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ABSTRACT

The circulation regimes in the Pacific–North American region are studied using the NCEP–NCAR
reanalyses for the 18-winter period (1981/82–1998/99; NCEP18) and for the 54-winter period (1948/49–
2001/02; NCEP54). The sampling properties of the regimes are estimated using very large ensembles (of size
55) of winter simulations made for the NCEP18 period with the atmospheric general circulation model of
the Center for Ocean–Land–Atmosphere Studies, forced by observed SST and sea ice.

The regimes are identified using a modified version of the k-means method. From the NCEP54 dataset
a set of four clusters was found [i.e., the Alaskan ridge (AR), Arctic low (AL), Pacific trough (PT), and the
Arctic high (AH)], which are significant (vis-à-vis a multinormal background), and more reproducible
(within randomly chosen half-length samples) than would be expected from a multinormal process. The
frequency of occurrence of the PT (AH) has increased (decreased) significantly during the past two decades.

The PT cluster obtained from NCEP18 dataset more closely resembles the El Niño–forced seasonal mean
pattern of recent decades than it does the traditional PNA.

The GCM simulates the AR, AL, and PT clusters (but not the AH). The simulated AR and PT patterns
have errors (cf. the NCEP18 results), which are outside the range of internal variability. The simulated
frequency of occurrence agrees with the NCEP18 results within sampling variability.

The differences in cluster properties of the PT and AR regimes between the NCEP18 and NCEP54
datasets are due to changes in SST forcing, not sampling error.

Year-to-year changes in the frequency of occurrence of the PT, AL, and AR clusters in the simulations
and the NCEP18 dataset are generally consistent with each other.

1. Introduction

The notion that the large-scale circulation of the ex-
tratropical atmosphere can be described by the alter-
nation of circulation regimes (or weather regimes), in

which anomalies in the amplitude and phase of plan-
etary waves are dynamically equilibrated by variations
in diabatic energy sources and nonlinear interactions
with synoptic-scale eddies, can be traced back to a num-
ber of seminal studies in the 1980s (e.g., Reinhold and
Pierrehumbert 1982; Vautard and Legras 1988).
Since then, circulation regimes have been simulated
and diagnosed using a variety of models, ranging from
quasigeostrophic (e.g., Marshall and Molteni 1993;
D’Andrea and Vautard 2001; Kondroshov et al. 2004)
to balance equation models (Itoh and Kimoto, 1999) to
primitive equation general circulation models (GCMs)
(e.g., Hansen and Sutera 1990; Haines and Hannachi
1995; Monahan et al. 2000). Although regime identifi-
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cation in the actual observed record remains a non-
trivial statistical problem (see the review by Molteni et
al. 2006), recent studies have obtained results that are
consistent across different methodologies (Alhamed et
al. 2002; Arnott et al. 2004; Cassou et al. 2004; Robert-
son and Mechoso 2003).

The methods used to establish the existence and sig-
nificance of regimes have, however, been questioned by
a number of authors. Recently Stephenson et al. (2004)
and Hsu and Zwiers (2001) have criticized the specific
methodology of Corti et al. (1999) who sought evidence
for regimes in the two-dimensional probability density
function (PDF) of winter monthly mean height fields
based on reanalyses. Stephenson et al. (2004) argue in
more general terms that rigorous hypothesis testing is
essential and that a null hypothesis of a multinormal
distribution for large-scale atmospheric fields may be
very hard to reject. This was also the conclusion of Toth
(1991), although only in a phase-averaged sense.

In this paper, regimes are identified from the math-
ematical technique of cluster analysis. Since the con-
cept of regimes is still somewhat controversial, we refer
to specific results obtained in this paper in terms of
clusters. The issue of careful hypothesis testing in our
analysis will be taken up again in sections 3 and 4. The
difficulty in determining the number of clusters (Chris-
tiansen 2006) will also be discussed.

In the last decade, a number of studies have investi-
gated the possible dependence of atmospheric regime
properties on the state of slowly varying components of
the climate system, such as sea surface temperature
(SST). By analogy with the behavior of low-order cha-
otic systems, it was argued that the first-order response
to a moderate variation of boundary forcing should be
manifested only by a change in the regime’s frequency
of occurrence (Molteni et al. 1993; Palmer 1993, 1999).
It was also suggested that the observed interdecadal
variability in Northern Hemisphere regime frequency
may be one aspect of the atmospheric response to in-
creased greenhouse forcing (Corti et al. 1999; Shindell
et al. 1999; Hsu and Zwiers 2001). However, recent
studies have pointed out that large variations in the
distribution of diabatic forcing (such as those associated
with strong El Niño events) may lead to more substan-
tial changes of regime properties, including the spatial
pattern of the cluster “centroids” or even the number of
regimes (e.g., Molteni and Corti 1998; Straus and Mol-
teni 2004).

It is now widely recognized that the variation of cir-
culation regime (cluster) properties may be an impor-
tant issue for climate predictions, from seasonal fore-
casts to future climate scenarios. However, either when

validating model results against observations or when
comparing regime properties in different periods, one is
faced with the problem of estimating the significance of
the products of complex statistical tools. Specifically,
one needs to quantify the uncertainty in regime prop-
erties arising from the internal, chaotic dynamics of the
atmosphere and use such information to assess the pre-
dictability of such properties as a response to external
variations in forcing terms.

Given the limitations of the observed record of up-
per-air fields, it is very difficult to address these issues
from reanalysis data. However, ensembles of GCM
simulations can provide reliable estimates of the effects
of internal versus external variability in cluster proper-
ties. In this paper, we make use of the National Centers
for Environmental Prediction–National Center for At-
mospheric Research (NCEP–NCAR) reanalysis data
(Kalnay et al. 1996) and of a large set of seasonal en-
semble simulations with the Center for Ocean–Land–
Atmosphere Studies (COLA) atmospheric GCM, pre-
viously analyzed by Straus and Molteni (2004) to inves-
tigate three specific topics:

1) To what extent are the properties of model-
simulated wintertime clusters over the Pacific–
North American (PNA) region consistent with those
obtained from reanalysis data (for the common pe-
riod of 1981/82–1998/99)?

2) Are the differences between the observed cluster
properties for the recent period (as above) and
those for the extended period of 1948/49–2001/02
within the range of internal atmospheric variability?

3) Are interannual variations in cluster frequencies (at
least partially) reproducible as a function of SST
anomalies?

In principle it would be more consistent to pose ques-
tion 2 as a comparison between the clusters occurring
during two equal-length, nonoverlapping, periods.
However, the shortness of the observed record dictates
that we use as many winters as possible for one of the
periods; the choice of the other (recent) period is dic-
tated by the availability of the simulations.

Although the basic k-means clustering procedure
adopted here (following Michelangeli et al. 1995, here-
after MVL) is the same as used by Straus and Molteni
(2004, hereafter SM04), two important methodological
differences between this study and SM04 should be
pointed out.

1) Only quasi-stationary periods are examined, as in
Toth (1991) and Toth (1993). The physical motiva-
tion is that, in order for circulation regimes (or pre-
ferred patterns) to also correspond to “weather re-

2252 J O U R N A L O F C L I M A T E VOLUME 20



gimes” during which the character of the synoptic
disturbances is unusually persistent, the large-scale
flow must be quasi-stationary (Vautard 1990). The
association of persistent large-scale patterns with
such weather regimes is quite explicit in earlier
works (see, e.g., Rex 1950; Namias 1964; Reinhold
and Pierrehumbert 1982). The use of quasi-stationary
prefiltering of the data in cluster analysis has been
discussed by Toth (1992), Kimoto and Ghil (1993b),
and Itoh and Kimoto (1999). To accomplish this fil-
tering, only fields with a slow time evolution in the
state space have been retained, a point to which we
return later.

