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ABSTRACT

State-of-the-art rainfall products obtained by satellites are often the only way of measuring rainfall in

remote areas of the world. However, it is well known that theymay fail in properly reproducing the amount of

precipitation reaching the ground, which is of paramount importance for hydrological applications. To ad-

dress this issue, an integration between satellite rainfall and soil moisture SM products is proposed here by

using an algorithm, SM2RAIN, which estimates rainfall from SM observations. A nudging scheme is used for

integrating SM-derived and state-of-the-art rainfall products. Two satellite rainfall products are considered:

H05 provided by EUMESAT and the real-time (3B42-RT) TMPA product provided by NASA. The rainfall

dataset obtained through SM2RAIN, SM2RASC, considers SM retrievals from the Advanced Scatterometer

(ASCAT). The rainfall datasets are compared with quality-checked daily rainfall observations throughout

the Italian territory in the period 2010–13. In the validation period 2012–13, the integrated products show

improved performances in terms of correlation with an increase in median values, for 5-day rainfall accu-

mulations, of 26% (18%) when SM2RASC is integrated with the H05 (3B42-RT) product. Also, the median

root-mean-square error of the integrated products is reduced by 18% and 17%with respect to H05 and 3B42-

RT, respectively. The integration of the products is found to improve the threat score for medium–high

rainfall accumulations. Since SM2RASC, H05, and 3B42-RT datasets are provided in near–real time, their

integration might provide more reliable rainfall products for operational applications, for example, for flood

and landslide early warning systems.

1. Introduction

Obtaining accurate rainfall estimates is of para-

mount importance, as rainfall plays a key role in many

fields, such as natural hazard assessment, drought

management, weather forecasting, agriculture, and

disease prevention (Dinku et al. 2007). The use of

ground-monitoring rain gauge stations is affected by

uncertainties due to, for instance, the limited spatial

representativeness of sensors (Kidd et al. 2012) and the

not always sufficient density of measuring networks

(Rudolf and Schneider 2005). Satellite rainfall products

can be used to overcome these issues and, currently, are

the main, if not only, source of information over many

areas of the world (Kidd and Levizzani 2011). However,

satellite products occasionally fail in reproducing the

long-term and single-event rainfall patterns because of

the indirect nature of satellite observation (Kucera

et al. 2013).
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With the purpose of improving the accuracy of satel-

lite rainfall products, three approaches using satellite

soil moisture SM data were recently developed (Crow

et al. 2009; Pellarin et al. 2013; Brocca et al. 2013). In the

first approach, Crow et al. (2009) assimilated Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E; Jackson et al. 2007) SM data into an

antecedent precipitation index (API) model, in order to

correct the 2–10 day rainfall accumulation in a data as-

similation framework. In the second approach, Pellarin

et al. (2013) coupled an API model with a microwave

emission model to simulate brightness temperature TB.

Then, the satellite-based rainfall product estimates are

modulated, with a multiplicative factor, in order to

minimize the difference between the modeled and the

AMSR-E-derived TB. Recently, Brocca et al. (2013)

proposed a method for estimating rainfall using satellite

SM observations, called SM2RAIN. The method is

based on the inversion of the soil water balance equa-

tion. That is, it estimates the rainfall by using the change

in time of the amount of water stored into the soil, thus

considering it as a natural rain gauge. In practice, SM

data are not used to correct rainfall, as in Crow et al.

(2009) and Pellarin et al. (2013), but to directly estimate

rainfall. SM2RAIN has been applied at both local

(Brocca et al. 2013) and global scales (Brocca et al. 2014)

with ground and satellite SM data as input. The satis-

factory results obtained in these studies prove the

SM2RAIN’s capability of estimating rainfall.

On this basis, a method to integrate satellite rainfall

datasets and SM2RAIN-derived rainfall data over the

Italian territory is presented here. The SM2RAIN

method is applied to the satellite SM product obtained

by the Advanced Scatterometer (ASCAT) on board the

MetOp satellites (Wagner et al. 2013). Because of the

temporal resolution of satellite SM data, the method is

applied at daily time steps. Two satellite rainfall prod-

ucts are used in this analysis: H05 provided by the

European Organisation for the Exploitation of Me-

teorological Satellites (EUMETSAT) Satellite Appli-

cation Facility on Support toOperational Hydrology and

Water Management (H-SAF; http://hsaf.meteoam.it/)

project (Mugnai et al. 2013; Puca et al. 2014); and the

Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA), version 7, de-

livered in real time, 3B42-RT (http://trmm.gsfc.nasa.gov;

Huffman et al. 2007).

The purpose of this study is twofold. First, the per-

formance of different satellite-based rainfall products

is assessed over the Italian territory. Specifically, their

capability to estimate 1- and 5-day rainfall accumulations

over an extended period (4 years) is assessed mainly for

their application to hydrological and early warning

systems. To this end, it is worth noting that this is the first

attempt to carry out a validation of the recently delivered

H05 satellite rainfall product over a long time period.

