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ABSTRACT

It is well known that natural external forcings and decadal-to-millennial variability drove changes in the cli-

mate system throughout the Holocene. Regarding recent times, attribution studies have shown that greenhouse

gases (GHGs) determined the trend of temperature (T) in the last half century, while circulation patterns

contributed to modify its interannual, decadal, or multidecadal behavior over this period. Here temperature

predictions based on vector autoregressive models (VARs) have been used to study the influence of GHGs and

El Niño–Southern Oscillation (ENSO) on recent temperature behavior. It is found that in the last decades of

steep temperature increase, ENSO shows just a very short-range influence on T, while GHGs are dominant for

each forecast horizon. Conversely and quite surprisingly, in the previous quasi-stationary period the influences of

GHGs and ENSO are comparable, even at longer range. Therefore, if the recent hiatus in global temperatures

should persist into the near future, an enhancement of the role of ENSO can be expected. Finally, the predictive

ability of GHGs is more evident in the Southern Hemisphere, where the temperature series is smoother.

1. Introduction

Many studies have investigated the causes of climatic

changes throughout the Holocene and the roles of solar

forcing and natural variability in driving multidecadal,

centennial, and millennial climatic behavior; some have

focused on more recent periods or particular regions of

the world (see, e.g., Bond et al. 2001; Christiansen and

Ljungqvist 2012; Zhou and Tung 2013; Scafetta 2013;

Wyatt and Curry 2014; Chylek et al. 2014a,b).

At the same time, attribution studies of recent global

warming clearly show that anthropogenic forcings, and

especially greenhouse gases (GHGs), are the main

causes (Hegerl et al. 2007; Hegerl and Zwiers 2011).

Other studies (Hoerling et al. 2008; DelSole et al. 2011)

suggest that El Niño–Southern Oscillation (ENSO) and

other circulation patterns of the coupled atmosphere–

ocean system can influence the evolution of temperature

behavior, over interannual to multidecadal time ranges.

Furthermore, an interesting field of investigation is the

study of how these influences on temperature changes can

be combined in order to obtain reliable predictions of

global temperature T for the next decades (Keenlyside

et al. 2008).

Nearly 40 years ago (Manabe and Wetherland 1975),

modeling studies began to show that augmented emis-

sions of carbon dioxide are able to increase the global

temperature. Since then, many attribution studies—

until the updated synthesis in the last Intergovernmental
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Panel on Climate Change (IPCC) report in 2013—found

that anthropogenic activities (and especially GHG emis-

sions) were the main cause of recent global warming. In

the meantime, increasing evidence has been found of the

influence of sea surface temperature (SST), mainly driven

by coupled atmosphere–ocean oscillations, on the thermal

variability of the climate system. The generally accepted

view is that GHGs determine the recent trend in global

temperature, while circulation patterns modify the be-

havior of T from year to year or even for as long as a few

decades: see, for instance, Easterling and Wehner (2009).

The above causal framework is taken for granted in the

present study, even if we are aware that other opinions

exist (see, e.g., Scafetta 2013).

In this framework of well-assessed factors of in-

fluence/cause on temperature behavior, here a specific

analysis is performed in order to understand the rela-

tive strengths of these factors, and how they act on T.

In particular, we show that analyzing the results

of simple vector autoregressive models (VARs) for

temperature prediction can clarify the individual roles

of GHGs and ENSO in influencing recent temperature

behavior.

We follow the same rationale used in correlation anal-

yses when, if a well-established causality relationship be-

tween variables exists, they give information regarding the

strength of that relationship. In particular, we adopt pre-

diction models whose use has been shown to supply

important causal information in attribution studies

(Attanasio et al. 2012; Pasini et al. 2012). Even if we are

aware that predictability is a necessary (but not sufficient)

condition for causality, in cases of well-assessed influences

such as those considered here we are confident that

a deeper insight can be achieved through analyses such as

the one described here.

The Atlantic multidecadal oscillation (AMO), the

Pacific decadal oscillation (PDO), and other circulation

patterns that exhibit a multidecadal period of oscillation

are not considered here as this study concentrates on the

behavior of T over two or three decades (see section 4).