2) Only the seasonal cycle averaged over all years for a
given period has been removed, followed by the
definition of a single set of regimes (clusters). This is
true for both reanalysis and model-simulated
datasets. This contrasts with the methodology of
SM04, in which the entire analysis, encompassing
the removal of the seasonal cycle and the subse-
quent definition of the clusters, was carried out in a
completely independent manner for each winter.
Thus in particular the interannual circulation
anomalies associated with strong El Niño–Southern
Oscillation (ENSO) events play a direct role in the
current analysis, whereas by design they played only
an indirect role in SM04.

Section 2 of the paper gives a description of the
datasets, experimental settings, and basic data reduc-
tion employed in the paper. The clusters from reanaly-
sis data are described in section 3, where a detailed
description of the cluster analysis procedure is given,
the impact of the introduction of the “quasi-stationarity”
criterion is discussed, the clusters obtained from re-
analysis data both for the 54- and the 18-yr period cor-
responding to that of the simulations are presented, and
the dependence of the cluster probability (or occu-
pancy) on tropical Pacific SST is estimated.

Issues of significance and reproducibility for the clus-
ters obtained from the reanalysis datasets are described
in section 4, which can be skipped without loss of con-
text by readers not interested in these more technical
matters.

The regimes from the large ensemble of simulations
and detailed comparisons of cluster statistics for mod-
eled and observed regimes, designed to address the is-
sues outlined in questions 1 and 2 above, are presented
in section 5, while section 6 addresses question 3. In
these sections, we estimate the contribution of atmo-
spheric internal variability to fluctuations of cluster
properties (such as centroid patterns and frequencies of
occurrence) by comparing results from different sub-

samples extracted from the full 55-member ensemble
dataset. Section 7 discusses the sensitivity of our results
to the choice of the number of clusters.

Our conclusions, which are summarized and dis-
cussed in section 8, offer a rather optimistic view on the
prospect of exploiting regime predictability in GCM
simulations and suggest that internal atmospheric dy-
namics alone cannot account for all observed variations
in regime statistics between the last half and the last
two decades of the twentieth century.

2. Data and analysis methods

a. NCEP–NCAR reanalysis

The daily wintertime 200-hPa geopotential height
and zonal wind fields1 were accessed from the NCEP–
NCAR reanalysis for two periods: 18 winters (1981/82–
1998/99) and 54 winters (1948/49–2001/02). These
datasets are referred to as NCEP18 and NCEP54, re-
spectively. The shorter, more recent period was chosen
to match the very large set of GCM ensemble simula-
tions described in section 2b, while the longer period
covers almost the whole available data record. For each
winter, the 110-day period starting on 12 December was
accessed. To ensure consistency with the simulated data
only 0000 UTC data were used. The original fields,
available on a 2.5° � 2.5° latitude–longitude grid, were
interpolated to a Gaussian grid corresponding to trian-
gular 42 (T42) truncation (approximately 2.8° � 2.8°
latitude–longitude grid) in order that the reanalysis
fields have the same horizontal resolution as the GCM
fields.

b. GCM “Grand Ensemble” dataset

The atmospheric GCM used is version 2.2 of the
COLA GCM, run at horizontal spectral resolution of
triangular T63, with 18 sigma levels. It uses the dynami-
cal core of the NCAR Community Climate Model ver-
sion 3 (CCM3) described in Kiehl et al. (1998); other-
wise, it is as described in Schneider (2002). The depen-
dent variables of the model are spectrally treated,
except moisture which is advected using the semi-
Lagrangian technique. The land surface model, which is
coupled to the atmospheric model, is the Simplified
Biosphere Model (SSiB) documented in Xue et al.
(1991). The parameterization of deep convection is the
relaxed Arakawa–Schubert scheme (Moorthi and

1 The equivalent barotropic nature of midlatitude intraseasonal
variability, with amplitudes increasing with height, motivated the
use of upper-tropospheric fields for the analysis.
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Suarez 1992). For further details consult Schneider
(2002).

For each of the 18 winters (1981/82–1998/99) we ana-
lyze an ensemble of 55 members. We label the initial
conditions (ICs) for each winter as follows: ICs 1–5 are
from the NCEP–NCAR reanalyses for 0000 UTC of
26–30 November. Initial conditions 6–10 are obtained
from ICs 1–5 by adding a perturbation that consists of
the difference between the analyses 12 h prior and 12 h
subsequent. The remaining 45 ICs were obtained by
adding nine further perturbations each to ICs 1–5, cho-
sen randomly from a larger set of perturbations con-
sisting of 24-, 48-, and 72-h differences of 0600, 1200,
and 1800 UTC reanalysis states. In each case, the two
reanalysis states used to form the perturbation bracket
the original IC in time.

The observed SST and sea ice fields used as bound-
ary conditions for the GCM simulations are taken from
Reynolds (see Reynolds and Smith 1994); these fields
vary weekly, so both intraseasonal and interannual
variations in boundary forcing are used.

As with the reanalysis data, for each winter we access
the 110-day records of 200-hPa height and zonal wind
(once daily, at 0000 UTC), starting on 12 December.
We interpolate these fields, originally on a T63 Gauss-
ian (approximately 1.9° � 1.9° latitude–longitude) grid,
to the common T42 Gaussian grid. The dataset consist-
ing of all 55 simulations for each of the 18 winters is
referred to as the “Grand Ensemble,” GE18, or GE in
this paper.

c. Time-scale filtering

A “seasonal cycle” was obtained by retaining the
lowest three components of a Legendre expansion in
time of the 110-day time series at each grid point for
each winter simulation (Straus 1983), followed by av-
eraging the parabolic series over all ensemble simula-
tions for all years. This mean seasonal cycle was re-
moved from each individual simulation. For the obser-
vational datasets (NCEP54 and NCEP18), the seasonal
cycle was obtained by averaging the parabolic time se-
ries at each grid point over all available years (54 or 18)
and removing this seasonal cycle from the data for all
years. Following many other studies on regimes, we
filter out baroclinic, synoptic-scale fluctuations with the
use of temporal filtering. The filtering was applied to
the 110-day time series for each winter (after removal
of the seasonal cycle) by the application of a 15-point
digital Lanczos filer (Duchon 1979) so that fluctuations
with periods greater (less) than about 10 days were
retained (filtered out). After filtering, 96 days are avail-
able for further analysis. Thus, the time series have only

the mean seasonal cycle and components with periods
less than about 10 days filtered out. We then use only
every fourth point of this filtered dataset, giving 24
points in each seasonal time series (see section 2g).

d. Reduction of dimensionality

We use an empirical orthogonal function (EOF)
analysis in order to reduce the dimensionality of the
datasets. The EOFs (spatial patterns) of 200-hPa height
and zonal wind were computed from the T42 grids as
the normalized eigenvectors of the covariance matrix2

calculated over the Pacific–North American region
20°–80°N, 150°E–30°W for the NCEP54, NCEP18, and
GE18 datasets. The dimensional principle components
(PCs), which are the time series of the EOFs, form the
coordinates of the reanalysis or model state in a state
space. The total space–time variance explained jointly
by EOF 1–6 and EOF 1–10 are given in Table 1 for the
various datasets. For geopotential height (u wind), the
leading 6 EOFs explain at least �69% (�63%) of the
regional variance, and the leading 10 EOFs explain
over �80% (�77%) of the variance.

e. GCM one-member “EXP18” samples

From the GE18 200-hPa height PCs, we extracted 55
GCM one-member samples. A single sample consists of
PCs from one winter simulation for each of the 18 win-
ters. Each sample contains simulations with the same
IC label. Since even the simulations with the same IC
label are intialized independently for each calendar
year, they may be considered to be independent. Note
also that each sample of integrations is influenced by
the identical record of winter SST. We subsequently
refer to these samples as the EXP18 dataset.