The second purpose is to investigate the increase in

accuracy that can be obtained in precipitation estimates

from the integration of an SM-derived rainfall product

into state-of-the-art rainfall products, thus allowing us to

improve the reliability of satellite products in a context

of hydrological framework.

The analyzed products are compared with a rainfall

observation dataset obtained from the interpolation of

;3000 rain gauges throughout the Italian territory. The

comparison is performed by considering a calibration

and a validation period and by computing continuous

and categorical metrics. The assessment of the perfor-

mance scores is carried out by considering their spatial,

temporal (on monthly scale), and seasonal variations, in

order to fully characterize the accuracy of each product

and the benefits obtained from the integration of rainfall

and SM data.

2. Datasets

Four rainfall datasets (three from satellite data and

one from rain gauge data) and one satellite SM dataset,

characterized by different temporal and spatial resolu-

tions, are considered in the period from 1 January 2010

to 31 December 2013. To match the different temporal

and spatial resolutions of the different products, each of

them is remapped (through the nearest-neighbor algo-

rithm) over a regular grid with spacing of 12.5 km (2043

grid points in total for the Italian territory). The selected

spacing is a compromise between the native grids of the

different satellite products, and it is found to not sig-

nificantly affect the results (e.g., percentage change in

the correlation coefficient R is less than 7%). Concern-

ing the remapping methodology, different techniques

have been used at the beginning of this study (nearest

neighbor, inverse distance weighted, and kriging), and

we found that the nearest-neighbor method provides

satisfactory results in a very short computational time.

The cumulated daily rainfall between 0000 and

2400 UTC 1 1 h(i.e., local time) is computed for each

rainfall product, while the SM data are interpolated in

time at 0000 UTC1 1 h in order to match the temporal

resolution of the rainfall datasets. A summary of the

dataset’s spatial and temporal resolutions considered in

this study is reported in Table 1.

Satellite rainfall products

The H05 product is provided by EUMETSAT within

the H-SAF project. The product is based on frequent

precipitation measurements as retrieved by blending
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low-Earth-orbiting (LEO) microwave (MW)-derived pre-

cipitation rate measurements and geostationary-Earth-

orbiting (GEO) infrared (IR) imagery. This product

provides daily rainfall data with a spatial resolution of

;5km over the H-SAF area (258–758N, 258W–458E) cov-
ering thewholeEuropean continent, Iceland, and northern

Africa. In a future phase, the area covered by theH-SAF

project will be extended through Africa and the South

Atlantic Ocean (http://hsaf.meteoam.it/overview.php).

TheTMPA3B42-RT,version7 (http://trmm.gsfc.nasa.gov),

combines rainfall estimates from various satellite sen-

sors. The multisatellite platform uses the TRMM Mi-

crowave Imager (TMI), the Special Sensor Microwave

Imager (SSM/I) on board the Defense Meteorological

Satellite Program (DMSP) satellites, AMSR-E, and the

Advanced Microwave Sounding Unit-B (AMSU-B) on

board the National Oceanic and Atmospheric Admin-

istration (NOAA) satellite series. In addition, the

TMPA product also uses GEO IR data, characterized

by a higher spatial and temporal resolution than theMW

data, through a constellation of GEO satellites. The

3B42-RT product is provided by the National Aero-

nautics and Space Administration (NASA) with a tem-

poral resolution of 3 h and a spatial resolution of 0.258
for the 6508 north–south latitude band. The cumulated

daily rainfall is obtained by simply summing the eight

3-h time windows every day. It should be noted that

TMPA data are provided within a time window690min

from the nominal time (0000, 0300, . . . , 2100UTC)while

the satellite soil moisture product and the observed

rainfall dataset are delivered in local time, that is,

UTC 1 1. Therefore, the daily cumulated rainfall

product from TMPA represents the total rainfall start-

ing, and ending the next day, at 2330 UTC, with only

30min of delaywith respect to the other products. Such a

delay can be considered negligible, especially when

taking into account the 5 days of accumulated rainfall.

1) GROUND-BASED RAINFALL DATASET

A ground-based rainfall dataset is used as a bench-

mark in this study. The observed rainfall dataset is

obtained by the measurements of more than 3000 rain

gauges over the Italian territory spatially interpolated

using the Random Generator of Space Interpolations

from Uncertain Observations (GRISO; Pignone et al.

2010) algorithm. GRISO is a derivation of the most

known kriging method, so it is also based on the geo-

statistical approach and the use of the semivariogram for

generating the spatial structure of the interpolated field.

The main innovations are the possibility of using dif-

ferent semivariograms per gauge at the same time and of

reducing the computational time with respect to kriging.

