
Hidden Error Variance Theory. Part I: Exposition and Analytic Model

CRAIG H. BISHOP

Naval Research Laboratory, Monterey, California

ELIZABETH A. SATTERFIELD

National Research Council, Monterey, California

(Manuscript received 17 April 2012, in final form 19 September 2012)

ABSTRACT

A conundrum of predictability research is that while the prediction of flow-dependent error distributions

is one of its main foci, chaos fundamentally hides flow-dependent forecast error distributions from empirical

observation. Empirical estimation of such error distributions requires a large sample of error realizations

given the same flow-dependent conditions. However, chaotic elements of the flow and the observing network

make it impossible to collect a large enough conditioned error sample to empirically define such distri-

butions and their variance. Such conditional variances are ‘‘hidden.’’ Here, an exposition of the problem is

developed from an ensemble Kalman filter data assimilation system applied to a 10-variable nonlinear

chaotic model and 25 000 replicate models. The 25 000 replicates reveal the error variances that would

otherwise be hidden. It is found that the inverse-gamma distribution accurately approximates the posterior

distribution of conditional error variances given an imperfect ensemble variance and provides a reasonable

approximation to the prior climatological distribution of conditional error variances. A new analytical

model shows how the properties of a likelihood distribution of ensemble variances given a true conditional

error variance determine the posterior distribution of error variances given an ensemble variance. The

analytically generated distributions are shown to satisfactorily fit empirically determined distributions. The

theoretical analysis yields a rigorous interpretation and justification of hybrid error variance models that

linearly combine static and flow-dependent estimates of forecast error variance; in doing so, it also helps

justify and inform hybrid error covariance models.

1. Introduction

A hidden error distribution is a condition-dependent

error variance that is formally unobservable because the

condition of interest does not repeat itself enough times

to enable the condition-dependent error variance to be

accurately computed—even if perfectly precise observa-

tions were available to evaluate the errors. The properties

of hidden error distributions/variances have received

very little scientific attention to date. This is regrettable

given the overwhelming prominence of the concept of

condition-dependent error distributions in the design of

advanced probabilistic data assimilation and fore-

casting schemes (Toth and Kalnay 1993; Molteni et al.

1996; Houtekamer et al. 1996; Bishop et al. 2001;

Houtekamer andMitchell 2001; Anderson 2001;Whitaker

and Hamill 2002; Ott et al. 2004; Wang and Bishop 2005;

Raftery et al. 2005; Hunt et al. 2007;McLay et al. 2008; van

Leeuwen 2009).

Forecast error distributions depend on whether a

front, cyclone, anticyclone, or other flow feature is nearby.

They also depend on the quality and location of obser-

vations used to generate the forecast. Hence, condition-

dependent forecast error distributions are contingent

upon the state of the flow and on the observational

network. The flow changes chaotically because the at-

mosphere exhibits nonperiodic chaos (Lorenz 1963;

Pedlosky and Frenzen 1980). Aspects of the observa-

tional network such as cloud track winds, clear-air

radiances, and adaptive observations are also subject

to quasi-chaotic change.

An explicit aim of ensemble forecast design is to

predict forecast error distributions conditioned on both
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the flow and the observational network (Houtekamer

et al. 1996). Here, we conceptually define the true condi-

tioned error variance as the mean square of instantaneous

forecast errors of replicate forecasting systems whose

forecasts pertain to the same true state (condition 1) and

observational network (condition 2) but to differing ran-

dom realizations of observation and model error, which

results in differing forecasts and forecast errors. The

chaotic aspects of the flow and observational network

make it practically impossible to observe and collect

large samples of errors conditioned on specific flows

and specific configurations of observational resources.

Consequently, our ability to characterize and measure

the accuracy of flow-dependent error distribution pre-

dictions is extremely limited.

Methods, such as those described in Majumdar et al.

(2001), Wang and Bishop (2003), and Leutbecher and

Palmer (2008) (among others) that involve binning dif-

ferences between forecasts and observations according

to the magnitude of the predicted error variance, can

perceive the extent to which a condition-dependent

error variance prediction scheme can distinguish large

error variance from small error variances. However,

such methods do not provide clear quantitative in-

formation about 1) the extent towhich the true condition-

dependent error variance fluctuates around predicted

error variances and 2) the actual climatological range of

true condition-dependent error variances associated with

a particular forecasting system. Knowledge of these two

quantities would provide a clearer measure of the extent

to which the ensemble performance met the ensemble

designers’ aim of predicting condition-dependent fore-

cast error distributions.

This is the first of two papers that seek to improve our

understanding of hidden error variance distributions

and then to use this understanding to improve data as-

similation and ensemble forecasting techniques. This

first paper presents a new method that can be used to

quantify hidden error distributions in dynamical systems

for which it is possible to run a very large number of

statistically independent replicate data assimilation

forecast cycles corresponding to the same true trajec-

tory. The revealed flow-dependent error variances from

this method are then used to develop an analytical

model of the prior climatological distribution of true

error variances associated with a forecasting system and

also the posterior distribution of true error variances

given an imperfect ensemble variance. In Bishop et al.

(2013, hereafter Part II) the challenge of developing and

thoroughly testing a reliable tool for deducing the pa-

rameters defining these analytic models of hidden error

variance when the truth is not known and only a single

ensemble data analysis and forecasting system is

available is addressed. The overarching objectives of

this first paper are to

(i) reveal otherwise hidden distributions of error var-

iance and

(ii) develop an analytical model for hidden error vari-

ance that is consistent with the empirical findings of

objective i.

Sections 2 and 3 achieve objectives i and ii, respectively,

while conclusions follow in section 4.

2. Hidden error variances revealed

We begin this study with a thought experiment.

Consider an infinite number of ‘‘replicate earths,’’ all

having the same true atmospheric–oceanic state, the

same forecast model, and the same observation types

and observation locations but with differing random

unbiased observation and model errors; in other words,

the conditions on each of these earths are identical ex-

cept for random observation and model errors. The

differing realizations of observation and model error on

each earth cause the forecasts on each earth to differ.

From the perspective of an inhabitant of one of these

earths, the error variance given a particular truth would

be hidden. This is because the earth’s ocean–atmosphere

and observational network exhibits aperiodic chaos so

that the system rarely returns to the same state and

hence one is unlikely to havemore than a few realizations

of error. One realization of error does not define a vari-

ance or any other aspect of a probability distribution

function (pdf) of errors. On the other hand, if one were

omniscient and knew the (differing) forecasts on each of

the replicate earths and the particular truth common to

all the earths, then he or she could compute the forecast

error on each of the replicate earths. By computing the

variance of these errors, one could precisely determine

the error variance given a particular truth and a particular

observational network and hence the otherwise hidden

error variances would be revealed.