2 To assure appropriate area weighting, the fields are multiplied
by the square root of the cosine of latitude prior to entering the
covariance matrix calculation. The final centroid maps presented
here, which are synthesized from the EOFs, have this square root
weighting divided out before plotting.

TABLE 1. Accumulated space–time variance (in %) explained
by the leading 6 EOFs and the leading 10 EOFs: N54 refers to the
EOFs of the NCEP54 record, N18 to the NCEP18 record, and GE
for the Grand Ensemble in the domain 20°–80°N, 150°E–30°W.
Here Z refers to 200-hPa height and U, the200-hPa zonal wind.

N54 Z N54 U N18 Z N18 U GE Z

EOF 1–6 68.9 62.6 69.5 63.0 76.1
EOF 1–10 83.8 76.7 84.3 77.6 88.9
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f. GCM three-member “EXP54” samples

We also make use of 55 GCM three-member
samples, each consisting of PCs from three winter simu-
lations for each of the 18 winters. For each winter, the
PCs belonging to the three-member sample n are ob-
tained by taking the PCs of the simulation with ICn
from the one-member sample EXP18, and augmenting
it by the PCs from two randomly chosen simulations
from among the other 54 members for the same winter.
Here n runs from 1 to 55. We subsequently refer to this
as the EXP54 dataset. It should be noted that the
EXP54 samples include data from the same number
(54) of winters as NCEP54, but associated with the
same range of SST variability as in NCEP18 and
EXP18. Therefore, any differences in statistics derived
from the EXP18 and EXP54 datasets should only be
ascribed to internal atmospheric variability.

g. Synthetic Markov datasets

In assessing whether the null hypothesis of multinor-
mality can be rejected, it is necessary to perform Monte
Carlo simulations using a large number of synthetic
datasets, which are described here. (The actual statisti-
cal testing is described in sections 3 and 4). A large pool
(from 100 to 500) of synthetic datasets is created sepa-
rately to be comparable to each of the NCEP54,
NCEP18, and GE18 datasets. In each case, each syn-
thetic dataset has precisely the same length as the ob-
served or simulated dataset against which it is com-
pared, and is generated from a series of n Markov pro-
cesses, whose variance and first-order autocorrelation
are obtained from the first n PCs of the appropriate
observed or simulated dataset. A requirement for using
the surrogate synthetic datasets for hypothesis testing is
that the low-frequency PC time series (sampled every 4
days) is well approximated by a Markov process.

This is the case if the residuals of the Markov process
are close to white noise (see Straus and Halem 1981). In
a very similar context to that of this paper, Penland and
Ghil (1993) made a similar choice of sampling interval
in Markov modeling of temporally filtered height PCs.

3. Regimes from NCEP–NCAR reanalysis

a. Cluster analysis of quasi-stationary states

Following SM04, the k-means method (as described
by MVL) was used. Recent studies using observation-
ally based datasets have found that this method gives
results consistent with those of hierarchical and mixture
model methods (Alhamed et al. 2002; Cassou et al.

2004; Robertson and Mechoso 2003). Using the 6- or
10-dimensional state space spanned by the EOFs (as
described in section 2), a partition into k clusters, or
categories, is sought. This partition is accomplished in
such a way that the ratio of the variance between clus-
ter centroids (a centroid being the average over all
states in a cluster) to the average intracluster variance is
maximized. This is equivalent to minimizing the intra-
cluster variance since the total variance of the dataset is
fixed. The variances are computed using an Eulerian
distance metric in the state space of the PCs.

Before the cluster analysis is carried out, the tempo-
rally filtered time series (see section 2c) are screened to
focus on quasi-stationary periods, a procedure recom-
mended by Toth (1992), Kimoto and Ghil (1993a), and
Itoh and Kimoto (1999) in order to ensure that periods
of persistent synoptic weather are considered. This
quasi-stationary selection was accomplished by first
computing a histogram of the distance in state space
between successive points to give a measure of the dif-
ference between low-frequency states four days apart.
(Fifty bins were used to compute the histogram, based
on the computed upper limit of the distribution.) For
m � 1, . . . , 50, a cumulative distribution is computed as
the fraction of states that fall into the lowest m bins;
once that fraction exceeds �, the states in the remaining
bins (m � 1 and higher) are excluded from the cluster
calculation. Since the choice of � is arbitrary, we will
explore the sensitivity of some of our results to the
value of �, which ranges between 0.40 (strong filtering)
and 1.00 (no filtering).

Methods used to verify the significance and stability
of the clusters include significance vis-à-vis a null hy-
pothesis of a multinormal background distribution, re-
producibility using randomly chosen half-length
datasets, and consistency between clusters obtained
from different variables (see MVL and SM04). Since
the null hypothesis of a multinormal distribution may
be rejected not only because of multimodality but also
because of skewness (Stephenson et al. 2004; Chris-
tiansen 2007, hereafter C07), we have carried out sta-
tistical analyses (similar to those of C07) that indicate
the modest degree of skewness of the PCs is not suffi-
cient to explain the high significance levels that we ob-
tain. See section 4 and the appendix for details.

Significance vis-à-vis a multinormal distribution is
computed here as in SM04, using a Monte Carlo pro-
cedure in which a large number of synthetic datasets
are created, each the same length as the dataset ana-
lyzed. The synthetic datasets are described in detail in
section 2g. The cluster analysis is repeated (and the
variance ratio calculated) for each set of synthetic data,
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and the significance level p is given as the fraction of
cases in which the variance ratio of the Monte Carlo
data fall below that computed from the real data.

For those cases in which quasi-stationary filtering
was invoked (� � 1.0), the Markov process variance
and lag-1 autocorrelation were obtained from the un-
filtered PCs, and the quasi-stationary filtering was ap-
plied prior to the cluster analysis of each synthetic
dataset to ensure consistency.

In the context of determining the dependence of the
cluster properties on external forcing (in this case SST),
the reproducibility tests are carried out by comparing
randomly chosen half-length subsets within each simu-
lation in order to avoid mixing different sets of SST
forcings. To have a measure of reproducibility expected
in the context of the multinormal null hypothesis, we
have also carried out equivalent reproducibility tests
using a number of synthetic datasets (as above). By
comparing the clusters of the 200-hPa u-wind field to
the cluster centroid maps of the geostrophic u wind
calculated from the height clusters, we have tried to
assess the consistency of the clusters across variables.
Since geostrophic balance is expected to work well in
midlatitudes, this comparison is equivalent to a sensi-
tivity test of the cluster analysis to the choice of the

distance metric in state space. Results of these tests are
discussed in section 4.

b. Regimes in the observed 54-winter record

One of the most difficult problems in cluster analysis
is to uniquely define the number (k) of clusters (as
discussed in C07). In the next section and the appendix
we present evidence that k should be at least 3 based on
the strength of the clustering given by the variance ra-
tio, but also that k should be less than 5 based on re-
producibility results. Although we focus on four clus-
ters, we give some results for k � 3 in section 7 to
indicate the sensitivity of our results to the cluster
choice.