This dataset provides hourly rainfall observations

throughout the Italian territory over a grid with spacing

of 12.5 km (Ciabatta et al. 2015). As mentioned pre-

viously, the daily product is obtained by summing the

hourly data from 0000 to 2400 UTC1 1 h. In this study,

observed rainfall data are used as a benchmark because,

besides the fact they are used worldwide, they are used

operationally by Italian Civil Protection Service for

hazard forecast andmanagement; therefore, the satellite

rainfall dataset performances are evaluated in such

kinds of applications.

2) SATELLITE SOIL MOISTURE DATA

The Surface SoilMoisture (SSM) data are obtained by

backscattering retrievals from the ASCAT sensor

(C-band scatterometer operating at 5.4GHz) on board

the MetOp-A satellite. In this study the Water Retrieval

Package (WARP), version 5.51, is used for estimating SM

from backscatter measurements. The product has a

nearly daily temporal resolution for the study area and a

spatial resolution of ;25km (resampled to 12.5km;

Wagner et al. 2013; http://rs.geo.tuwien.ac.at/products/).

Because of the variable temporal resolution of the SSM

product, all the SMdata have been interpolated in time at

0000 UTC1 1h each day. This step allows us to compare

all the datasets considered in this study in a consistent

manner, that is, the daily cumulated rainfall from 0000 to

2400 UTC1 1h is obtained for each product (see section

3a for the rainfall product obtained from SM data).

3. Methods

a. SM2RAIN

The SM2RAIN method is based on the inversion of

the following water balance equation:

Znds(t)/dt5p(t)2 r(t)2 e(t)2 g(t) , (1)

where Z (L) is the soil depth; n (unitless) is the porosity;

s(t) (unitless) is the relative saturation of the soil or rel-

ative soil moisture; t (T) is the time; and p(t), r(t), e(t), and

g(t) (L T21) are the precipitation, surface runoff, evapo-

transpiration, and drainage rates, respectively, where L

indicates a unit of length and T indicates a unit of time.

According to Famiglietti and Wood (1994), the drainage

rate can be expressed using the following equation:

TABLE 1. Spatial and temporal resolution of the analyzed datasets.

Dataset Spatial resolution Temporal resolution

Observed rainfall data 12.5 km Hourly

H05 ;5 km Daily

3B42-RT 0.258 (;25 km) 3 h

SM2RASC 12.5 km Daily
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g(t)5 as(t)b , (2)

where a (L T21) and b are two parameters describing the

nonlinearity between the soil saturation and drainage

rate (Brocca et al. 2013). By assuming that during rain-

fall the surface runoff and the evapotranspiration rates

are negligible, and by considering Z* 5 Zn, the rainfall

rate is obtained as

p(t) ffi Z*ds(t)/dt1 as(t)b . (3)

The Z*, a, and b parameters are estimated through

calibration. The parameter values are calibrated (from

1 January 2010 to 31 December 2011) in a distributed

way, defining for each grid point a set of parameters that

minimizes the root-mean-square error (RMSE) be-

tween observed and simulated 5 days of accumulated

rainfall. For a more comprehensive description of the

method, the reader is referred to Brocca et al. (2013).

The capability of the SM2RAIN approach to estimate

rainfall by using the variation in soil moisture between

two different satellite passages represents an important

advantage with respect to classical retrieval methods, in

terms of estimating the cumulated rainfall value. In the

classical satellite-based algorithms (e.g., H05 and 3B42-

RT), the instantaneous rainfall rate is estimated at the

passages of microwave sensors (radiometers and radars)

and then blended between passages by using infrared

measurements from GEO satellites. However, if mi-

crowave sensors do not pass when it rains, a significant

underestimation of rainfall is expected from these al-

gorithms. When using satellite soil moisture data, the

amount of rainfall into the soil is recorded, and hence, by

computing the difference in the water storage, the cu-

mulated rainfall is estimated. This allows us to keep

track of the total rainfall between satellite passages,

with a higher degree of accuracy. In this study, the daily

cumulated rainfall for SM2RAIN is calculated by con-

sidering the difference in SM between 2400 and

0000 UTC 1 1 h of each day.

b. Integration technique: Nudging

The integration of the rainfall datasets, obtained by

SM2RAIN and the satellite rainfall products (H05 and

3B42-RT), is implemented by using the following

nudging scheme (Massari et al. 2014):