We simulated this thought experiment with a system

that employs a 10-variable version of the Lorenz ’96

model [Lorenz (1996)—equivalent to model 1 of Lorenz

(2005)] and an implementation of the ensemble trans-

form Kalman filter (ETKF; Bishop et al. 2001); both

of which are described in more detail in appendix A.

A primary design objective for the system was to mini-

mize the number of ensemble members required to

ensure that the system would converge to a perfect lin-

ear extended Kalman filter for an imperfect model in the

limit of infinitesimally small analysis and forecast errors.

We set this objective based on the belief that if this

objective was met and if the ensemble perturbations and
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errors were sufficiently small to justify the linearity as-

sumptions of the extendedKalman filter, then the resulting

system would accurately predict condition-dependent er-

ror variances. Accurate error variance predictions would

then enable us to systematically degrade the error variance

prediction accuracy and thus reveal how variance pre-

diction accuracy affects the distribution of true conditional

error variances given an imperfect variance prediction. As

can be seen from appendix A, these requirements led to

a system featuring a control analysis–forecast, as well as 20

analysis–forecast ensemble members. The control forecast

is subject to a random, quasi-flow-dependent model error

that is uncorrelated from one forecast time to the next.

Notable differences between this formulation and formu-

lations typically seen in the literature include (i) the control

forecast, rather than the ensemble mean, is used to com-

pute the innovation; (ii) ensemble perturbations are com-

puted about the control forecast rather than the ensemble

mean; (iii) the analysis perturbations are not constrained

to sum to zero; and (iv) no localization is used because

the number of independent perturbations equals the

number of independent model variables. These differ-

ences make this ETKF system similar to a full-rank

square root Kalman filter. It is known that the Kalman

filter is optimal for a linear system with Gaussian ob-

servation error statistics. Removing differences i–iii

would have involved doubling the ensemble size to 40

members to obtain a symmetric ensemble with a mean

of zero and hence doubling the cost of the already ex-

pensive calculations performed in this paper. The effect

of differences i–iii is guaranteed to be negligible in the

limit of vanishingly small forecast errors and ensemble

perturbations.

We simulate the replicate earths described in our

thought experiment by performing a large number of

independent forecast–analysis cycles, each having the

same truth but differing random observation and model

errors. Hereafter, we will refer to these independent time

series of forecasts and analyses as replicate systems. Each

replicate system assimilates simulated observations that

differ solely because each observation error is drawn in-

dependently from a normal distribution with zero mean

and variance R 5 0.05. This gives each individual system

an independent time series of observation errors, which

in turn leads to an independent time series of analyses

and forecasts. The observation error variance (0.05) was

chosen to be much smaller than the climatological vari-

ance of the true state of our model (13.1) in the hope that

this would yield a data assimilation cycle in which the

linear assumptions of an extendedKalman filterwould be

approximately satisfied.

The ‘‘true state’’ trajectory was obtained from a free

run of the Lorenz model that was initialized at each grid

point with random numbers (see appendix A for de-

tails). To allow for model spinup, we disregarded the

initial 240 time steps. Beginning at the end of this spinup

period, the data assimilation cycle was run for 400 time

steps (;100 days) with data assimilation being per-

formed every second time step (;12 h). Figure 1 shows

how themean of the squared errors of the 10 variables of

the analysis for a single replicate system is reduced from

a value of about 0.03 to roughly 0.005 after 10–20 data

assimilation cycles. Subsequent data assimilation cycles

maintain the error variance at this fairly low value, but

note that this mean square error does exhibit consider-

able fluctuations from one data assimilation cycle to the

next.

To avoid including the initial period of rapid error

reduction, we remove all data from the first 25 data as-

similation cycles (;12.5 days) and perform our compu-

tations on the data from the last 175 data assimilation

cycles (;87.5 days). The variation of the domain-averaged

mean square error over time for independent replicate

systemswas qualitatively similar to that shown in Fig. 1 but

the timing andmagnitude of increases and decreases of the

mean squared error differed considerably from one repli-

cate system to the next.

It is often claimed that ensemble Kalman filters are

capable of predicting flow-dependent error variances.

For the reasons discussed above, in chaotic systems it is

often impossible to check whether this claim is valid.

FIG. 1. The domain-averaged mean square of forecast error

(MSE of analysis) shown for the first 200 data assimilation cycles.

Data assimilation was performed every two time steps (;12 h).

The first 25 data assimilation cycles (;12.5 days) are considered

part of a spinup period and are excluded from our evaluation. The

forecasts for this computation were obtained using 100% obser-

vation coverage, R 5 0.05, and 4% ensemble covariance inflation.

The model error variance parameter was q 5 0.0001.
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However, with 25 000 replicate systems, we can accu-

rately estimate the true forecast error variance given the

current flow and the locations and error variances of the

current and historical observations. An accurate estimate

of the true condition-dependent variance of the error of

the control forecast for a particular variable at a particular

time can be obtained by subtracting the single true value

of this variable from each of the 25 000 independent

control forecasts of this variable to obtain a set of 25 000

independent control forecast errors. The variance of

this set then gives an accurate estimate of the forecast

error variance given a particular truth and a particular

observational network. It is this error variance that

ensemble variances attempt to predict. In Fig. 2, the

coordinates of the (1750 5 10 3 175) black circles are

given by the estimated true error variance from the

replicate systems (abscissa) and the corresponding

ETKF ensemble variance (ordinate) from a single

system (replicate system number 1, in this case). This

scatterplot demonstrates that our implementation of

the ETKF provides remarkably accurate predictions of

the true flow-dependent forecast error variance. As far

as the authors are aware, Fig. 2 gives the first empirical

evidence that clearly supports the claim that de-

terministic ensemble Kalman filters (with a relatively

small ensemble size of just 20 members) are capable of

accurately predicting flow-dependent forecast error

variances.

EnKF implementations for real systems cannot be

expected to produce error variance predictions that will

be as accurate as that shown in Fig. 2. The ETKF that

produced Fig. 2 was constructed using perfect information

about the distribution of stochastic model errors and did

not require ad hoc error covariance localization. In real-

world applications to high-dimensional systems, such as

the ocean and atmosphere, the model error distribution

is not known and ad hoc alterations such as ensemble

covariance localization are employed. Hence, ensemble

variances from such systems will not, in general, be able

to predict the true error variance as accurately as that

indicated by Fig. 2.