Figure 1 shows the height maps of the four centroids
from the NCEP54 record, computed using six EOFs
and � � 0.50. We refer to cluster 1 (Fig. 1a) as the
Alaskan ridge (AR) pattern, in agreement with the
classification of SM04 and Renwick and Wallace
(1996). It is similar to the P6 Pacific cluster reported by
Kimoto and Ghil (1993b, hereafter KG), to the Pacific
cluster reported in Fig. 11b of Smyth et al. (1999, here-
after SIG), to the A global cluster of Cheng and Wal-
lace (1993, hereafter CW) in their Fig. 4, and to the A
Pacific cluster shown in Fig. 8 of CW. This pattern has

FIG. 1. Cluster centroid maps of 200-hPa height for k�4 from the NCEP54 record. The cluster analysis was carried out
using six EOFs and a value of ��0.5 (see text for explanation). Contour interval is 20 m with the 0 contour omitted.
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the appearance of a wave train originating in the sub-
tropical Pacific, and is associated with Alaskan blocking
(Renwick and Wallace 1996). Cluster 3 (Fig. 1c) con-
sists of a wave train nearly out of phase with the AR but
with the centers shifted, particularly the ones over the
continent. This cluster, referred to as the Pacific trough
(PT), resembles the P1 Pacific pattern of KG, the Pa-
cific cluster of SIG shown in their Fig. 11a, and the R
Pacific cluster of CW (their Fig. 8). This regime pattern
is referred to as PNA-like, after the well-known PNA
pattern of Wallace and Gutzler (1981).

Cluster 4 (Fig. 1d) is termed the Arctic high (AH),
and is strongly suggestive of the North Atlantic Oscil-
lation (NAO) and/or the Northern Hemisphere annular
mode. It strongly resembles the global cluster G of SIG
(their Fig. 9c), and the global cluster G of CW (their
Fig. 4). Finally, cluster 2 (Fig. 1b), termed the Arctic
low (AL), is similar to the Pacific P4 cluster of KG
(their Fig. 5).

c. NCEP–NCAR 18-winter record

We chose to analyze the 18-winter record so that the
tropical SST forcing would be the same as that of the
GCM simulations to which we compare. However, with
only 18 winters (and hence a rather small sample size of
18 � 24 � 432) it is not possible to demonstrate that the
clusters have high formal significance.

The cluster centroids are shown in Fig. 2 for the same
parameters used in Fig. 1. One can easily establish a
visual one-to-one correspondence of these patterns
with those shown in Fig. 1 for the NCEP54 dataset with,
for example, the AR regime having a very strong high
over the Gulf of Alaska in both cases and the PT re-
gime a strong low. The associated pattern correlations
of the AR, AL, PT, and AH clusters are 0.96, 0.91, 0.62,
and 0.66, respectively. (The corresponding pattern cor-
relations for the cluster analysis with no quasi-
stationary filtering are 0.97, 0.60, 0.67, and 0.67, respec-
tively. Thus only the AL changes dramatically using the
pattern correlation as a measure of correspondence.
Another measure of correspondence of two cluster cen-
troids will be introduced later in the paper.)

The modifications in the PT pattern between the two
periods are worth noting: the continental high has been
shifted from northwestern North America in NCEP54
to Hudson Bay in NCEP18. The degree of mixing be-
tween the PT and AH also differs in the two periods.
The latter period PT pattern is quite similar to the sea-
sonal mean response forced by tropical Pacific SST in
more recent times (Barnston and Livezey 1987; Straus
and Shukla 2002, and many studies quoted therein),
whereas the configuration of the PT pattern in NCEP54
is closer to the classical PNA pattern of Wallace and
Gutzler (1981). This suggests that changes in the cluster

FIG. 2. As in Fig. 1 but from the NCEP18 record.

15 MAY 2007 S T R A U S E T A L . 2257

Fig 2 live 4/C



maps may be associated with different tropical Pacific
SST patterns. This hypothesis will be tested in sec-
tion 6.

d. Evolution of cluster frequency

To assess the degree to which we can associate cer-
tain regimes with SST forcing, it is helpful to examine
the winter-by-winter time series of the residence fre-
quency of the quasi-stationary low-frequency atmo-
sphere flow in each of the four NCEP54 clusters in Fig.
1. Such a series is shown for each of the clusters in
Figs. 3a–d along with scatterplots of the standardized
frequency against the standardized (seasonally aver-
aged January–March) Niño-3.4 SST index3 shown in
Figs. 3e–h. The frequency for a given cluster for a given
winter gives the fraction of time the circulation resides
in that cluster. For the � � 0.50 results, the frequencies
add up to approximately 0.50 considering the whole
dataset, but this is not true for each year since there
could be a different proportion of quasi-stationary
states in any given year.

While the Alaskan ridge and Arctic low frequencies
do not display any obvious trend, the Pacific trough
frequency clearly increases in the last half of the record
while the Arctic high frequency decreases. The linear
trend of the PT is 0.15 (54 yr)�1, that of the AH is �0.16
(54 yr)�1. Both trends are significant at the 98% level
with respect to trends seen in 100 equivalent synthetic
datasets. (The AH negative trend is very stable with
respect to changes in the quasi-stationary filtering pa-
rameter �, while the PT trend increases gradually from
0.15 to 0.29 as � is increased from 0.5 to 1.0, i.e., as the
filtering is removed.) The PT frequency also seems to
undergo a qualitative change in the late 1970s; a link to
the regime shift in the stratosphere found by Chris-
tiansen (2003) is suggested.

Both the AR and PT are correlated with Niño-3.4,
(�0.4 and 0.4, respectively)4 based on a 54-yr time se-
ries, supporting the notion that the AR is more active in

cold (La Niña) events (as in SM04 and Renwick and
Wallace 1996) and also the association of the PT with
warm events. (One can clearly pick out the strong warm
El Niño winters of 1982/83, 1986/87, and 1997/98 as
having a higher frequency of occurrence of the PT re-
gime.)

Table 2 shows the cluster frequencies averaged over
the three 18-yr periods within the 54 yr, as well as the
54-yr average, and the frequencies for the NCEP18 re-
gimes. The most common regime in both the NCEP54
and NCEP18 calculations (the PT) becomes more com-
mon from the first to the third period, while the least
frequented regime (AH) becomes less common. The
AR and AL do not show obvious trends.

It is interesting to note that the positive trend in the
North Atlantic Oscillation index as shown for example
by Hurrell (1995) is expressed here as a suppression of
the Arctic high.

4. Significance, consistency, and reproducibility of
NCEP54 regimes

The significance of the NCEP54 height clusters vis-
à-vis a suitably defined multinormal synthetic dataset
(as in section 2g) is presented in Table 3. Results are
given for both 6-EOF and 10-EOF truncations, and for
a wide range of �. (The smaller the value of �, the
greater the degree of prefiltering.) Significance values
greater than 90% are shown in bold. Also shown is the
variance ratio (ratio of variance among centroid clus-
ters to average intracluster variance) for various values
of � for the six-EOF truncation.

Following the approach of C07, we apply the cluster
analysis to a synthetic dataset consisting of independent
processes, each one having the same lag-1 autocorrela-
tion and skewness as the corresponding PC of NCEP54.
The results show that skewness alone is not enough to
generate the high levels of significance in the clustering
procedure5 reported in Table 3. For details, consult the
appendix.

3 The Niño-3.4 SST index is defined as the average SST over the
region 5°S–5°N, 190°–240°.

4 The lag-1 year autocorrelation of the Niño-3.4 time series is
quite small (�0.031). Thus, any correlation whose absolute value
is greater than 0.22 is statistically significant at the 95% level.