Pint(t)5Psat(t)1K[PSM2R(t)2Psat(t)] , (4)

where Pint(t) is the integrated rainfall product; Psat(t)

is the satellite rainfall product; PSM2R(t) is the

SM2RAIN-derived rainfall product; and K is the gain

parameter, ranging between 0 and 1. For K 5 0 there

is no integration and only Psat is taken, and for K 5 1

only the estimated rainfall through the SM2RAIN

method is considered. The variable K is calibrated by

minimizing the RMSE between observed and integrated

rainfall considering 5 days of accumulated rainfall. Two

new datasets, integrating the SM2RAIN-derived prod-

uct using ASCAT as the SM dataset, SM2RASC, to H05

and 3B42-RT products (hereinafter SM2RASC1H05

and SM2RASC13B42-RT), are obtained. Therefore, the

total number of satellite rainfall products analyzed in this

study is five: SM2RASC, H05, 3B42-RT, SM2RASC1H05,

and SM2RASC13B42-RT.

c. Performance metrics

To evaluate the performance of the rainfall products,

the correlation coefficient and RMSE values over 1 and

5 days of accumulated rainfall are computed separately

for each grid point to assess the spatial variability of the

products’ performance in time. Moreover, the spatial R

and RMSE values over 1 and 5 days of accumulated

rainfall are computed to assess the products’ capability

to reproduce the observed rainfall spatial pattern. Also,

three categorical metrics are computed, considering the

same durations: the probability of detection POD, the

false alarm ratio FAR, and the threat score TS. The first

refers to the fraction of all correctly predicted events,

the second refers to the fraction of predicted events that

are actually nonevents, and the third gives integrated

information of the overall performance. The three cat-

egorical metrics are defined as

POD5
H

H1M
, (5)

FAR5
F

F1H
, (6)

and

TS5
H

H1F1M
, (7)

where H represents the number of rainfall events suc-

cessfully predicted, M is the number of the missed

events, and F is the number of nonevents erroneously

predicted as events. Following Chen et al. (2012) and

Brocca et al. (2014), the categorical scores are computed

for each point and for different thresholds computed as

percentiles of the observed rainfall time series. There-

fore, categorical scores are evaluated as a function of

rainfall intensity for understanding products’ perfor-

mance in capturing low- to high-rainfall events.

Furthermore, the temporal variability of the products’

performance is investigated by estimating the spatial
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average of the R and the RMSE values on a monthly

scale. Specifically, for each month, observed and satel-

lite data for all pixels are appended and the temporal R

and RMSE values are finally computed. In this way, the

fluctuations at monthly temporal scales can be identi-

fied. To investigate the influence of seasonality on

products’ performance (Ebert et al. 2007; Stampoulis

and Anagnostou 2012), the temporal variability at the

seasonal scale is also analyzed.

4. Results

In the sequel, five rainfall datasets are evaluated

(Fig. 1). Specifically, two state-of-the-art rainfall (H05 and

3B42-RT) and the ASCAT-derived (SM2RASC) products

are considered along with the two products obtained from

the integration of rainfall and SM data (SM2RASC1H05

and SM2RASC13B42-RT). The analysis is carried out

during the period from 1 January 2010 to 31 December

2013. The calibration phase concerns the period from

1 January 2010 to 31 December 2011, while the validation

is from 1 January 2012 to 31 December 2013.

a. Calibration of SM2RAIN and of the integration
method

The SM2RAIN parameters are obtained through a

spatially distributed pixel-by-pixel calibration. Figure 1

plots a scheme of the SM2RAIN application to SM

satellite data and of the analysis steps while Fig. 2 shows

the spatial distribution of the obtained parameter

values. The Z* parameter shows the highest values in

the two areas in northern Italy that are characterized by

FIG. 1. Flowchart of the analysis method. Variables Z*, a, and b are the SM2RAIN algorithm parameters [Eq.

(3)], SM2RASC is the rainfall product obtained starting from ASCAT SSM data, 3B42-RT is the TMPA product in

real time, H05 is the rainfall product provided by EUMETSAT, SM2RASC13B42-RT and SM2RASC1H05 are the

integrated products, and K is the gain parameter used for the integration [Eq. (4)].

FIG. 2. Spatial distribution of SM2RAIN parameters (left) Z*, (middle) a, and (right) b.
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the highest rainfall regime, as shown in Fig. 3, where the

cumulated rainfall over the whole period is plotted. This

is in good accordance with Brocca et al. (2014), who

obtained increasing Z* with the rainfall amount in the

pixel. The a parameter shows the higher variability

throughout the Italian territory, with the highest values

along the coastline. This ‘‘coast effect’’ could be traced to

the satellite SM retrievals issues at the water–land in-

terface. The b parameter shows the highest values in

northern Italy, mainly over the Alps. The variation pat-

terns of the a and b parameters are in agreement with the

estimated SM noise map proposed in Bartalis et al.