Because authors such as Wang and Bishop (2003) and

Leutbecher and Palmer (2008) have shown that mean

forecast error variance is a linearly increasing function

of ensemble variance in some ensemble forecasting

systems, it is of interest to consider ensemble forecasting

schemes that are at least able to produce ensemble

variance predictions s2 that behave like random vari-

ables drawn from distributions with means that are

monotonically increasing functions of the true condi-

tional error variance s2. We model such ensemble

forecasting schemes by assuming that s2 is a random

draw from a probability distribution whose mean is

a linear function of the true conditional error variance

s2. Specifically, we assume that the difference s2 2 s2min

of the ensemble variance s2 about a climatological

minimum of ensemble variance s2min is a random draw

from a gamma distribution whose mean is a linear

function (as2 1 b) of s2 and whose relative variance

k21 (defined below) is linked to the accuracy of the

ensemble-variance prediction of forecast error vari-

ance. To emphasize that as2 1 b is semipositive defi-

nite, we let b52as2
min so that as2 1 b5 a(s2 2s2

min),

where s2
min is the minimum possible value of the true

forecast error variance in the chaotic system under

consideration.

This approach allows us to control the level of accu-

racy of the ensemble forecast in a very precise way. To

see this, note that gamma distributions are typically

defined in terms of a shape and a scale parameter, k and

u, respectively. The properties of the gamma distribu-

tion are such that if x denotes a random draw from

a gamma distribution, then the mean hxi5 ku and the

relative variance of x is defined by [h(x2 hxi)2i/
hxi2]5 k21, where the angle brackets indicate the ex-

pectation operator. Thus, by setting u5 a(s2 2s2
min)/k,

we ensure that the mean hs2 js2i2 s2min of the random

distribution of s2 2 s2min given a fixed true error variance

s2 is equal to a(s2 2s2
min), while by increasing or de-

creasing k we can control the typical size of the sto-

chastic variations of s2 2 s2min about its mean value of

a(s2 2s2
min). To be mathematically explicit, we assume

that the likelihood pdf L(s2 js2) of the ensemble vari-

ances given a true error variance is given by

FIG. 2. Scatterplot of ETKF ensemble variance from a single

replicate system as a function of true error variance. The true error

variance is estimated from all 25 000 replicate systems. The linear

fit to the points on the scatterplot is governed by the equation

hs2 js2i5 1:03s2 2 3:963 1024.
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L(s2 j s2)5
1

G(k)

1

(s22 s2min)

(
k(s22 s2min)

a(s22s2
min)

)k

exp

(
2k(s22 s2min)

a(s22s2
min)

)
, s2$ s2min

so that hs2 j s2i5 a(s22s2
min)1 s2min . (1)

In appendix B it is shown that the relative variance

k21 of a gamma distribution is exactly the same as the

relative variance of the distribution of sample variances

obtained fromMmember random draws from a Gaussian

distribution provided that M5 2k1 1. This makes the

gamma distribution particularly appropriate for repre-

senting stochastic fluctuations in ensemble variances be-

cause there is an effective random sample ensemble size

M5 2k1 1 associated with the relative variance k21.

Figure 3 depicts two gamma pdf’s with effective random

sample ensemble sizes of M 5 8 and M 5 4. Both dis-

tributions have a mean of unity. Note how the variance

of theM5 4 case is much larger than that for theM5 8

case.

The connection between the relative variance k21 of (1)

and the effective ensemble size enable the accuracy of

ensemble variance predictions to be described in terms of

random sample Gaussian ensembles of size M 5 2k 1 1

from distributions whose variances are linearly related to

the true error variance. Because of unaccounted model

errors and other deficiencies in ensemble design, in prac-

tice, a 100-member ensemble might have a connection to

the true error variance like that of an 8-member random

draw fromadistributionwhose variance is a linear function

of the true error variance. In other words, a 100-member

ensemble might have an effective ensemble size of just 8.

To investigate the distribution of true error variances

given an imperfect ensemble variance, we generate

degraded ensemble variances from the near-perfect

ETKF variances. One way of doing this is to replace

ETKF variances s2ETKF by

s25 (s2ETKF 2 s2min)h1 s2min , (2)

where h is a random draw from a gamma distribution

with a mean of unity and a relative error variance of k21.

We choose to estimate the climatological minimum

of ensemble variances s2min in the above equation from

the smallest realized value of s2 returned by the ETKF

ensemble. In Part II, we describe seven independent

runs of length 400 000 time steps (200 000 data as-

similation cycles). The smallest value of ETKF s2 ob-

tained in any of these runs was 1.6305 3 1024. This

number is of the same order of magnitude as the

minimum ETKF ensemble variance of the 1750 s2ETKF

realizations that occurred on the first replicate system

during the test period, which was 3.4 3 1024. For the

sake of consistency with Part II, we chose to set s2min 5
1.6305 3 1024.

To define the likelihood distribution given by (1) from

the ensemble variances, generated from (2), we must es-

timate the parameters a and s2
min. To estimate a, we note

that the linear regression shown in Fig. 2 provides an ap-

proximation to the mean hs2 js2i5 a(s2 2s2
min)1 s2min.

Hence, we can set a equal to the slope of this line. Doing

so gives a5 1:0262. For the parameter s2
min, we simply

let it be equal to the smallest observed value of s2 within

the set of points shown in Fig. 2. This approach yields

FIG. 3. Examples of assumed likelihood gamma pdf’s of sample ensemble variances with a mean of unity.

(a) Simulation for an effective ensemble size ofM5 8, or equivalently, a relative variance of 2/7. (b) As in (a), but for

an effective ensemble size of 4, or equivalently, a relative variance of 2/3.
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s2
min 5 5:50213 1024, which is likely to be an over-

estimate of the true climatological minimum of the true

forecast error variance because it is based on just 175

data assimilation cycles. Nevertheless, it is very close to

the value 5:44633 1024 one would obtain for s2
min by in-

sisting that the ordinate axis intercept (23:963 1024) in

Fig. 2 be equal to s2min 2 as2
min.

The computation that produced Fig. 2 took about 5

days to run on a personal computer and produced 1750

(s2, s2ETKF) pairs. This number of pairs would be too small

for us to produce a large number of distinct bins of similar

s2 values. In addition, it does not allow the full range of

possible deviations of s2 about s2ETKF that are permitted

by (2) to be explored. Consequently, we generated

306 250 pairs of (s2, s2) from the 1750 pairs of (s2, s2ETKF)

by creating 175 random values of s2 for each (s2, s2ETKF)

pair using (2). This creates 175 (s2, s2) pairs, all having the

same s2 value. This procedure was independently re-

peated for each of the 1750 (s2, s2ETKF) pairs, thus yielding

306 250 pairs of (s2, s2). These pairs were then ordered

from lowest s2 value to highest s2 value and then split into

35 bins of 8750 pairs having similar s2 values.