5 C07 show that for skewness �0.63 in a unimodal one-
dimensional time series, the k-means method will indicate a pre-
ferred choice of more than cluster. The magnitude of the skewness
of the leading four PCs for NCEP54 is 0.24, 0.23, 0.15, and 0.27,
respectively.

→

FIG. 3. (a)–(d) Fraction of occurrence for each of four NCEP54 clusters (six EOFs, � � 0.5) as a function of winter. Significant trends
given in brackets, in units of fraction (54 yr)�1. (e)–(h) Scatterplots of standardized regime frequency vs the (standardized) Niño-3.4
index for the four NCEP54 clusters with the correlation indicated. Each scatterplot contains 54 points: one per winter.
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For six EOFs, the significance values of Table 3 show
relatively little variation for k � 3–6 and � � 0.8 (with
values generally above 87%). The significance is clearly
lower for k � 2 (�73%), and is somewhat lower for the
unfiltered data (� � 1.0). The behavior of the signifi-
cance is less systematic for 10 EOFs, indicating that the
NCEP54 dataset is too short to adequately sample the
larger state space.

The reproducibility is calculated by dividing the low-
frequency PC time series of length 24 for each winter
into two randomly chosen time series of length 12 and
carrying out the cluster analysis for the two 54-winter
datasets, each of length 12 � 54 � 648. (This procedure
insures that all randomly chosen samples feel approxi-
mate the same SST forcing.) This procedure is repeated
for 100 trials, and for each trial the two sets of clusters
obtained (for each value of k) are matched. The match-
ing is done in two ways: by maximizing the mean pat-
tern correlation over every possible pairing of the k
centroids between the two half-length samples and by
minimizing the mean squared error. (See the appendix
for more details. All averaging of correlations is carried
out using the Fisher Z transform.)

The pairing giving the maximum average correlation,
or minimum mean squared error (over k centroids), is
then archived for each trial, yielding a distribution for
each measure. For the pattern correlation, the average
of these distributions is 0.95, 0.85, and 0.78 for k � 3,
k � 4, and k � 5, respectively, while the median cor-
relation is 0.96, 0.86, and 0.65. The centroid patterns for
the average of all 200 half-length samples (matched on
the basis of pattern correlation) are consistent with the
patterns shown in Fig. 1. (For k � 4, the pattern cor-
relations for the AR, AL, PT, and AH patterns are
0.98, 0.69, 0.87, and 0.98, respectively.)

The average of the mean squared error distribution
of half-length samples was compared with that com-
puted using a large number (100) realizations of syn-
thetic Markov processes (see section 2g) for the
NCEP54 dataset. The ratio of the NCEP54 error to that
obtained from the synthetic data is shown in Table 4 for
values of k from 3 to 5. Here we report the reproduc-
ibility of each cluster individually. It is clear that for
k � 4 all cluster centroids are not on average as repro-
ducible as the multinormal data; hence, k � 5 and
larger can be rejected. It is noteworthy that for k � 4
the Arctic low is not reproducible.

Since considerations of the variance ratio suggest
that k should be at least 3, but reproducibility consid-

TABLE 2. Relative fraction of occurrence of four regimes in the NCEP54 dataset, the three consecutive 18-yr periods of the NCEP54
dataset [labeled NCEP(1), NCEP(2), and NCEP(3)], the NCEP18 dataset, and the GE (GrEn18) dataset. In each case the relative
fractions sum to approximately 0.5 since only quasi-stationary states are included in the analysis. The regimes were calculated using six
EOFs with � � 0.5 (see text for explanation). The last column (std dev) gives the standard deviation of the frequency of clusters of
GE18 among the 55 members of the ensemble.

Regime NCEP54 NCEP(l) NCEP(2) NCEP(3) NCEP18 GrEn18 Std dev

AR 0.147 0.164 0.116 0.160 0.104 0.083 0.023
AL 0.140 0.141 0.132 0.146 0.102 0.132 0.024
PT 0.157 0.109 0.157 0.204 0.180 0.184 0.035
AH 0.113 0.164 0.120 0.056 0.114 0.132 0.020

TABLE 3. Significance p (in %) and variance ratio for the height
clusters of the NCEP54 dataset. Significance is assessed against
synthetic Markov model datasets constructed using same variance
and lag-1 correlation for the indicated number of PCs, as a func-
tion of cluster number k. Here p is given as the percentage of
synthetic datasets having a variance ratio less than the NCEP54
dataset. (Values greater than 90% are bold.) The variance ratio is
the ratio of the variance between cluster centroids to the mean,
weighted intracluster variance. See text for details.

� �

k 1.0 0.8 0.6 0.5 0.4

Significance for 6 EOFs
2 62 73 66 58 72
3 81 90 87 88 96
4 74 87 89 92 93
5 67 83 92 90 94
6 81 90 95 95 96

Significance for 10 EOFs
2 73 73 71 85 61
3 83 84 84 90 52
4 77 76 83 89 88
5 74 81 76 87 74
6 85 86 86 93 88

Variance ratio for 6 EOFs
2 0.264 0.274 0.267 0.272 0.277
3 0.465 0.480 0.481 0.491 0.496
4 0.608 0.624 0.638 0.653 0.661
5 0.733 0.754 0.782 0.792 0.810
6 0.861 0.874 0.904 0.920 0.938

Variance ratio for 10 EOFs
2 0.212 0.215 0.214 0.222 0.210
3 0.354 0.365 0.365 0.375 0.351
4 0.453 0.462 0.471 0.468 0.484
5 0.537 0.552 0.560 0.578 0.570
6 0.620 0.633 0.644 0.663 0.664
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erations suggest that k � 5, we have chosen four clus-
ters for many of the results in this paper, with some
results repeated for k � 3.

We show that k � 4 is a reasonable choice in two
further ways, based on the consistency of centroids with
respect to variable (height versus zonal wind) and with
respect to domain (regional versus hemispheric).

The consistency with respect to variable is assessed
by comparing the maps of the geostrophic zonal wind
obtained from the NCEP54 height cluster centroids
with the maps of the centroids computed from the clus-
ter analysis of the zonal wind. For six PCs and � � 0.50
these patterns (not shown) match quite well, with pat-
tern correlations of 0.93, 0.84, 0.72, and 0.82 for the AR,
AL, PT, and AH, respectively. (Note that, since the
filtering is done independently for height and zonal
wind clusters, the set of states going into the zonal wind
and height cluster analyses may be somewhat differ-
ent.)

We have compared the centroids shown in Fig. 1 to
those computed using a full-hemispheric domain (north
of 20°N) in order to provide a test of the sensitivity to
the choice of lateral boundary. The two sets of patterns
(not shown) are nearly identical over the hemispheric
region 150°–30°W. The clusters that we have called the
AH and AL have elements of both the Northern Hemi-
sphere annular mode (Thompson and Wallace 2000)
and the NAO (Hurrell 1995).

As in SM04, consistency with respect to variable and
region also hold for values of k other than 4; however,
it is important to note that they do hold for k � 4.

Finally, we show that the patterns given in Fig. 1 for
NCEP54 are consistent with the cluster centroids ob-
tained using other combinations of PCs retained and
quasi-stationary filtering parameter �. Table 5 reports
the average pattern correlation between the clusters of
the standard NCEP54 calculation (six PCs, � � 0.50)
and a number of other configurations. For each pair of
configurations and for each k all possible pairwise
matchings are considered, and the matching with the
maximum average correlation is chosen.