(2008), that is, the higher the uncertainty on SM retrieval,

the higher parameter values needed to produce rainfall

that contrasts the satellite noise. The SM2RAIN parame-

ters show mean values of 63.62mm, 94.35 mmday21, and

8.13 for Z*, a, and b, respectively. The values of a and

b parameters are found to be higher than those obtained

by Brocca et al. (2014). This can be explained by the

difference in the spatial resolution, 0.1258 in this study

versus 18 in Brocca et al. (2014). The use of a coarser

grid, on which ASCAT SM retrievals were averaged

out, allowed the noise to be reduced and, hence, the

lower values of the a and b parameters to be obtained.

Further studies will be addressed to evaluate the

relationship between the SM2RAIN parameters, soil

texture, vegetation, and grid resolution using a higher-

resolution soil map.

Figure 4 plots the spatial variability of the K param-

eter (Eq. 4) for the integration of SM2RASC with H05

and 3B42-RT products. The differences between the

distributions of K are due to the different parent

FIG. 3. Cumulated observed rainfall (mm) over the whole analysis

period (2010–13).

FIG. 4. Spatial distribution of K for (left) H05- and (right) 3B42-RT-integrated products for 5 days of accumu-

lated rainfall; K increases with the weight of the SM2RAIN-derived product with respect to H05 and 3B42-RT

products.
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products performance during the calibration period.

The spatial patterns are in agreement with the analyzed

products performance obtained during the calibration

period (not shown for brevity), with high values of K in

those areas where SM2RASC outperforms H05 and

3B42-RT and low values where it provides worse results

(e.g., over mountainous areas).

The boxplots in Fig. 5 and the values in Table 2 show

the results for the calibration period in terms of R and

RMSE.As it can be seen, for 1 day of accumulated rainfall,

3B42-RT performs better than SM2RASC whereas, for

5 days of accumulated rainfall, the SM2RASC product

performs slightly better than 3B42-RT and H05, showing

good R values and quite low RMSE. The lower perfor-

mance scores obtained for 1 day of accumulated rainfall

depend on several factors: 1) at a daily time step, the noise

of ASCAT soil moisture data has a strong impact on the

estimated rainfall through SM2RAIN algorithm; 2) the

ASCAT soil moisture data are not always available for

every day; and 3) the SM2RAIN algorithm is found to

perform satisfactorily when applied with a time resolu-

tion 3–4 times longer than the resolution of soil moisture

data, evenwhen applied with in situ observations (Brocca

et al. 2013). Indeed, the change in the storage over a day

cannot be related solely to the rainfall, and the use of

daily satellite soil moisture observations may lead to er-

rors in daily rainfall estimation. By computing the total

rainfall over 5 days,more accurate results can be obtained

thanks to an averaging effect. When more accurate and

temporally dense satellite soil moisture data are available

(e.g., through merging of retrievals from different sen-

sors), more accurate results, even at the daily time scale,

are expected.

Concerning the integrated products, results for 1 day of

accumulated rainfall show a slight improvement. By way

of example, R for SM2RASC1H05 shows an increase of

6% with respect to H05, while there is no noticeable dif-

ference considering the SM2RASC13B42-RT product.

This is probably due to the lower correlation of SM2RASC

with respect to 3B42-RT. However, in terms of RMSE,

there is a reduction of 4% and 6% for both

SM2RASC1H05 and SM2RASC13B42-RT compared

to the parent satellite rainfall products. For 5 days of

accumulated rainfall, the improvement due to the in-

tegration is evident and significant; the integrated

products show the highest median R values (0.72 and 0.76

for SM2RASC1H05 and SM2RASC13B42-RT, re-

spectively), with an increase of nearly 41% and 23%

compared to the parent products (i.e., H05 and 3B42-RT).

In terms of RMSE (for 5 days of accumulated rainfall), the

integrated products show a reduction of about 25% and

21% compared to the satellite rainfall datasets with the

best results for SM2RASC13B42-RT (with a median

RMSE of 16.60mm).

b. Products performance in the validation period

After the calibration step, the SM2RAIN algorithm is

run on the validation period (2012–13), and the derived

FIG. 5. Boxplot reporting the performance scores [(left)R and (right) RMSE] obtained during the calibration period for (top) 1 day and

(bottom) 5 days of accumulated rainfall. The box lines represent the 25th, 50th, and 75th percentiles, while the whiskers represent themax

and min values.
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rainfall dataset is integrated into the 3B42-RT and H05

products by using the distributed parameter values ob-

tained in calibration (2010–11). Then, the comparison

between each satellite rainfall product and the observed

rainfall data is carried out in terms of R and RMSE for 1

and 5 days of accumulated rainfall. The three categorical

scores (POD, FAR, and TS) are only estimated for

5 days of accumulated rainfall.

Table 2 indicates that for 1 and 5 days of accumulated

rainfall the validation results are consistent to those

obtained in calibration, showing only a little de-

terioration of the performance scores with respect to the

calibration. In particular, significant improvements are

obtained for 1 and 5 days of accumulated rainfall of the

integrated products with respect to the parent products.

