained states x; € R™ at time instances ¢; € R, with j € {1,2,...,n}, of a
dynamical system governed by either ODEs or DAEs. Provided probability distribution p
of the states of the system, the second-order Rényi entropy of the sample X is

HP(X)=-log Y _p(x)* = ~logE(p(x))), (3.10)

j=1

with p; = p(x;) and where E(p(X)) is the expected value of the probability distribution p
with respect to p itself. When # is large enough, according to the law of large numbers,
the average of p1,p», ..., p, almost surely converges to their expected value,

% > pl) = E(p(X)) asn— oo, (3.11)

j-1

thus each p(x;) can be approximated by the sample’s average sojourn time or relative fre-
quency of occurrence. To obtain this frequency of occurrence, considering a norm || - ||
on R”. Then the notion of occurrence can be translated into a proximity condition. In
particular, for each x; € R™ define the open ball that is centred at x; and whose radius is
€>0,

Bc(x)={yeR™ | |lx -yl <€}, (3.12)
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and introduce the characteristic function with values

1, ifx € B(xy),
xi(x) = (3.13)
0, ifx¢ B.(x;).

Under the aforementioned considerations, the entropy of X can be estimated by

1311(72)()() =—log % Z Z xi(x)). (3.14)

i=1 j=1

Provided that the limit of the evolution of ]:11(72) exists and measures the sensitivity of the
evolution of the system itself [4, §6.6]. Then, for n large enough, a reduced sequence X, =
(%Xj,,%j,, ..., %;j,), with r < n, is sampled from X. This is done by requiring that the entropy
of X; is a strictly increasing function of the index k € {1,2,...,r} [11]. The state vector x;,
added to sampled snapshot space is the average value of all states in the selected e-ball.
A reduced basis V, is then generated from X, with any orthonormalization process. It has
been shown [10] that any such basis guarantees that the Euclidean reconstruction error
of each snapshot is bounded from above by €, while a similar bound holds true for future
snapshots, up to a specific time-horizon. See Theorems 3.3 and 3.4, [10].

To estimate the parameter €, which determines the degree of reduction within the MESS
framework, the following optimisation approach is employed [3]. As no user input is now
required this optimality requirement makes the MESS parameter free reduction method.

3.4 Reduced order multirate

Combining the previously seen techniques, we apply the model order reduction tech-
niques only in the macro-step of the multirate integration scheme. However, due to the
partitioned nature, this full system needs a special type of reduced basis matrix as it needs
to reduce only the slow part. To illustrate an implementation of a reduced order multirate
scheme, a first order implicit Euler scheme is described. The new reduction matrix is now
given by ® € R™"F*M_Considering the split system defined by Equations (2.7a)—(2.7c) the
reduction matrix is defined by

Ly 0
o= ( o Vr) . (3.15)

Then in each macro time-step we only need to solve the following reduced system. This
nonlinear least-squares problem is solved by the Gaufi—Newton method, using ®,

s*= min ||[Jf®a+R|,. (3.16)
aeud+V
Where R is defined for the whole macro step system as
Rx) = q(t,,+m, ’%) — j(tpe1,%) = 0. (3.17)

Note however that now we have J* as the full order Jacobian approximated by using the
gappy-MESS function evaluations. Then once the solution for the macro time-step is ob-
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tained, the slow partition of this solution xs are used for the interpolated values needed in
the intermediate fast steps.

4 Experiments

The verification of the reduced order multirate method, utilising the discussed methods,
and the netlist parser to create the network equations is done through numerical experi-
ments. For the first experiment a simple academic circuit consisting of resistors, capacitors
and diodes is considered. Then a real world industrial circuit is considered as provided by
STMicroelectronics. Although some simplification assumptions have been made about

the parameters of the underlying network components.

4.1 Academic experiment

The academic circuit shown in Fig. 1 is a combination of a short diode chain and then
a long ladder of diodes and resistors. Similar to a standard diode chain model [12], this
model contains sufficient redundancy to make it eligible for model order reduction. Fur-
thermore, increasing the resistance for each R; with R < R; < R;;; makes that the ladder
part of the circuits behaves on a slower timescale. This makes the circuit excellent for a
time integration with the reduced order multirate approach. The simulation parameters
are given in Table 1.

