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Short Communication

One important source of information in the precision 
medicine armamentarium comes from the transcriptomic 
analysis of samples from tumor tissues (biopsies or surgi-
cal specimens). These are mixtures of several different 
cell types in addition to cancer cells, and include fibro-
blasts, adipocytes, endothelial, and immune cells. We 
refer to this complex ecosystem of interacting cells as the 
tumor microenvironment (TME). Changes in the cell 
composition of TME are associated with functional altera-
tions. In particular, the immune contexture of solid tumors 
in humans is a recognized hallmark of cancer with prog-
nostic potential.1 The clinical outcome of multiple cancer 
types in patients was shown to depend on the pre-existing 
adaptive immunity.2 A growing number of reports demon-
strated an improved anti-tumor response to therapy when 
combined with checkpoint inhibitors3,4 and an immune-
based rationale to guide the use of such therapeutic strate-
gies has been advocated.5

Recently, several computational methods have been 
reported for predicting fractions of multiple cell types in 
bulk gene expression profiles of tissue samples. These 
methods are based on the consideration that the gene 
expression profile of a heterogeneous sample is the convo-
lution of the gene expression levels of the different cell 
components. The quantitative estimation of the unknown 
cell fractions is therefore based on a signature matrix 
describing the cell-type-specific expression profiles, which 
should be known in advance. The expression of each gene 
in the heterogeneous sample will be the weighted sum of its 
expression values of each cell type present in the mixture. 
Several computational approaches have been developed to 
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solve this deconvolution problem and have been exten-
sively reviewed in recent publications.6-8

As the deconvolution process depends on both the math-
ematical analysis and the use of gene signatures specific for 
cell types, we would like to point out that the quality of the 
results will depend on the quality of such lists as much as 
on the efficacy of the deconvolution algorithms. Actually, 
Vallania et al.9 demonstrated that the basis matrix of gene 
signatures is the major determinant of deconvolution accu-
racy, and that virtually no computational method can over-
come possible biological and technical bias present in a 
basis matrix. In fact, they tested different matrices and dif-
ferent methods and found that for a given basis matrix, all 
methods gave highly correlated proportions, while for a 
given method, the use of different basis matrices showed a 
lower correlation in the estimated proportions.

Therefore, the availability of accurate cell-type-spe-
cific gene signatures is of the utmost importance for the 
success of deconvolution approaches. Moreover, the gene 
expression profile of a single cell type can change depend-
ing on the interaction with other surrounding cells or on 
the presence of other external stimuli and can be substan-
tially different in health or disease conditions. This will 
require additional condition-specific information to be 
incorporated in the cell-type-specific signatures. The first 
gene matrices used in the deconvolution approaches were 
derived from microarray profiling on sorted immune cells 
from healthy individuals—IRIS10,11 and LM2212—and 
may have limited use in the analysis of data obtained by 
the next-generation sequencing platforms. Recently, 
Monaco et al.13 characterized 29 healthy human immune 
cell types by RNA sequencing after a complex flow 
cytometry isolation procedure, and defined modules of 
specific, co-expressed, and housekeeping genes. This 
effort, together with the definition of an optimized nor-
malization approach, allowed absolute deconvolution of 
human immune cell types.

The approaches described above have a major limita-
tion in being restricted to circulating immune cells from 
healthy individuals and may not describe tumor-infiltrat-
ing immune cells and their heterogeneity. Moreover, lim-
ited data are available for other cell components of the 
TME, which may have a role in the regulation of tumor-
immune interaction. However, with the advent of the sin-
gle-cell RNA sequencing technology, it is now possible to 
overcome these limitations. Using this technology, 
Schelker et al.14 determined gene expression profiles for 
tumor-infiltrating immune cells, tumor-associated non-
malignant cells, and individual tumor cells from the same 
solid tumor biopsy. These profiles were used to benchmark 
deconvolution, and the results were validated using inde-
pendent data. Single cell sequencing involves very com-
plex procedures and logistics, and it is difficult to envisage 
that it will be possible in the context of routine clinical 

practice. However, we expect that more gene matrices will 
become available from single cell sequencing experiments 
and will be instrumental in improving the potential of 
deconvolution on bulk transcriptomic data, which are and 
will become increasingly available in clinical oncology.

One additional caveat on the reliability of gene matrices 
merits attention: all methods of cell isolations have limits. 
Flow-cytometry cell separation procedures, even if they are 
performed on circulating cells, involve several steps of cell-
surface markers labeling and physical sorting that may influ-
ence gene expression. Single cell sequencing requires an 
aggressive tissue disaggregation procedure that can damage 
the cells and lead to a selective loss of the most susceptible 
ones. This will introduce a bias on the surviving cells, in addi-
tion to other possible gene expression changes in response to 
the chemical and physical insults in the surviving cells.

A groundbreaking and rapidly growing family of tech-
niques is spatial sequencing, which allows spatial detec-
tion of transcripts in tissue sections.15-17 This approach is 
going to be very useful, also in this context, for two rea-
sons. First, RNA sequencing from fresh frozen tissue slices 
with a spatial barcoding will avoid any isolation procedure 
that could introduce an expression or a cell selection bias. 
Second, the topography of tumor-associated immune cells 
is also relevant to define the immune contexture. In fact, 
some tumors show pronounced immune infiltrates in their 
core (“inflamed” or “hot” tumors) while in some tumors 
immune cells aggregate at the tumor boundaries (“immune-
excluded” tumors).18 Currently, the number of transcripts 
that can be sequenced (a few hundred) or the spatial reso-
lution (10–100 microns) is limited, but we can envisage 
that considerable progress will be made in the near future 
to allow for a complete spatial transcriptomic analysis at 
the single-cell resolution level. As in the case of single-cell 
sequencing, this technology may not be easily imple-
mented into clinical practice, but will be able to provide 
more detailed information on the gene expression charac-
teristics of the single cell types, in association with their 
tissue localization. For instance, cells in immune-excluded 
tumors will probably have different expression patterns 
from cells in “inflamed” ones. These patterns will be use-
ful for the generation of more detailed gene matrices for 
deconvolution.

In conclusion, we envisage that the complementation of 
more accurate basis matrices of cell-type and condition-
dependent gene expression signatures with the available 
deconvolution algorithms will greatly improve the possi-
bility of describing the cell components of the tumor 
microenvironment. This information will add to the exist-
ing immunohistochemistry and digital pathology assays.
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