The results for 5 days of accumulated rainfall deserve

more attention. In this case, the correlation maps in

Fig. 6 show good correlation against ground data in all

cases. In particular, 3B42-RT results are 1) consistent

with those found by Chen et al. (2013), Brocca et al.

(2014), and Stampoulis and Anagnostou (2012) at mid-

latitude; 2) slightly lower than those of SM2RASC; and

3) better than H05. The integration of the products

improves the performance, causing an increase in me-

dian R from 0.60 to 0.71 for 3B42-RT and from 0.54 to

0.68 for H05. It is interesting to note that R maps high-

light areas where the SM2RASC product provides less

accurate results because of topographic complexity (the

Alps and Apennines chains), while both 3B42-RT and

H05 products show lower performance in southern Italy.

With respect to 3B42-RT performance, Stampoulis and

Anagnostou (2012) found similar results. Therefore the

integration involves a substantial improvement in the

product performance with an increase, during the vali-

dation period, in SM2RASC1H05 (SM2RASC13B42-

RT) median R value of about 26% (18%) with respect

to the H05 (3B42-RT) product. For assessing the re-

liability of the analysis in terms of correlation, the per-

centage of pixels (over 2043) with a p value , 0.01

(significant correlation) have been calculated and re-

ported in Table 2. The high percentage (.94%) of the

pixels having a significant correlation confirms the

analysis reliability. In particular, the pixels showing a

p value. 0.01 are mainly located over theAlps and the

Gran Sasso massif for the SM2RASC product, while H05

and 3B42-RT products show pixels with a p value. 0.01

over southern Italy and the mountainous regions, as

might be expected by looking the correlation maps

(Fig. 6).

In Fig. 7, the RMSEmaps for the validation period are

shown. Median values of 19.94, 21.87, 22.32, 18.32, and

18.13mm are obtained for SM2RASC, 3B42-RT, H05,

SM2RASC1H05, and SM2RASC13B42-RT, respectively.
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The high error values displayed in two areas in northern

Italy are related to larger rainfall amounts (see Fig. 3). In

terms of RMSE, a reduction of about 18% and 17% can

be seen for SM2RASC1H05 and SM2RASC13B42-RT,

respectively.

A sensitivity analysis has been also carried out in or-

der to investigate the sensitivity of the results on the

estimatedK values (not shown for brevity). First, the use

of spatially uniform K values is analyzed by computing

the performance of the integrated products with K

varying between 0 and 1 (a step of 0.1). If compared with

the spatially distributed calibration (see Table 2), the

performance is slightly better in terms of median R

values that are equal to 0.70 (0.74) for SM2RASC1H05

(SM2RASC13B42-RT) and worse in terms of median

RMSE that are equal to 25.6mm (26.4mm) for

SM2RASC1H05 (SM2RASC13B42-RT). The spatially

constantK value that provides the best results is equal to

0.6 (0.7) for SM2RASC1H05 (SM2RASC13B42-RT),

close to the median values obtained in the spatially

distributed calibration (0.79 and 0.68 for SM2RASC1H05

and SM2RASC13B42-RT, respectively). Moreover, an

additional analysis is carried out by recalibrating, pixel by

pixel, the K values in the validation period. For this ex-

periment, the median R values (RMSE values) are equal

to 0.69 and 0.73 (90 and 90) for SM2RASC1H05 and

SM2RASC13B42-RT, respectively. Therefore, the per-

formance of the integrated products is not sensitive to the

FIG. 6. Maps of R for 5 days of accumulated rainfall for (a) SM2RASC (median R 5 0.62), (b) 3B42-RT (median R 5 0.6), (c) H05

(median R5 0.53), (d) SM2RASC1H05 (median R5 0.68), and (e) SM2RASC13B42-RT (median R5 0.71) during the validation period

(2012–13).
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K values used for the integration, as could be expected,

thus highlighting the robustness of the overall procedure.

However, more complex assimilation schemes, as well

as more frequent recalibrations, will be analyzed in

future studies in order to determine the best integration

procedure.

c. Categorical score assessment

The POD, FAR, and TS values are computed by

considering percentile thresholds based on the ob-

served rainfall distribution at each pixel. The results for

5 days of accumulated rainfall are displayed in Fig. 8.

The figure shows that the 3B42-RT product has the

lowest FAR and POD, probably because of the diffi-

culty in estimating light rainfall, while H05 has the

highest values of POD, mainly when considering the

first percentiles. The integrated products generally

outperform the parent products, providing a small re-

duction of FAR for higher percentiles (.70th percen-

tile) and an increase in the detection of rainfall events

(i.e., POD) for nearly all the considered thresholds.