With the multirate factor fi,, = 20, it is evident that the multirate integration approach
is more accurate than the single rate method for the same macro step sizes, see Fig. 2. The
order however is equal due to the pollution introduced by the macro step. This increase
of accuracy comes at a cost. The right figure shows that the multirate technique carries a

> Un+2 Rn—l
> Un+3

.%
D <

H v | >JJ\/W1

Figure 1 The academic diode chain test model with redundancy

Table 1 Simulation parameters of the academic model

Starting time to 0s

Ending time N 0.004 s
Number of steps N [100 200 400 800]
Multirate factor fror 20

Newton tolerance tol 1078

Reduced dimension r 9
Hyper-reduction factor g 23

Voltage source % 5sin(40-2mt) V
Resistance R 1000 €2
Resistance Ri i-1000 2
Capacitance C 10 uF

Diode saturation current Is 10712 A




Bannenberg et al. Journal of Mathematics in Industry (2022) 12:12 Page 10 0of 13

Convergence of the error C ion time vs the error
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200 300 400 500 600 700 800 10% 10°
Number of macro steps Computation time in seconds

St
3

Figure 2 Computational effort of the numerical schemes, where the error is plotted against the computation
time in seconds. The error is defined as the absolute value between the computed voltage and reference
voltage for the output node

Ry

Figure 3 The equivalent circuit of a photovoltaic cell

burden of extra computational effort. This additional burden is then undercut by applying
the MOR, which pushes the computational versus accuracy line further to the left.

4.2 Solar panel simulation

As final industrial application STMicroelectronics has provided a test case from their de-
velopment team. The test case concerns a transient analysis of a solar panel circuit. In
this case we consider a silicon photovoltaic cell that is composed of two layers of semi-
conducting material, e.g. silicon or gallium arsenide, with different doping. The process of
converting solar radiation into electricity is based on the photovoltaic effect. To model the
photovoltaic effects taking place in the solar panel, a mathematical model is used based
on the construction of an equivalent circuit. When the cell is lit, the generated power can
be modelled as a current source. Therefor, an equivalent circuit of the photovoltaic cell is
shown in Fig. 3.

The full solar panel circuit is a conglomeration of photovoltaic cells, Fig. 3, that are linked
in series and parallel. This grid of photovoltaic cells is then connected to a DC-DC buck
converter to stabilise the output. The full schematic of the solar panel circuit is shown in
Fig. 4. As the voltages and currents generated by the solar panel vary significantly slower
than the operating voltages in the buck converter there is an inherent multirate advantage.
Due to the replication in the structure of the solar panel, model order reduction can be
used to significantly reduce the complexity of the panel simulation.

The full test case for the silicon photovoltaic solar panel is run for a series and parallel
grid that is 35 by 35, which makes the full dimensional system consist of 2422 equations.
The reduction parameter selection procedure provides us with € = 0.43 which leads to
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Figure 4 The industrial solar panel test model with redundancy. Here a 4 by 3 grid of photovoltaic cells are
linked together in series and parallel and connected to a DC/DC converter

Table 2 Simulation parameters of the industrial model

Starting time to 0s

Ending time ty 100 ms

Number of steps N [100 200 400 600]
Multirate factor fone 20

Newton tolerance tol 1078

Voltage source v 10sin(100 - 27 t) V
Resistance R 35mQ
Resistance Ry 150
Resistance R3 2 u2

Resistance in 24 Q

Current source / 09A

Diode Is 10712 A

Original dimension d 2422

Reduced dimension r 6
Hyper-reduction factor g 8

Ci ion time vs the error

Convergence of the error

ROMR

100 200 300 400 500 600 10° 10
Number of macro steps Computation time in seconds

Figure 5 Computational effort of the numerical schemes applied to the solar panel
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quite a significant reduction. As shown in Table 2 the dimension of the slow subsystem
of photovoltaic cells is decreased from 2416 to only 6 equations, and the hyper-reduced
dimension of the nonlinear function is reduced to only 8 equations.

From the figures in Fig. 5, we see that the academically achieved results are replicated
for an industrial test case, Fig. 2. Due to the model order reduction there is a substantial
decrease in computation time, with the reduced order multirate scheme being roughly

6.35 times faster than the multirate integration scheme, without losing accuracy.

5 Conclusion and outlook

In this paper the numerical approach for implementing the reduced order multirate time-
integration method has been outlined in the context of circuit simulation with the novel
BDF approach. Using Modified Nodal Analysis for the generation of the network equa-
tions has been shown to be an effective and efficient approach. The resulting equations
are suitable for nonlinear model order reduction, as has been shown by the application of
the Gaufi—-Newton with Approximated Tensors method extended with a gappy data re-
construction approach. The reduced bases for both model order reduction techniques are
obtained by the Maximum Entropy Snapshot Sampling method. The reduction param-
eter is generated using a parameter free optimisation method. The whole mathematical
framework has been applied to both an academic and an industrial test case, supplied by
STMicroelectronics. A significant reduction in computation time can be seen whilst the
accuracy of the multirate approach closely approximated. For actual use in the optimisa-
tion flow of STMicroelectronics a more robust framework would need to be created but

the numerical results show a significant potential.
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