Figure 4 depicts probability density histograms of true

error variance for the 2nd, 18th, and 35th of these bins,

for the case in which the s2 values were generated using

a relative error variance corresponding to an eight-

member ensemble (k5 3:5). Figure 4’s probability

density histograms were obtained by (i) splitting the

range of true error variances within each s2 bin into 50

equally spaced intervals, (ii) computing the frequency

with which the true error variance falls within each of

these intervals, and (iii) dividing each frequency by the

corresponding interval width to obtain a discrete ap-

proximation to the probability density function. The

smooth solid lines shown in Fig. 4 give the fit of an

inverse-gamma pdf approximation,

r(s2 j s2)’ b
a
post

post

G(apost)
(s2)2a

post
21 exp

�
2
apost

(s2)

�
, (3)

to the distribution of true error variances found within

each s2 bin. The technique used to derive the parameters

that define the fit of the inverse-gamma distribution is

given in appendix C. Inspection of Fig. 4 indicates that

the empirically derived discrete pdf appears to oscillate

randomly around the inverse-gamma pdf fit to the data.

The inverse-gamma pdf provides a qualitatively close

match to the empirical pdf in that it correctly repre-

sents the skewness of the distribution and the empirical

finding that the probability of very small error vari-

ances is itself very small. Figure 4 serves to (i) motivate

the assumption that the distribution of true error

FIG. 4. (a)–(c) Histograms giving an empirical estimate of the

pdf of the true error variances considering a constrained range of

sample variances s2 for an eight-member ensemble. The s2 ranges

are given in each figure; they correspond to the 2nd, 18th, and

34th bins, respectively, of the 35 bins of true error variance. The

solid lines give the fit of an inverse-gamma function to the data in

each bin.
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variance given an ensemble variance is an inverse-

gamma distribution and (ii) indicate the limitations of

such an assumption. Note how the range of true error

variances markedly increases as the s2 value associated

with the bin increases.

To provide an overview of how the distribution of true

error variances changes as s2 changes, we computed the

inverse-gamma pdf fit to the true error variances in each

s2 bin and then used contours to illustrate how the fitted

inverse-gamma pdf’s change as s2 increases. Figures 5a

and 5b give the result for effective ensemble sizes of

eight and two, respectively. Note how the range of error

variances given an ensemble variance is much more

tightly constrained for an effective ensemble size of

eight than it is for an effective ensemble size of two. As

far as we are aware, Figs. 5a and 5b give the first em-

pirically derived estimates of the distribution of the pdf

of true conditional error variances with increasing en-

semble variance. Figures 5c and 5d refer to an analytic

model to be developed in the next section.

Our method of controlling the ensemble variance

accuracy by simply degrading accurate ETKF variances

that were actually used in the data assimilation cycle

made it easy to vary the ensemble variance accuracy while

keeping other factors the same. Although the motivation

for doing this was primarily one of convenience, we em-

phasize that these degraded ensemble variances were not

used in the data assimilation cycle. This aspect of our

experimental setup is not unlike the current situation at

many operational centers in which the ensemble covari-

ances do not feed into the data assimilation cycle but are

used to characterize the uncertainty of a high-resolution

control forecast (e.g., Toth andKalnay 1997;Molteni et al.

1996; Houtekamer et al. 1996; McLay et al. 2008).

3. Analytical model of hidden error variances

Figures 4 and 5 provide evidence that the inverse-gamma

distribution is a good approximation to the distribution of

hidden error variances given an imperfect ensemble

FIG. 5. Red lines depict estimates of the pdf’s of the true error variance (ordinate axis) given fixed values of

ensemble variance (abscissa axis). Thin green and blue lines give themode andmean of the empirical estimates of the

mode and mean of these estimates. Thick lines give the corresponding estimates for the analytic estimates of the

pdf’s. (a),(b) Empirical estimates for random sample ensembles of sizesM5 8 andM5 2, respectively. (c),(d) As in

(a),(b), but for the corresponding analytic estimates of these pdf’s. The gray shading gives an inverse-gamma pdf fit to

the climatological pdf of the true error variances.
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variance. Here, we develop an analytic model for hidden

error variances that is consistent with this finding.

Apart from enabling us to perceive the distribution of

error variances given an ensemble variance, our replicate

system approach also enables us to see unconditioned,

climatological distributions of error variances. Figure 6

shows the climatological distribution of error variances

from our replicate system experiment together with an

inverse-gamma approximation to this distribution. Al-

though the fit of the inverse-gamma distribution to the

empirically determined probability density histogram is

not as good as those shown in Fig. 4, it correctly assigns

very low probabilities to very low forecast error variances

and correctly anticipates the low but finite probability of

very large forecast error variances. It is possible that the

fit would be better if we had continued our replicate

system experiment beyond 400 time steps and thus pro-

vided a more complete sample of the error variances

experienced by the forecasting system. Regardless of

whether that speculation is true or not, in appendix D we

demonstrate that a prior inverse-gamma pdf when com-

bined with a gamma likelihood pdf results in a posterior

pdf that is also an inverse-gamma pdf.

These facts lead us to propose an analytical model for

hidden error variance that features a prior climatological

inverse-gamma pdf of error variances, a likelihood

gamma pdf of ensemble variances given a true error

variance in (1), and a posterior inverse-gamma pdf of

error variances given an ensemble variance.

To be specific, we hypothesize that the prior clima-

tological pdf of forecast error variances associated with

a particular forecasting system can be described by the

inverse gamma distribution:

rprior(s
2)5

8>><
>>:

ba

G(a)
(s22s2

min)
2a21 exp

"
2

(
b

(s22s2
min)

)#
for s2 .s2

min

0 for s2#s2
min

. (4)

As in (1), the purpose of the s2
min in (4) is to account for

the possibility that some forecasting systems may have

a climatological minimum of forecast error variance. As

previously discussed, analysis of the points in Fig. 2

suggests that s2
min 5 5:50213 1024 for our toy fore-

casting system. To determine the parameters a and b,

we use the well-known properties of the inverse-gamma

function (Gelman et al. 2003) to deduce that

(hs2i2s2
min)5

b

a2 1
and

var(s2)

(hs2i2s2
min)

2
5

1

(a2 2)
,

so that a5
(hs2i2s2

min)
2

var(s2)
1 2 and

b5 (hs2i2s2
min)

"
(hs2i2s2

min)
21 var(s2)

var(s2)

#
,

(5)

where hs2i and var(s2) give the mean and variance of the

prior climatological distribution of true forecast error vari-

ances. We estimate hs2i and var(s2) from the sample

mean and variance of the 1750 values of s2 obtained

from our replicate system experiment. The values obtained

by this approach are hs2i5 7:23643 1023 and var(s2)5
4:07823 1025.