5. Clusters of the Grand Ensemble

The cluster centroids of geopotential height for k � 4
are shown for the “Grand Ensemble” with the standard
parameters (six EOFs, � � 0.50) in Fig. 4. Compared to
Fig. 2, we are able to easily recognize the counterpart of
the NCEP18 Alaskan ridge, Arctic low, and the Pacific
trough from the simulations (Figs. 6a–c). (The corre-
sponding pattern correlations are 0.74, 0.76, and 0.84.)
The AH cluster in nature is replaced in the GCM re-
sults with a distinctive zonally oriented wave train pat-
tern (Fig. 6d).

Despite the overall pattern agreement for the AR,
AL, and PT regimes, there are some differences. To
assess these differences, we compute the pattern corre-
lation for each regime from the cluster analyses based
on each of the 55 members of the EXP18 samples, and
the cluster analysis based on the entire GE18. From
these values we construct a probability distribution
function, which is shown for each regime in Fig. 5. We
match the regime centroids in each of the EXP18
sample clusters with those in the GE18 as before, by
considering all possible pairings of k centroids and re-
taining the pairing with the largest average correlation.
The width of the PDFs for the AL and AH patterns
indicates that these clusters, although significant within
the entire GE18, are less reproducible across samples
than the AR and PT. In fact, if only two clusters are
retained in the GE18 analysis (k � 2), the centroids
obtained strongly resemble the AR and PT (not
shown).

For the AR and PT regimes, the PDF of pattern
correlation has most of its weight at values higher than
the pattern correlation between the NCEP18 and GE18
centroid (shown as a vertical line in Fig. 5), indicating
that the subtle differences between simulated and ob-
served patterns are in fact significant vis-à-vis expected
sampling variations. The AL correlation of 0.76, how-
ever, lies within the (wide) range indicated by the sam-
pling PDF, so we can say that this simulated regime
pattern has statistically significant agreement with the
reanalyses.

TABLE 4. Ratio of the mean-squared error of best matched clus-
ter centroids from 100 pairs of randomly chosen half-length
datasets derived from the full NCEP54 dataset to that computed
from multinormal Markov synthetic data. The calculation of the
mean-squared errors from the latter dataset was repeated 100
times and the grand average taken. Regimes PT, AH, AR, and
AL as in Fig. 1.

k PT AH AR AL

3 0.50 0.60 0.41
4 0.84 0.84 0.92 2.06
5 1.33 1.29 1.72 1.96 2.28

TABLE 5. Average pattern correlation between height clusters
computed using six EOFs and � � 0.5 and those using three other
configurations of the number of EOFs and the quasi-stationary
filtering parameter � (see text for details). The value of � is given
in parentheses.

k 6 EOFs (1.0) 10 EOFs (1.0) 10 EOFs (0.5)

2 0.99 0.99 0.99
3 0.99 0.99 0.99
4 0.93 0.93 0.96
5 0.84 0.84 0.79
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The formal significance tests of the GE cluster analy-
sis indicates 100% significance for every value of k
tested, from 2 to 6. This is in part due to the size of the
dataset (24 independent states for each of 55 ensemble
members for each of 18 winters yields 23 760 states):
even a modest degree of clustering is very rarely repro-
duced with a multinormal synthetic dataset of this size.

The frequency of occurrence of the AR, PT, and AL
for the GE are compared to those observed (NCEP18)
for the same winters in Table 2. While the PT is visited
as frequently as observed, the AR is somewhat less
common, while the AL is somewhat more common.
The GCM underestimate of the AR frequency is con-
sistent with the general underprediction of blocking in
most models (see Watson and Colucci 2002 and refer-
ences therein).

We evaluate whether the differences in the cluster
occupation for the AL and AR in the simulations com-
pared to the reanalyses could be due to sampling error
by again utilizing the EXP18 samples. The PDFs in Fig.
6 indicate the distribution of frequencies for the 55 clus-
ter calculations carried out on the EXP18 dataset. In
contrast to the differences in pattern evaluated in Fig. 5,
here we see that the modest differences in cluster popu-
lation between the GE and NCEP18 (both indicated by
vertical lines) are well within the spread of the samples.
Thus, we can conclude that while the simulated circu-
lation regime patterns show some significant differ-

ences from our reanalysis estimates, the cluster fre-
quencies do not.

6. Cluster frequencies and SST forcing

As mentiond in the introduction, the analyses pre-
sented in this paper for simulated and reanalysis
datasets do not remove the seasonal cycles of individual
winters prior to computing the clusters, but only the
climatological seasonal cycle. This means that SST-
forced interannual variability may play a role in deter-
mining the regimes. The purpose of this section is to
explore that role. Specifically, we ask three questions:
Are the differences in regime patterns seen from the
NCEP54 and NCEP18 analyses presented in section 3
only due to sampling error, or does the change in SST
forcing play a role? Are the decadal shifts in cluster
occupancy seen within the NCEP54 analysis (shown in
Table 2) larger than the estimated sampling error? Fi-
nally, is the interannual variability of cluster frequen-
cies within the GE consistent with that of NCEP18?

Again, we use the sampling properties of the large set
of EXP18 cluster analyses to try to answer these ques-
tions. Figure 7 presents the PDF of pattern correlation
(for each regime) between the clusters in each of the
EXP18 sample members with the matching cluster in
the corresponding EXP54 dataset. (Remember, each of
the 54-yr EXP54 datasets was obtained by starting with

FIG. 4. As in Fig. 1 but from the Grand Ensemble dataset.
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one EXP18 sample and augmenting it with two other
randomly chosen 18-yr time series from other initial
conditions.) The clusters obtained from each EXP18
and EXP54 sample were identified by matching with

the full GE cluster centroids using the pattern correla-
tion obtained as before. The PDFs in Fig. 7 thus give an
estimate of the difference in regime patterns that might
be expected from 18-yr versus 54-yr time series based

FIG. 5. PDFs of the pattern correlation of the GE18 height centroids and each of the 55 corresponding height centroids from the
EXP18 dataset. In all cases six EOFs and a value of � � 0.5 were used. The vertical lines show the pattern correlations between the
GE18 height centroids and the corresponding NCEP18 height cluster centroid. The abscissa of each plot is the arccosine of pattern
correlation, with the pattern correlation values indicated.
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on sampling error alone. The vertical lines indicate the
actual pattern correlations between the NCEP54 and
NCEP18 cluster patterns. While the AR and AL pat-
tern differences certainly lie within the range of sam-
pling error (as might be expected since these differ-
ences are small), the PT shows significant differences,
while the significance of the change in AH is marginal.
The PT and AH showed a distinct trend in frequency of
occurrence during the 54 yr (shown in Fig. 3).

The change in PT from a pattern showing some re-
semblance to the wave-train-like PNA of Wallace and
Gutzler (1981) in the NCEP54 results to the Tropical
Northern Hemisphere (TNH) pattern of Barnston and
Livezey (1987) in the more recent years is certainly
consistent with the work of Straus and Shukla (2002),

who showed that the seasonal mean response to ENSO
during the more recent decades closely resembles the
NCEP18 PT regime.

The year-by-year variation in cluster frequency from
the GE18 and NCEP18 cluster calculations are shown
in Fig. 8 as the red and blue lines, respectively) along
with a band (shown in light gray) representing the one
standard deviation uncertainty in the frequency within
each given winter due to sampling error. (This was es-
timated from the GE18 directly by evaluating the clus-
ter frequency for each of the 55 ensemble members for
each year, based on the cluster classification for the
entire GE dataset.)

