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In a 3-D integrated circuit the heat source distribution has a huge effect on the 
temperature distribution, so an optimal heat source distribution is needed. This 
paper gives a numerical approach to its thermal optimization, the result can be 
used for 3-D integrated circuit optimal design. 
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Introduction 

In the latest decade, the 3-D integrated circuit (3-D IC) technology has attracted wide 

attention in the semiconductor industry [1-6], which has been emerging as a powerful tool for 

satisfying the requirement of integrated circuit packaging so as to extend greatly the space of 

IC development and overcome completely the drawbacks of 2-D IC. The way to realization of 

the 3-D packaging structure is stacking, which has many advantages in an increased speed, a 

large packaging density, a low weight/volume, and reduced power consumption and footprint 

[7-16]. While the package density increases, the heat quantity in each unit volume becomes 

higher, which will greatly increase the working temperature of the device. Excessive working 

temperature will seriously affect the stability and reliability of the device, and even lead to the 

thermal failure. The problems of heat dissipation in 3-D IC are more serious and catching lots 

of attentions than those in the traditional single IC package. Hence, thermal management for  

3-D IC is becoming a major concern [17-21]. 

Thermal management of 3-D IC has been widely recognized as a significant technol-

ogy for widespread implementation of the 3-D IC technology. In recent years, a lot of achieve-

ments have been developed for the thermal management of 3-D IC. In [22], the domain decom-

position method was used to compute the temperature fields. In [23], the Green’s function was 

used to compute the thermal distribution of the 3-D IC, where the method was not only appli-

cable to transient thermal problems, but also to the steady-state thermal problems. The thermal 

through silicon vias (TTSV) combined with micro-channel cooling method was used to solve 

the hotspot problems in [24]. In this paper, we mainly study the thermal optimization problems 

in 3-D IC by rearranging the heat source distributions. The results show that the maximum 

temperature can be reduced by about 4.99%. The results presented in this paper are expected to 

aid in the development of thermal design guidelines for 3-D IC. 
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 Analysis model 

Figure 1 shows the general physical and ther-

mal model of the 3-D IC, where the different layers 

are bonded by the bonding layer to form a 3-D struc-

ture, and different layers are inter-connected by the 

TSV to achieve the electrical interconnection. The 

number of devices that can be integrated within the 

system is limited as the following formula [25]: 
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where NG  is the number of gates that can be integrated within a system with a clock period, tpd, 

α – the activity rate, E – the energy dissipation, g – the average thermal conductance, and  

ΔT – the temperature gradient between the dissipating elements and the ambient air. 

Heat flow in a control volume of a solid in the 3-D IC with an isotropic thermal con-

ductivity can be governed by the following equation [26]: 
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where Cv is the volumetric specific heat of the material, T – the temperature of the control 

volume, k – the thermal conductivity of the material, q – the volumetric rate of heat generation 

inside the volume. This equation can be 

solved by various analytical methods [14, 15], 

and the Taylor series method is the simplest 

one [27].  

Experimental results 

In this section, a two-layer 3-D IC with 

different heat source distributions is estab-

lished to study the temperature fields. By re-

arranging the heat source distributions, we get 

two different heat source distributions to study 

their effects on the temperature distributions. 

The 3-D IC model is shown in fig. 2, 

where the length and width of each layer are 

10 mm, and the heights of the first and second 

layers are 3 mm and 4 mm, respectively. The 

thermal properties of layer-1 and layer-2 are 

listed: the heat conductivity coefficient k1 = 50 

W/m°C, k2 = 70 W/m°C, the densities ρ1 = 

1000 kg/m3, ρ2 = 2000 kg/m3, the specific heat 

c1 = 300 J/kg°C, c2 = 100 J/kg°C. From the top 

view of each layer, the heat sources distribu-

tions in each layer are shown in fig. 3.  

Figure 4 shows the temperature distribu-

tions of each layer, where figs. 4(a) and 4(b) 

 

Figure 1. The 3-D IC model 

 

Figure 2. The model of the two-layer 3-D IC 

 
Figure 3. Heat sources distributions of each layer 



 

represent the temperature fields of the layer-1 and layer-2, respectively. It is obviously that the 

maximum temperature of layer-1 and layer-2 are 75.732 ℃ and 76.122 ℃, respectively. 

 

Figure 4. The temperature fields of each layer (for color image see journal web site) 

For comparison, we consider another case as shown in fig. 5 by rearranging the heat 

source distributions. In this case, the length and width of each layer are also 10 mm, the heights 

and thermal properties of the first and second layers are the same as the aforementioned case. 

The heat sources distributions in each layer are shown in fig. 6. 

 

Figure 5. The model of the two-layer 3-D IC 

 

Figure 6. The heat sources distributions of each layer 

Figure 7 shows the temperature fields of each layer by rearranging the heat sources 

distribution, where figs. 7(a) and 7(b) represent the temperature fields of the layer-1 and layer-

2, respectively. It is obviously that the maximum temperature of layer-1 and layer-2 are 

72.655 ℃ and 72.507 ℃, respectively. By comparing figs. 7 and 4, it can be found that the 

temperature has been greatly reduced after rearranging the heat sources distribution, where the 

maximum temperature in layer-1 is reduced by about 4.24% and the maximum temperature in 

layer-2 is reduced by about 4.99%. The results show that the maximum temperature can be 

declined by rearranging the heat source distribution. 



 

 

Figure 7. The temperature fields of each layer (for color image see journal web site) 

Discussions and conclusion 

For the steady heat conduction, eq. (2) becomes: 

   2 + 0k T q   (3) 

and a variational-based finite element method can be used, its variational formulation can be 

established by the semi-inverse method [28-30], which is: 
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For a micro-scale and nanoscale heat conduction [31], a more accurate model can be 

established by fractal derivative model [32], and eq. (2) can be updated: 
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where d/dtα, d/dxβ, and d/dyγ are fractal derivatives with respect to t, x, and y, respectively, α, β, 

and γ are fractal orders. Detailed discussion of the fractal calculus and its applications are re-

ferred to [32-42].  

In this paper, the thermal optimization of 3-D IC is studied by rearranging the heat 

source distribution. The results show that the maximum temperature can be declined by rear-

ranging the heat sources distribution. The results presented in this paper are expected to aid in 

the development of thermal design guidelines for the 3-D IC. 
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