Figure 6 compares the probability density histogram

for the 1750 values of s2 obtained from our experi-

ment with the pdf obtained from (4) using the afore-

mentioned parameter values. Figure 6 shows that with

our estimated parameters the pdf given by (4) un-

derestimates the probability of very small forecast

error variances and overestimates the probability of

moderately small error variances but gives close to the

correct probability densities for forecast error variances

larger than the mean hs2i5 7:23643 1023 of the distri-

bution. It is possible that a more sophisticated method of

FIG. 6. Prior climatological distribution of true error variances.

Bars show the probability density histogram of forecast error var-

iances. Solid line shows the fit of the pdf in (4) to the data. The thick

dashed line marks the mean of both the pdf and the data.
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estimating s2
min that was less inclined to overestimate the

actual value of s2
min would further improve the fit of (4) to

the empirically derived probability density histogram.

Bayes’ theorem states that the posterior rpost(s
2 j s2) pdf

of error variances given an ensemble variance s2, a prior

pdf rprior(s
2) of innovation variances, and a likelihood pdf

L(s2 js2) for s2 given a true error variance s2 is given by

rpost(s
2 j s2)5

L(s2 js2) rprior(s
2)ð‘

0
L(s2 js2) rprior(s

2) d(s2)

. (6)

In appendix D, we show that substitution of (1) and (4)

into (6) gives

rpost(s
2 j s2)5

8>><
>>:

b
a
post

post

G(k1a)
(s22s2

min)
2a

post
21 exp

"
2

bpost

(s22s2
min)

#
for s2$s2

min

0 for s2,s2
min

, (7a)

where

apost 5a1 k and bpost 5 [(s22 s2min)k/a]1b . (7b)

As anticipated, (7) shows that the posterior dis-

tribution is of the same inverse-gamma form as the

prior inverse-gamma distribution but has parameters

apost and bpost that have been altered by s2, a, k,

and s2min.

Figures 5c and 5d contour (7a), for the previously

estimated parameter set of [hs2i, var(s2),s2
min, a, s

2
min]5

[7:2 3 1023, 4:1 3 1025, 5:5 3 1024, 1:0262, 1:6 3 1024]

and relative variance parameter k5 2/(M2 1) defined

by M 5 8 and M 5 2 for Figs. 5c and 5d, respectively.

The high degree of similarity between the contours of

Figs. 5a and 5c (M 5 8 case) and also between Figs. 5b

and 5d (M 5 2 case) demonstrate that the analytical

model of true (hidden) error variances and its rela-

tion to imperfect ensemble variance is qualitatively

correct. Both the prior and posterior pdf’s under-

estimate the probability of extremely low true forecast

error variances. As previously mentioned, a likely rea-

son for this is that our time period of integration was

not long enough to accurately estimate the climato-

logical minimum s2
min of the forecast error variance.

Additionally, the analytical model gives a strictly lin-

ear relationship between the ensemble variance and

the true error variance (Figs. 5c and 5d), while Figs. 5a

and 5b suggest a slight curvature in the empirical re-

lationship between true error variance and ensemble

variance.

We speculate that the slight curvature in the empiri-

cally derived contours is a spurious artifact of the

method we used to increase our sample size of (s2, s2)

pairs. Recall that we created 175 random realizations of

s2 for each single realization of s2. This resulted in

306 520 distinct values of s2 but only 1750 distinct values

of s2. The chance of obtaining extreme values of s2

among the 306 520 values is much greater than the

chance of finding extreme values in the 1750 distinct

values of s2. This behavior would lead to themean value

of s2 being too low in the bin corresponding to very

large values of s2, thus explaining curvature of the type

shown in Figs. 5a and 5b. This speculation is consistent

with Fig. 2, which shows a strictly linear relationship

between s2 and s2ETKF.

In subsequent work, we will show how knowledge of

the posterior distribution of true forecast error variances

given an ensemble variance can be used to improve

ensemble forecasting. For some purposes, such as error

covariance modeling for data assimilation, one may

want to extract a single ‘‘best estimate’’ of the error

variance given an ensemble variance. The mean of the

posterior distribution is ‘‘best’’ in the sense that it min-

imizes the mean square deviation of the estimate from

the true value. In appendixD, we show that the posterior

mean hs2 j s2i over all realizations of the error variance

given a fixed value of s2 is given by

hs2 j s2i5 k

k1 (a2 1)
s2
n 1

a2 1

k1 (a2 1)
hs2i , (8)

wheres2
n 5 [s2/a1 (s2

min 2 s2min/a)] is a debiased ensemble-

based estimate of the forecast error variance and hs2i is
the mean of the prior climatological distribution of the

error variances.

To interpret (8), recall that k21 gives the relative var-

iance fk21 5 [h(x2 hxi)2i/hxi2]g of the gamma likelihood

distribution of ensemble variances given a fixed true error

variance. Second, from the properties of the mean and

variance of an inverse-gamma distribution in the ran-

dom variable x, one may deduce that (a2 1)21 5
[h(x2 hxi)2i/hx2i] and hence that (a2 1)21 is a measure

of the relative error variance of the guess that hs2i is the
true flow-dependent error variance. If we denote the
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relative variances k21 and (a2 1)21 by Rr and Pr, re-

spectively, and then substitute in (8), we obtain the

expression

hs2 j s2i5
 

R21
r

R21
r 1P21

r

!
s2
n 1

 
P21
r

R21
r 1P21

r

!
hs2i , (9a)

which has the same form as the minimum error vari-

ance estimate of a scalar T from two scalar estimators

T1 and T2 having normally distributed error distribu-

tions with error variances s2
1 and s2

2, respectively,

given by Kalnay [(2003), Eqs. (5.3.5) and (5.3.10)]. To

be specific,

T5
1/s2

1

(1/s2
1)1 (1/s2

2)
T11

1/s2
2

(1/s2
1)1 (1/s2

2)
T2 . (9b)

Comparing (9a) with (9b) shows that the error vari-

ances s2
1 and s2

2 are the counterparts of the relative error

variances Rr and Pr and that T1 and T2 are the coun-

terparts of hs2i and s2
n in (9a).