There are individual years in which statistically sig-
nificant discrepancies can be seen between NCEP18

FIG. 6. PDFs (for each of the k � 4 clusters) of the cluster frequency (in %) computed from the clusters of the EXP18 dataset. In
all cases six EOFs and a value of � � 0.5 were used. Red (blue) vertical lines show the corresponding cluster frequency from the GE
(NCEP18) datasets.
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FIG. 7. PDFs of the pattern correlation of the 55 height centroids from the EXP18 dataset with the corresponding height centroid from
the EXP54 dataset. In all cases six EOFs and a value of � � 0.5 were used. The vertical line shows the pattern correlation between the
NCEP54 height centroids and the corresponding NCEP18 height centroid. The abscissa of each plot is the arccosine of pattern
correlation, with the pattern correlation values indicated.
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and GE. For example, the simulations underestimate
the occurrence of the Alaskan ridge during the winters
of 1988/89 and 1989/90, and also underestimate the oc-
currence of the Pacific trough during the warm ENSO
years of 1986/87 and 1997/98. For the PT, AL, and AR,
the blue and red lines track each other reasonably well
except during the mid-1990s, while, in general, the dif-
ferences between red and blue lines tend to stay within
the gray band.

The overall intermember standard deviation 	 of the
frequency of occurrence of each regime from the GE18
results is given in the last column of Table 2. Comparing
these to the observed changes in frequency also shown
in Table 2 for the three 18-yr periods spanning 1948/
49–2001/02 and with the time series in Fig. 3, we see
that the observed decrease in the AR from the first to
second period is significant (�2	), as is the increase
from the second to the third period. The increase in PT
occurrence in period 3 compared to period 1 in the
table is highly significant (�3	). It is curious that the
decrease in what we label the AH regime between pe-
riod 1 and period 3 in NCEP54 is also nominally sig-
nificant (��5	) based on the GE18 estimates of vari-
ability although, since this circulation regime is misrep-
resented in the GCM, the estimate of variability may
not be very good.

7. Results for three clusters

As we have indicated in sections 3 and 4, partitions of
the NCEP54 dataset into more than four clusters are
less reproducible on average than would be expected
from the null hypothesis of a multinormal PDF (see
Table 4), while the strength of the clustering (measured
by the variance ratio) for k � 2 is rather low (see Table
3). But one cannot rule out k � 3 as a viable alternative
for the NCEP54 data.

The centroids for k � 3 are shown in Fig. 9, in a form
analogous to the k � 4 maps of Fig. 1. (Note that there
is no panel b on purpose.) The AR and AH patterns
carry over from k � 4 to k � 3 nearly unaltered, while
the k � 4 PT and AL are clearly merged into a single
pattern shown in Fig. 9c.

The NCEP18 centroid patterns for k � 3 are shown
in Figs. 10a–c. The AR and AL patterns appear nearly
unchanged from their four-cluster versions, while the
AH and PT are merged into a pattern that, however,
still strongly resembles the PT (cf. Figs. 2c and 10c).
Figures 10d–f show the k � 3 patterns for the GE18,
and can be compared to the maps in Fig. 4. Here the
AR and PT, as well as the wave-train-like AH carry
over quite well from Figs. 4 to 10, while the AL regime
in GE18 is lost.

FIG. 8. Interannual time series of the fractional occurrence for
each regime from the NCEP18 (GE) datasets are given in blue
(red). All clusters correspond to six EOFs, k � 4, and � � 0.5. The
green band gives plus and minus one standard deviation about the
red line, where the standard deviation is computed from the 55
ensemble members in the GE (see text for details).
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The year-to-year variability in the frequency of oc-
currence of the AR and PT patterns, which are the only
ones now in common between GE18 and NCEP18, is
presented in Fig. 11 in the same form as the k � 4
results in Fig. 8, with the gray band denoting plus or
minus one standard deviation in frequency, computed
from among the 55 members of GE18.

The AR results for both the GE18 and NCEP18
datasets are remarkably robust. Overall the frequencies
of both increase very little in Fig. 11 (cf. Fig. 8) in spite
of the fact that there are only three possible clusters.
The peaks in 1988/89, 1989/90, and 1996/97 for the
NCEP18 dataset are well reproduced, and the peak in
1993/94 is stronger. The overall impression that the
simulated (GE18) AR does not occur often enough, but
yet tracks the NCEP18 frequency except during the
mid-1990s still holds.

Comparison of Figs. 8c and 11b shows that the PT
frequency increases somewhat when only three clusters
are used, but the year-to-year variation in both simu-
lated and reanalysis datasets is very well preserved. The
NCEP18 frequency departs from the gray GE18 band
(on the positive side) only during the warm events of
1986/87 and 1997/98, and on the negative side during
the winters of 1988/89 and 1989/90. (While the PT does
not occur in NCEP18 for k � 4 at all during the winter
of 1993/94, for k � 3 a small fraction is seen, putting the

NCEP18 result just in the gray band.) Also note that
the simulations track the reanalysis reasonably well ex-
cept during the mid-1990s, and this holds for three or
four clusters.

8. Discussion and conclusions

While there has been a great deal of interest in better
understanding the properties of circulation regimes in
the real atmosphere, the short record lengths available
for low-frequency boreal wintertime flow present a for-
midable technical challenge to verifying the significance
of deviations of the circulation PDF from Gaussian be-
havior. This difficulty is only compounded by the real-
ization that the regime properties may be sensitive to
forcing, for example, tropical Pacific SST as discussed
in this paper or global radiative forcing in a future cli-
mate.

To assess whether differences between regime char-
acteristics from reanalysis or simulated datasets are
“significant,” and whether changes from one period to
another are related to forcing, or are simply due to
sampling error, it is essential to have some estimates of
the relevant sampling properties. Numerical models of
the atmosphere or atmosphere–ocean system play an
important role in this regard since very large samples
(generated with the same forcing) can be constructed.

FIG. 9. Cluster centroid maps of 200-hPa height for k � 3 from the NCEP54 record, plotted for easy comparison to
Fig. 1. (Note that no panel b is present.) The cluster analysis was carried out using six EOFs and a value of � � 0.5 (see
text for explanation). Contour interval is 20 m with the 0 contour omitted.
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In this paper we utilize 55-member ensembles of sea-
sonal integrations of the COLA AGCM utilizing ob-
served SST for 18 winters to provide cluster sampling
properties. The simulated clusters shown in Fig. 4 are
associated with a variance ratio that is achieved only by
far fewer than 1% of multivariate normal Markovian
synthetic time series.

The reliance on an imperfect atmosphere-only model
to provide the sampling properties motivates the ques-
tion of the consistency of the properties of model-
simulated clusters with those obtained from reanalysis
data. Figures 2 and 4 (which compare the regime cen-

troids of the NCEP18 and simulated datasets) clearly
show that three out of the four observed clusters (the
Alaskan ridge, Arctic low, and Pacific trough) have
identifiable counterparts in the reanalysis, while the
Arctic high is not simulated. Yet the pattern correlation
between the simulated and observed AR and PT clus-
ters falls below the range implied by sampling error,
indicating some error in their simulation. The relative
frequency of occurrence is better simulated, however,
with the small differences between NCEP18 and simu-
lated frequencies lying well within the expected spread
due to sampling error.