Consequently, higher TS values are obtained from the

integrated products for .50th percentiles, that is, for

higher rainfall rates that are more of interest for hy-

drological applications addressing flood and landslide

prediction.

d. Spatial analysis of the rainfall products

The analysis of the products’ capability of reproducing

rainfall spatial variability is carried out by considering

FIG. 7. Maps of RMSE for 5 days of accumulated rainfall for (a) SM2RASC (median RMSE 5 19.94mm), (b) 3B42-RT (median

RMSE5 21.87mm), (c) H05 (median RMSE5 22.32mm), (d) SM2RASC1H05 (median RMSE5 18.32mm), and (e) SM2RASC13B42-

RT (median RMSE 5 18.13mm) during the validation period (2012–13).
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the entire analysis period and 5 days of accumulated

rainfall. For each day of the analysis period, the R and

RMSE values are computed by comparing the observed

and satellite rainfall maps. The analyzed products show

mean R values of 0.52, 0.43, 0.52, 0.58, and 0.55 for

SM2RASC, 3B42-RT, H05, SM2RASC13B42-RT, and

SM2RASC1H05, respectively. In terms of RMSE, mean

values of 20.34, 22.28, 22.84, 18.60, and 19.32mm are

obtained for SM2RASC, 3B42-RT, H05, SM2RASC13B42-

RT, and SM2RASC1H05, respectively. These results are

found to be comparable with those obtained with the

temporal analysis, with an improvement in the perfor-

mance obtained for the integrated products that are thus

capable of better reproducing both the temporal and

spatial rainfall variability.

e. Temporal variability of the product performance

The temporal variability of the product performance

is investigated by estimating R and RMSE values on a

monthly scale in order to evaluate their trends during

the entire period (2010–13). Specifically, for each

month, the temporal R and RMSE values are computed

by appending the time series of each pixel. Figure 9 shows

a general agreement between the analyzed products:

SM2RASC, SM2RASC13B42-RT, and SM2RASC1H05

show R values between 0.38 and 0.82. The other two

products showmore pronounced fluctuations inR value,

between 0.13 and 0.75. All products show poor perfor-

mance values during the winter months (Tian et al.

2009). In terms of RMSE, all the considered rainfall

products have a similar pattern, with higher values (up

to 50mm) during winter months and lower values during

summer months (due to the RMSE dependency on

rainfall amount).

The temporal analysis is also carried out by consid-

ering each individual season, that is, the entire analysis

period is split into four different time ranges accord-

ing to season. For spring the months of March–May

(MAM) are considered, for summer June–August (JJA),

for fall September–November (SON), and for winter

December–February (DJF). For each period POD,

FAR, and TS values are calculated (considering 5 days

of accumulated rainfall) and averaged in space (over the

2043 grid points) and in time (every performance score

presents four values, one for each year of the analysis

period). In this way, one value per season is obtained. In

Fig. 10, the POD and FAR values are plotted for each

season, considering the 10th and 90th percentile

thresholds. Specifically, in Fig. 10, the closer a point is to

the lower-right corner of the plot, the better the per-

formance is. By contrast, the proximity of a point to the

upper-left corner suggests worse performance. On this

basis, a downward and/or rightward variation implies an

improvement. In terms of TS, Fig. 10 highlights that all

the rainfall products perform better during the JJA and

SON period than during MAM and DJF, mainly for the

90th percentile. The parent products (i.e., H05 and

3B42-RT) show the lowest performance during the

MAM and DJF periods, probably because of the ten-

dency of these products to underestimate light rainfall

(Kidd and Levizzani 2011).

To visualize the temporal variability of rainfall prod-

ucts, two representative time series are reported in

Fig. 11. Specifically, two pixels are selected throughout

the study area, in order to show good and bad in-

tegration results in the calibration and validation period.

The pixels are chosen by considering the RMSE differ-

ence between the parent and the integrated products for

FIG. 8. Spatial averages of categorical metrics, computed for 5 days of accumulated rainfall, for the analyzed rainfall products

(SM2RASC, 3B42-RT, H05, SM2RASC1H05, and SM2RASC13B42-RT) in the validation period (2012–13): (left) FAR, (middle) POD,

and (right) TS for a 5-day rainfall accumulation threshold. An event is defined as a 5-day rainfall accumulation that exceeds a given

percentile threshold of all 5-day accumulations observed for a given pixel over the analyzed period.
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5 days of accumulated rainfall during the calibration