Comparison of (9a) with Eq. (4) of Hamill and Snyder

(2000) shows that it also has the same form as their hy-

brid model of forecast error covariance that linearly

combines a static and ensemble-based estimate of the

forecast error covariance matrix used in data assimila-

tion. To the extent that variance estimation is an im-

portant part of the covariance models used in data

assimilation, our theory and (9) provide a theoretical

justification for the hybrid error covariance model and

an interpretation of the weights in terms of the relative

error variances of two independent estimates of the true

error covariance. The simplicity of this interpretation

provides a justification for the use of hybrid error co-

variance models in systems in which both the static and

flow-dependent estimates of the forecast error co-

variance are imperfect.

Closer inspection of (9) shows that it is actually

suggesting something slightly different from the hybrid

form suggested by Hamill and Snyder (2000). To see

this, note that the s2
n is the sum of a term directly

proportional to the ensemble variance s2/a (which is in

the Hamill and Snyder hybrid) and a constant term

(s2
min 2 s2min/a) (which is not in the Hamill and Snyder

hybrid). Recall that s2
min represents the climatological

minimum of forecast error variance. In many ensemble

systems, s2min would be precisely equal to zero. How-

ever, it is conceivable that in an effort to account for

unknown model error, an ensemble designer would

either intentionally or unintentionally produce an en-

semble with a strict lower bound (s2min) on the ensemble

variance. In either case, s2min is the climatological

minimum of the ensemble variances and s2min/a is a re-

scaling of this minimum. Thus, if (s2
min 2 s2min/a). 0,

then it pertains to a part of the forecast error variance

that is always there regardless of the stability of the flow

and that was not accounted for by s2min. It is conceivable

that such immutable forecast error variances would

arise due to the inability of discrete models to resolve

coastlines and topography. One might estimate such

immutable errors from the differences between two

forecasts that are identical in every respect except their

spatiotemporal resolution. If (s2
min 2 s2min/a), 0, then

the term serves to counteract an overestimation of s2
min

by s2min/a. In summary, (7b) suggests a hybrid of the

form

P
f
Hybrid5

k

k1a2 1

3

("
P

f
Ensemble

a

#
1

�
s2
min2

s2min

a

�
~Q
min

climatology

)

1

�
(a2 1)

k1a2 1

�
P

f
climatology , (10)

where P
f
Ensemble is a localized ensemble covariance ma-

trix, P
f
climatology is an estimate of the climatological error

covariance matrix, and ~Q
min

climatology would be an estimate

of the covariance of immutable errors. We emphasize

that our current theory only pertains to variances and

hence (11) represents an ansatz of the extension of our

theory for variances to covariances.

The mode (s2 j s2)mode
post of the posterior distribution is

also of interest. As shown in appendix D,

(s2 j s2)mode
post 5

k

k1 (a1 1)
s2
n 1

(a1 1)

k1 (a1 1)
[(s2)

mode
prior ] .

(11)

Equation (11) shows that the posterior mode is a linear

combination of the debiased ensemble variance s2
n and

the mode (s2)
mode
prior of the prior distribution of the

forecast error variances. Note the similarity of this

expression to that for the mean in (8). The green lines

in Fig. 5 show that the analytic model’s prediction of

the location of the modes of the posterior distribution

is also close to those of the empirically determined

posterior distribution.

4. Summary and conclusions

In the last two decades there has been an explosion of

interest in predicting flow-dependent error distributions

using ensemblemethods. Here, we have pointed out that

such error distributions are usually unobservable in
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chaotic systems. This paper is one of the first to attempt

to understand and explore the consequences of this fact.

By creating 25 000 parallel ETKF ensemble data as-

similation and forecasting systems for a 10-variable

nonlinear model, we were able to accurately estimate

the true value of flow-dependent error variances that

would be otherwise hidden. This enabled us to confirm

that an ETKF that does not use error covariance local-

ization and accurately accounts for model error co-

variance is able to predict the flow-dependent forecast

error variance with a high degree of accuracy. The same

result would be expected to hold for other forms of the

deterministic ensemble square root Kalman filter be-

cause they solve the same set of equations (Tippett et al.

2003).

Because of unknown sources of model error and ad

hoc alterations of ensemble square root filters such as

ensemble covariance localization, it is inevitable that

ensemble variances will be imperfect predictors of hid-

den error variance in real-world systems such as the

ocean and atmosphere. We hypothesized that such

inaccuracies result in gamma distributions of ensemble

variances whose mean is a linear function of the true

error variance. We also pointed out that the relative

variance of such gamma distributions can be measured

in terms of an effective ensemble size M. We then

empirically determined the distribution of the condi-

tional error variances of the ETKF forecasting system

given a degraded ensemble variance. It was found that

the distribution of error variances given an imperfect

ensemble variance was satisfactorily approximated by

inverse-gamma distributions. In addition, when these

well-fitted inverse-gamma distributions were displayed

as a function of the ensemble variance, it was found that

the mode and mean of the distributions of true error

variances were approximately linear functions of the

true error variance.

A new analytical model of hidden error variances was

introduced. It features a prior climatological inverse-

gamma pdf of true error variances. This pdf represents

the complete range of conditional forecast error vari-

ances experienced by a forecasting system. It also fea-

tures a likelihood pdf of ensemble variances given a true

error variance. The model employs Bayes’ theorem

to map the prior and likelihood pdf’s into a posterior

pdf of the distribution of true error variances given

an ensemble variance. It was shown that this new ana-

lytical model was capable of accurately fitting the em-

pirically derived pdf’s of the true conditional forecast

error variance given ensemble variance.

The analytical model yields simple expressions for the

mode and mean of the posterior pdf. The equation for

the mean is of essentially the same form as Hamill and

Snyder’s (2000) hybrid error covariance matrix. This

equation demonstrates that if ensemble-based estimates

of variances are imperfect in any way, then a superior

estimate can always be obtained by combining the

ensemble-based estimate with a climatological estimate.

The analysis suggests an interpretation of the weights

of the hybrid error covariance model in terms of the rel-

ative error variance of two independent estimates of the

true error covariance. The simplicity of this interpretation

provides a justification for the use of hybrid error co-

variance models in systems in which both the static and

flow-dependent estimates of the forecast error covariance

are imperfect. We caution, however, that our work has

only made the veracity of this suggestion clear for vari-

ances and systems for which our analytical model is valid.