FIG. 10. Cluster centroid maps of 200-hPa height for k � 3 from the (a)–(c) NCEP18 record and the (d)–(f) GE18 dataset. The
NCEP18 clusters are named to be consistent with the NCEP18 in Fig. 2. The GE18 clusters are named to be consistent with GE18
clusters in Fig. 4. The cluster analysis was carried out using six EOFs and a value of � � 0.5 (see text for explanation). Contour interval
is 20 m with the 0 contour omitted.
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The direct comparison of simulated and observed
clusters for the common recent 18-winter period is
somewhat clouded by the fact that formal significance
of the cluster analysis in the NCEP18 record is hard to
establish. With the longer NCEP54 record, we establish
that the four-cluster partition is significant (at a level
above 90%) with respect to the null hypothesis of a
multinormal dataset, is more reproducible than would
be expected on the basis of that null hypothesis, and has
as large enough variance ratio to suggest bimodality in
the one-dimensional PDF. (Consistency with an inde-
pendent calculation carried out over the entire hemi-
sphere and agreement with a separate cluster analysis
of the zonal wind are also found for a range of cluster
numbers.)

Comparing the circulation clusters of the NCEP54
record (Fig. 1) with those of the NCEP18 record (Fig.
2), we ask whether the differences in centroid patterns
are simply due to sampling or whether they reflect dif-
ferences in the external SST forcing between the two
periods. Figure 7 suggests that the intrarecord differ-
ences for the AR and AL patterns are probably due to
sampling error, while the changes in the PT configura-
tion are larger than expected due only to sampling er-
ror. The changes seen in this centroid from NCEP54 to
NCEP18 resemble the differences between the classic
“PNA” pattern and the seasonal mean response of the
atmosphere to the strong El Niño events of the last
several decades (Straus and Shukla 2002). Our results
suggest that the change in the PT is caused by differ-
ences in SST anomalies, and also suggest the impor-
tance of low-frequency circulation regimes in determin-
ing the seasonal mean response to those SST anoma-
lies. An alternate approach to demonstrating the
sensitivity of the low-frequency PNA-like cluster to
SST forcing is to examine the frequency of occurrence
of a fixed regime pattern (that from the NCEP54
record) from year to year; this is shown in Fig. 3.

Figure 3 confirms that both the AR and PT fre-
quency in the NCEP54 record are correlated with sea-
sonal mean tropical Pacific SST, with the former seen
more often in cold ENSO winters, and the latter seen
more frequently in warm years. The enhancement of
the AR pattern during cold winters has been reported
previously (e.g., Chen and van den Dool 1997; Renwick
and Wallace 1996), but has not before been put into a
consistent framework of circulation regimes.

The very strong decadal behavior in the frequency of
the AH in the NCEP54 record shown in Fig. 3 (with far
fewer occurrences seen in the latter decades) compared
to the more consistent behavior of the AL over time
suggests an asymmetric behavior of the atmosphere
with regard to the expression of the annular-type
modes over the Pacific–North American sector. The
trend in strengthening of the westerlies over the North
Atlantic is seen here to be due to the decreasing im-
portance of the AH pattern.

The regime sensitivity to tropical SST forcing implies
a degree of added intraseasonal and interannual poten-
tial predictability, and is thus of great interest. Whether
there is any hope of realizing this predictability of
course depends on the ability of GCMs to capture not
only the regimes, but their dependence on SST forcing.
Figure 8 shows that the year-to-year variability of simu-
lated frequencies of the AL and PT are close to those
observed for the NCEP18 record, and that in general
the differences between simulated and observed regime

FIG. 11. Interannual time series of the fractional occurrence for
the PT and AR regimes from the NCEP18 (GE) datasets are
given in blue (red). (Cluster calculations used six EOFs, k � 3,
and � � 0.5.) The gray band gives plus and minus one standard
deviation about the red line, where the standard deviation is com-
puted from the 55 ensemble members in the GE (see text for
details).
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frequencies stay within the uncertainty band estimated
from the simulations.

In the introduction we mention two (competing) hy-
potheses regarding the change in regime behavior to
changes in boundary forcing: a change only in the fre-
quency of occurrence of fixed regimes, versus a change
in the regime structure itself. The behavior of the AR is
a good example of the former; that of the PT regime of
the latter (see Figs. 1, 2, and 8).

Since the sampling properties of the regimes have
been estimated with a single uncoupled atmospheric
GCM, it is important to investigate the model depen-
dence to these sampling properties, and in particular
whether they are strongly changed in atmosphere–
ocean coupled models. This work is currently under
way.
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APPENDIX

Difference Measures and the Effect of Skewness

a. Measures of the differences between maps

In this paper we use two measures of difference be-
tween maps. One measure is just the mean squared
error; the other the (uncentered) pattern correlation C.
These errors are computed in the PC state space. The
two maps are described by N-dimensional vectors x and
y, where N is the number of PCs retained in the analy-
sis. The mean squared error is proportional to the
squared distance (E) between the vectors, which can be
written as

E � 
x � y�
x � y�

� 
x � y�2 � 2
xy � xy�

� EA � EP, 
A1�

where x is the length of the vector x, y the length of y;
EA measures the amplitude error, and EP the phase
error. Note that EP � 2xy(1 � C) and that C is just the
cosine of the angle between x and y. When the vectors
are aligned in state space, we have EP � 0, C � 1, and
EA � E. When the vectors have the same length (x �

y), we have EA � 0, and EP � E. In all cases discussed
in the text, we find that E  EP; that is, EA K EP.

b. Effect of skewness on significance estimates

Here we show that the skewness of the NCEP54 PCs
does not yield significant clustering against a multinor-
mal background hypothesis using the k-means ap-
proach.

We follow the approach of C07, who considers an
idealized two-dimensional distribution given by the
product of a normal distribution and a Gamma distri-
bution. In C07, clusters are computed for values of the
shape parameter �̂ � 50, 20, 10, 5, 3. The corresponding
values of skewness are s � 0.28, 0.45, 0.63, 0.89, 1.15,
since s � 2/��̂. The k-means method is applied using
an approach similar to our significance testing (see sec-
tion 4) to give the preferred number of clusters. For
values of �̂ � 10 or lower (values of s � 0.63 or higher),
more than one cluster is preferred, even though the
idealized distribution is clearly unimodal.

For the NCP54 dataset, large skewness was confined
to the leading four PCs, with (absolute) coefficients of
0.25, 0.23, 0.15, and 0.27, respectively. (Thus from the
results of C07, we would not expect the k-means
method to falsely report more than one cluster based
on skewness alone.) Skewed time series of pseudoran-
dom data using a nonsymmetric Markov model were
constructed in a four-dimensional space (see below). In
each direction, the skewness, lag-1 autocorrelation, and
standard deviation are those of the corresponding PC.
(The full multivariate cross-covariance structure is not
completely maintained.)

The nonsymmetric Markov model is given by

x
t � 1� � x
t� � ��1 � �max
x
t�, 0��
x
t� � x0� � �,


A2�

where �, �, and x0 are positive constants, and � is a
Gaussian white noise process. Because of the asymme-
try in the dissipative term controlled by the parameter
�, large negative values occur more frequently than
large positive values. The time series is thus (nega-
tively) skewed with the skewness coefficient increasing
with �. For � � 0.2 and x0 � 1, values of � ranging from
0.2 to 1 produce time series with (absolute) skewness
coefficients ranging from 0.14 to 0.32.

The number of times in each pseudorandom dataset
was set to the length of the time series for � � 0.5 in the
NCEP54 dataset. For each pseudorandom dataset, a
cluster analysis was performed and the significance was
assessed as for the NCEP54 dataset. This cluster analy-
sis was repeated for 200 skewed pseudorandom
datasets. The average significance of clusters for cluster
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number k in the range of 2–4 varied from 50% to 60%,
and the number of pseudorandom skewed datasets for
which the significance exceeded 90% (95%) was less
than 10% (5%). Thus, the k-means method does not
indicate significant clustering.

The entire calculation was repeated twice, and the
results are the same.
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