period. Figures 11a and 11b show the bad integration

results with RMSE values equal to 25.59 and 34.93mm

for the SM2RASC13B42-RT and SMR2ASC1H05

products, respectively, while the parent products (i.e.,

3B42-RT andH05) provide RMSE values equal to 26.08

and 37.43mm. As can be seen from the plot, the in-

tegrated products’ time series are characterized by a

general underestimation during both the calibration and

validation periods. The pixel is chosen over a moun-

tainous area where the parent products are affected by

many factors, such as the presence of snow/frozen soil

and complex topography, and they do not provide good

performance separately. As a result, their integration

does not yield a satisfactory score. In contrast, Figs. 11c

and 11d plot the time series for the good integration

results. The RMSE values for the integrated products

are 21.26 and 21.30mm, for SM2RASC13B42-RT and

SMR2ASC1H05, respectively, while the parent products

show nearly double RMSE values equal to 41.24 and

46.91mm. Figures 11c and 11d show a general agree-

ment between the observed and the integrated products,

confirming the capability of the SM2RAIN method to

correctly estimate rainfall and the usefulness of the

proposed integration procedure that allowed for a more

reliable rainfall dataset by partially overcoming the

satellite issues related to light rainfall estimation. The

presented case studies highlight the benefits due to

the integration in different rainfall regimes.

5. Conclusions

In this paper, an integration of satellite rainfall and

soil moisture data is presented. The 3B42-RT and H05

rainfall products are integrated with ASCAT-derived

rainfall data, through the application of the SM2RAIN

FIG. 9. Monthly (top) R and (bottom) RMSE values for 5 days of accumulated rainfall for each

analyzed product.
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algorithm, in order to improve the rainfall products’

accuracy and reliability. To assess benefits related to the

integration, various performance metrics are used to

validate the proposed method, evaluating both their

spatial and temporal variability against observed rainfall

data over the Italian territory.

All the analyzed rainfall products have proven to be in

agreement with the observed dataset, showing quite

high correlation and low RMSE values. In particular,

the SM2RAINmethod satisfactorily reproduces rainfall

patterns and amounts. The integration analysis has

shown an improvement in the performance of the pa-

rent products. In particular, the SM2RASC1H05 and

SM2RASC13B42-RT products show the highest

correlation values and the lowest RMSE values, con-

sidering 5 days of accumulated rainfall. The integration

determines an increase in the median R values by up to

41% (23%) for SM2RASC1H05 (SM2RASC13B42-RT),

with respect to the parent product, during the calibra-

tion period and by up to 26% (18%) for SM2RASC1H05

(SM2RASC13B42-RT), during the validation period.

With respect to the RMSE, the integration provides a

decrease of themedian value up to 25% (21%) during the

calibration period and up to 18% (17%) during the vali-

dation period for SM2RASC1H05 (SM2RASC13B42-RT).

In terms of categorical scores, a reduction in the FAR

(for high rainfall rates) and an increase in the PODvalues

of the parent products can be seen. All the analyzed

FIG. 10. POD vs FAR plot for each seasonal period considering 5 days of accumulated rainfall. The gray lines

indicate TS values, the horizontal bars represent the std dev of POD, and the vertical bars represent the std dev of

FAR for each analyzed percentile.
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products have also proven to satisfactorily reproduce the

observed rainfall spatial variability with mean R values

of 0.52, 0.43, 0.52, 0.58, and 0.55 for SM2RASC, 3B42-

RT, H05, SM2RASC13B42-RT, and SM2RASC1H05,

respectively. The temporal analysis has confirmed the

satellite products’ dependency on the season. Better

performances are obtained during the warm period

for all the analyzed products, whereas 3B42-RT, H05,

and SM2RASC show lower R values during DJF and

higher values during the SON period.

By performing the analysis over a 4-yr period, these

results are also useful for giving indications of the

capability of the analyzed rainfall products for hydro-

logical applications. Specifically, this is the first study

performing the validation of 3B42-RT andH05 products

over Italy with a high-quality observational dataset.

To summarize, satellite soil moisture data are found to

be a way of improving satellite rainfall products. The

proposed procedure is going to be further enhanced by

using more advanced data-assimilation procedures for

taking the temporal variability of product errors into

account. Finally, as H05, 3B42-RT, andASCAT satellite

data are operational products, the integration can be

easily applied in near–real time. This feature makes this

FIG. 11. Time series for the two selected pixels throughout the study area, showing (a),(b) bad integration results

and (c),(d) good results in terms of the variation in RMSE after the integration. (a) Results for H05 and

SM2RASC1H05 (RMSE values of 37.43 and 34.93mm, respectively) and (b) results for 3B42-RT and

SM2RASC13B42-RT (RMSE values of 26.08 and 25.59mm, respectively) for 5 days of accumulated rainfall.

(c) Results for H05 and SM2RASC1H05 (RMSE values of 46.91 and 21.30mm, respectively) and (d) results for

3B42-RT and SM2RASC13B42-RT (RMSE values of 41.24 and 21.26mm, respectively).
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integration method feasible to be applied also for Civil

Protection Service early warning systems for addressing

the prediction and mitigation of natural hazards such as

floods and landslides.
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