Careful inspection of the analytic expression for the

posterior mean suggests that Hamill and Snyder’s model

might be improved by including an additional (small)

static term that serves to account for a hypothesized

climatological minimum of the true conditional error

variance.
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APPENDIX A

Description of the ETKF System on the
Lorenz ’96 System

The following procedure outlines the analysis–forecast

system used to create 25 000 replicate systems. A com-

plete derivation of the ETKF is provided in Bishop et al.

(2001).

a. Initialization of the control forecast and ensemble
perturbations

1) The ‘‘true state’’ is taken from a free integration of

the model described in point 6, below, initialized at

each grid point by a random number drawn from

a Gaussian distribution with a standard deviation

of 0.008 and a mean of 8. (Here, 8 is the value of

the applied forcing term F; see point 6). The first

240 time steps are disregarded to allow for model

spinup and to render our results insensitive to our

choice of initial conditions.

2) At the end of the spinup period, an analysis at the

initial time xa(0) is created for each 10-variable

‘‘replicate system’’ by adding a random number

with variance R5 0.05 to the true state at each grid

point; in other words,
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xa(0)5 xt(0)1 «o, «o ;N(0,RI) . (A1)

This ensures that the initial analysis error covariance

matrix is diagonal with all elements equal to R. Be-

cause we employ an observation error variance R 5
0.05, this initialization approach is equivalent to ini-

tializing by simply observing every variable and set-

ting the initial value of the variables to their observed

values.

3) The error of a forecast grows partly because the

model has a different initial state with regard to

reality and partly because the model misrepresents

reality. Our idealization of forecast error growth in

the presence of model imperfections is to add an

additional ‘‘model error’’ random perturbation to

the analysis and then propagate this through time

with an otherwise perfect dynamical model. For

simplicity, we assume that this noise has a covari-

ance matrix qI, where I is the identity matrix. Under

these assumptions, the initial conditions for each

control forecast are

xqc (0)5 xac(0)1 «q, where «q;N(0,qI) , (A2)

where xac(0) is the control analysis. For the first

forecast xac(0) is obtained from (A1). For sub-

sequent forecasts, it is the control analysis.

4) To accurately model the error covariance associated

with a forecast initialized from (A1) and (A2), we

create an initial K 5 20 member ensemble Xa0(0),
where Xa0(0) is a 10 3 20 matrix with each column

representing an initial ensemble perturbation using

Xa0(0)5 [xa01 , x
a0
2 , . . . , x

a0
K]

5 [(
ffiffiffiffi
R

p
1

ffiffiffi
q

p
)I, (2

ffiffiffiffi
R

p
1

ffiffiffi
q

p
)I]

ffiffiffiffi
K

2

r
,

so that
Xa0(0)Xa0(0)T

K
5RI1 qI . (A3)

5) Consistent with (A3), the initial K 5 20 member

ensemble was then created using

xqi (0)5 xqc (0)1 xa0i
ffiffiffi
r

p
, i5 1, 2, . . . ,K, (A4)

where xqc (0) is obtained from (A2) and r is a scalar

constant covariance inflation factor. For all ex-

periments reported on in this two-part paper, we set

r5 1:04.

b. Propagation using Lorenz (1996)
[model 1 of Lorenz (2005)]

6) The ensemble members and control analysis (21

members in all) were then integrated forward in

time using the fourth-order Runga–Kutta time-

stepping scheme with the equation

dXn

dt
52Xn22Xn211Xn21Xn11 2Xn1F , (A5)

with F 5 8 and a nondimensional time step of 0.05.

Lorenz (2005) points out that an analogy with the

waves supported by (A5) and atmospheric Rossby

waves suggests that a time step of 0.05 is ‘‘like’’

a time step of about 6 h.

c. ETKF with simple ensemble-based model error
representation

7) Data assimilation is performed every second time

step (;12 h). The symbols xfc and xfi , i5 1, 2, . . . ,K

are used to, respectively, denote the control fore-

cast and ensemble forecasts obtained by integrat-

ing xqc and xqi , i5 1, 2, . . . ,K forward in time, two

time steps. The square root of the forecast error

covariance matrix is then estimated using

Zf 5
[x

f
12 x

f
c, x

f
22 x

f
c, . . . , x

f
K 2 x

f
c]ffiffiffiffi

K
p . (A6)

8) The observations y (obtained by adding random

noise with covariance RI to the truth) are then

assimilated by mapping the control forecast to the

observation space to form the innovation:

v5 y2Hxfc , (A7)

where H denotes the observation operator. For all of

our experiments, we assumed that every grid point

was observed but only at every second time step.

9) Following Bishop et al. (2001), we then compute the

eigenvector decomposition

Zf THTR21HZf 5CGCT ,

where C’s columns are the orthonormal eigenvec-

tors of Zf THTR21HZf and G is a diagonal matrix of

eigenvalues. Since there are 10 observations, 10

model variables, and 20 ensemble members, 10 of

the eigenvalues in the diagonal matrix are precisely

equal to zero. Since CTZf THTR21HZfC5G, it fol-

lows that the columns of ZfC corresponding to the

zero eigenvalues are precisely equal to zero. Hence,

a precise nonsymmetric left square root of the

analysis error covariance matrix is given by

(Pa)1/25ZC20310(G10310 1 I)21/2 ,
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where G10310 is the 10 3 10 diagonal matrix listing

the 10 leading eigenvalues of G and the 20 3 10

matrix C20310 lists the 10 eigenvectors correspond-

ing to the eigenvalues in G10310. The unperturbed

control analysis is then given by

xac 5 xfc 1PaHTR21(y2Hxfc) where

Pa 5 (Pa)1/2[(Pa)1/2]
T
. (A8)

As previously discussed, model error is introduced

by adding noise to the analysis given by (A8) with

covariance qI; hence, the control initial condition

for the subsequent forecast is given by

xqc 5 «q 1 xac , where «q ;N(0, qI) . (A9)

To create initial perturbations that would accurately

represent the degradation to the forecast accuracy as-

sociated with this simulated model error, we followed

(A3) andobtained initial conditions for our 20-member

ensemble by adding perturbations of the form

Xa0(0)5
h
(Pa)1/21

ffiffiffi
q

p
I, 2(Pa)1/21

ffiffiffi
q

p
I
i ffiffiffiffi

K

2

r
(A10)

to the initial condition given by (A9) in the manner

used in (A4) (r5 1:04). These initial conditions

were then integrated forward in time two time steps

to create forecast ensemble perturbations for the

next data assimilation time.

10) Steps 6–9 are then iteratively repeated. Two

hundred independent data assimilation cycles

were performed for each of the 25 000 replicate

earths.