Thus, only ENSO, which exhibits an interannual to de-

cadal oscillation, has been considered. Of course, the

investigation could be extended in the future to cover

other periods and/or circulation patterns.

It should be stressed that our approach is different from

that of other empirical investigations of the relations

between influence factors and temperature. In the past,

some authors have dealt with the problem of the

weighting of several influences on the recent global

temperature time series by means of multilinear re-

gressions (see, e.g., Lean and Rind 2008; Lean 2010;

Foster and Rahmstorf 2011). This led to the development

of empirical models that allowed the identification of the

components of temperature variability due to various

factors in in-sample investigations.

Here, instead, the focus is on the predictive capabilities

of GHGs and ENSO and the use of empirical forecast

models (to be tested out of sample), which are able to

provide information about the relative importance of

these specific influences. In particular, we show using

predictive tests that the general accepted view (thatGHGs

determine the long-range behavior, and that ENSO con-

tributes essentially to interannual and decadal variability)

needs to be reconsidered, at least partially.

The data andmethods used are described in sections 2

and 3, and the results obtained by application of VARs

are presented in section 4. Brief conclusions are drawn

in the final section.

2. Data

Our analysis is performed at global and hemispheric

scales over the period 1866–2011. As far as temperatures

are concerned, we adopt the annual data from version 4 of

theHadley Centre/Climatic ResearchUnit combined land

and marine surface temperature global and hemispheric

anomalies (HadCRUT4; Morice et al. 2012) (see Fig. 1).

(Data are available online at http://www.cru.uea.ac.uk/

data/.)

For GHGs, we consider annual CO2, methane (CH4),

and nitrous oxide (N2O) concentrations (Hansen et al.

2007; data available at http://data.giss.nasa.gov); we

calculate radiative forcings (RFs) as in Ramaswamy

et al. (2001) and consider a main GHG (CO2 1 CH4 1
N2O) RF (hereafter GHG-RF) as the main external

anthropogenic forcing (see Fig. 2). We use GHG-RF as

a surrogate of the total anthropogenic forcing because

of the common dependence (and high correlations)

between the various anthropogenic effects, due to their

mutual dependence on global economic activity, as

shown in Lovejoy (2014), who used a similar surrogate.

Finally, in order to concisely describe the influence of

ENSO, we consider annual data for the Southern Oscil-

lation index (SOI;Ropelewski and Jones 1987;Allan et al.

1991; Können et al. 1998) (see Fig. 3). (Data are available

online at www.cru.uea.ac.uk/cru/data/soi/soi.dat.)

3. Methods

In this studyVARs are adopted. AVAR is a system of

equations where current values of each variable depend

on past values of the variable itself, past values of the

other variables, and an error term. This model can be

considered the natural extension of a univariate autor-

egressive model to a multivariate setting. Here we use

bivariate VARs, that is,
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xt 5 a1xt211⋯1 apxt2p 1 b1yt211⋯1bpyt2p1 ext

and

yt 5 c1xt211⋯1 ckxt2p 1d1mt211⋯1 dpmt2p1 e
y
t ,

(1)

where ext and e
y
t are random disturbances.

The parameters of the model are estimated using the

ordinary least squares (OLS) method. Themost common

approach for model order selection involves selecting

a model order that minimizes one or more information

criteria, evaluated over a range of model orders. In this

paper the Bayesian information criterion (BIC) is adop-

ted (Lütkepohl 2005):

BIC(p)5 lnj~Sj1K2p lnT

T
, (2)

where K 5 2 and ~S is the maximum likelihood estimate

of the covariancematrix of the disturbances in the VAR.

In the literature other criteria have been proposed. The

key difference among the criteria is how severely each

one penalizes increases in model order (the second term

in the above formula).

In general, we consider a vector yt of possibly non-

stationary (integrated of order d, d 5 1, 2) variables, in

order to specify a VAR for yt.
1 We can utilize three

different representations:

1) aVAR in levels (without any checking of stationarity),

2) a difference VAR (ensuring stationarity but not

cointegration), and

3) a cointegrated VAR [a vector error-correction model

(VECM) ensuring both stationarity and cointegration].