APPENDIX B

Relationship between k and Effective Ensemble
Size M

Setting k*5 (M2 1)/2 and u*5 2 in the Gamma

distribution gives the Chi-square distribution

x2(x)5
1

G[(M2 1)/2]

�x
2

�(M21)/21

x
exp
�
2
x

2

�
. (B1)

The Chi-square distribution has a mean of (M2 1). It

precisely describes the distribution of the sum of the

squares of deviations of M random draws from a nor-

mal distribution about their sample mean. If the vari-

able x denotes the sum of the squared deviations about

the mean, then y5mx/(M2 1) denotes a sample vari-

ance from anM sample of a Gaussian distribution with

mean variance m. We can deduce the pdf of y by

substituting x5 [(M2 1)m/y]5 ym/y, where y 5 (M2 1)

in (B1), to obtain

x2(x)dx5 x2(yy/m)
1

dy

dx

dy5
1

G(y/2)

	
yy

2m


y/2 m

yy
exp

	
2
yy

2m



1

dy

dx

dy5
1

G(y/2)

	
yy

2m


y/2 ym

myy
exp

	
2
yy

2m



dy

5
1

G(y/2)

	
yy

2m


y/21

y
exp

	
2
yy

2m



dy5 g(y)dy, where g(y)5

1

G(y/2)

	
yy

2m


y/21

y
exp

	
2
yy

2m



. (B2)

The last line of (B2) implies that g(y) is simply a gamma

distribution with k*5 y/25 (M2 1)/2 and u*5m/k*5
2m/(M2 1), with the mean and relative variance given

by

m5 k*u* and
s2

m2
5

k*u*
2

(k*u*)2
5

1

k*
5

2

(M2 1)
, (B3)

respectively. Consequently, the relative variance (k*)21

of a gamma distribution is exactly the same as the rela-

tive variance of the sample variance of an M-member

random draw from a Gaussian distribution provided

M5 2k*1 1.

APPENDIX C

Fit of the Inverse Gamma Distribution to Error
Variances

If x is distributed according to an inverse-gamma

distribution, then it may be shown that

hxi5 b

a2 1
and

�
1

x

�
5
a

b
. (C1)

Consequently,
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a5
b

hxi1 1 and b5 hxi
	
b

�
1

x

�
2 1



0b5

hxi
hxi
�
1

x

�
2 1

5
1�

1

x

�
2

1

hxi
0a5

1

hxi
�
1

x

�
2 1

1

hxi
�
1

x

�
2 1

hxi
�
1

x

�
2 1

5

hxi
�
1

x

�

hxi
�
1

x

�
2 1

0a2 15
1

hxi
�
1

x

�
2 1

0
1

a2 1
5 hxi

�
1

x

�
2 1. (C2)

Hence, the parameters a and b defining the inverse

gamma pdf of x are uniquely defined by the expected

values of x and x21.

APPENDIX D

Posterior Distribution of Error Variances

Readers may find it helpful to refer to wikipedia

(http://en.wikipedia.org/wiki/) or Gelman et al. (2003) in

order to recall or learn about the basic properties of

gamma and inverse-gamma pdf’s. Letting j5 s2 2 s2min,

(1) can be rewritten as

L(s2 js2)5
1

G(k)

(jk/a)k

j
(s22s2

min)
2k exp

(
2

jk/a

(s22s2
min)

)
.

(D1)

Note that the denominator of Bayes’ equation (6) is

just the integral of the numerator over s2. Conse-

quently, all terms in the numerator of (6) that are

not functions of s2 will be canceled out by their ap-

pearance in the denominator. Hence, we only need

concern ourselves with terms in the numerator

that are functions of s2. Furthermore, we are free

to multiply these numerator terms by any constant

that is not a function of s2 provided we perform

the exact same multiplication in the denominator.

The idea is to choose a multiplication factor that

causes the integral over s2 to be equal to unity.

This then makes the denominator in (6) vanish.

Using (D1) and (4), the terms in the numerator of

(6) for s2 $s2
min that are proportional to s2 are

given by

L(j js2)rprior(s
2)} (s22s2

min)
2k(s22R)2a21 exp

(
2

(jk/a)1b

(s22s2
min)

)

} (s22s2
min)

2(k1a)21 exp

(
2

(jk/a)1b

(s22s2
min)

)

}
b
(k1a)
post

G(k1a)
(s22s2

min)
2(k1a)21 exp

(
2

bpost

(s2 2s2
min)

)
(D2)

where bpost 5 (jk/a)1b while L(j js2)rprior(s
2)5 0

for s2 ,s2
min. We obtained the last line of (D2) by

multiplying the preceding line by [b
(k1a)
post /G(k1a)].

This is permissible provided we remember to perform

the same multiplication in the denominator of (6) as

well. We choose this multiplicative factor because, by

inspection, (D2) defines an inverse-gamma function

with parameters apost 5 k1a and bpost. Equation (7)

follows from (D2) because the integral of (D2) over

s2 is unity, and so when it is used in the denominator

of (6), it vanishes.

Since the mean of an inverse-gamma pdf is given by

b/(a2 1), it follows from (7) that themean value hs2 j s2i
of the posterior is given by

hs2 j s2i5s2
min1

bpost

k1a2 1
5s2

min1
(s22 s2min)k/a1b

k1a2 1
5s2

min1
(s22 s2min)k/a1 (a2 1)(hs2i2s2

min)

k1a2 1

5
ks2

min 1 (a2 1)s2
min

k1a2 1
1

(s22 s2min)k/a1 (a2 1)(hs2i2s2
min)

k1a2 1
5

k

k1 (a2 1)

�
s2

a
1

	
s2
min2

s2min

a


�

1
(a2 1)hs2i
k1a2 1

. (D3)

Equation (8) follows directly from (D3).

MAY 2013 B I SHOP AND SATTERF I ELD 1467



The mode of the posterior inverse-gamma distribution is given by

(s2 j s2)mode
post 5s2

min1
bpost

apost 1 1
5s2

min1
bpost

(k1a)1 1
5s2

min 1
jk/a1bprior

k1a1 1
5s2

min 1
k
j

a
1 (a1 1)[(s2)

mode

prior 2s2
min]

k1 (a1 1)

5
ks2

min1 (a1 1)s2
min

k1 (a1 1)
1

k
s22 s2min

a
1 (a1 1)[(s2)

mode
prior 2s2

min]

k1 (a1 1)
5

k

k1 (a1 1)

�
s2

a
1

	
s2
min2

s2min

a


�

1
(a1 1)

k1 (a1 1)
[(s2)

mode
prior ] . (D4)

Using the definition of s2
n given just after (8) in (D4)

then yields (11).
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