It has been argued (Sims et al. 1990) that a VAR in

levels can be consistently estimated, independently of

the order of integration of the series. On the other

hand, it has also been shown that, in the presence of

cointegration, there is a gain of efficiency if a VECM is

used. However, it is important to note that the use of

a VECM imposing incorrect cointegration restrictions

(on the parameters) leads to inconsistent estimates.

Estimating the VAR in levels avoids the possibility of

imposing false restrictions on the model. For this rea-

son we use VARs in levels rather than cointegrated

VARs.

Three (real time) forecast exercises have been used in

this study.We assume that the bivariate time series (x, y)

follows a VAR of order p. We consider the problem of

FIG. 1. Time series of temperature anomalies: (top) global,

(middle) NH, and (bottom) SH.

1 It is worthwhile to note, however, that there are some studies

that show that temperatures are fractionally integrated (see, e.g.,

Gil-Alana 2003, 2005).
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forecasting the time series x, h periods into the future,

given the information available at time t. The h-step

ahead predictor is denoted by x̂t1hjt.
We use a direct forecast method, as follows:

d First, we estimate the projection equation

xt 5a1xt2h1⋯1apxt2h2p11 1b1yt2h

1⋯1bpyt2h2p11 1uxt . (3)

d Then, using the estimated coefficients, the predictor

x̂t1hjt is obtained as

x̂t1hjt 5 â1xt 1⋯1 âpxt2p111 b̂1yt 1⋯1 b̂pyt2p11 .

(4)

In the first forecast exercise the projection equations

are estimated over the period 1866–1940 and x̂19401hj1940
for h5 1, 2, . . . , 30 are obtained. A new set of projection

equations is estimated over the period 1866–1941 to

obtain x̂19411hj1941 for h 5 1, 2, . . . , 30, and so on up to

1981, when the last set of projection equations for the

period 1866–1981 is estimated. In this way 42 forecasts

for each horizon h are obtained. The forecasts concern

the period 1941–2011.

Two further forecast exercises have been considered.

In the second exercise the maximum forecast horizon is

no longer 30 but 20. Thus the forecasts cover the period

1941–81. The third exercise considers the training period

1866–1970 and uses the estimated projection equations

to obtain x̂19701hj1970 for h5 1, 2, . . . , 20, and so on. Here

the forecasts concern the period 1971–2011. In these last

two exercises the number of forecasts for each horizon

h is 22.

In each forecast exercise, the model’s performance is

evaluated by calculation of the forecast mean square

error (MSE). To assess the statistical significance of the

differences between the MSEs obtained, we adopt the

so-called Diebold–Mariano (DM) test (see Diebold and

Mariano 1995). Let xt denote the series to be forecast

and let x1,t1hjt and x2,t1hjt denote two competing fore-

casts of xt1h provided by two different models, model 1

and model 2, respectively. The forecast errors from the

two models are

e1,t1h 5 xt1h 2 x1,t1hjt and e2,t1h 5 xt1h 2 x2,t1hjt .

(5)

The h-step forecasts are assumed to be calculated for

t 5 1, 2, . . . , n for a total of n forecasts giving

e1,11h, e1,21h, . . . , e1,n1h and e2,11h, e2,21h, . . . , e2,n1h.

Thus a loss differential series dt 5 e21,t1h 2 e22,t1h, t 5 1,

2, . . . n can be constructed. The DM test statistic is a stan-

dard t ratio for testing the null hypothesis H0:dt 5 0 of

equal predictive accuracy between model 1 and model 2.

4. Results

To summarize, two VARs have been developed to test

the performance of radiative forcing (GHG-RF, due to

the three main greenhouse gases, CO21 CH41N2O) or

ENSO (our y variable) in forecasting temperatures (our

x variable) at both global and hemispheric scales. The

first model (GHG-RF-T) is fed by temperature anom-

alies and GHG-RF data, and the second (SOI-T) is fed

by temperature anomalies and SOI data. It should be

stressed that two simple bivariate VARs are used not

FIG. 2. Radiative forcing due to the three main GHGs. FIG. 3. Time series of the SOI.
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because it is considered that GHGs and ENSO are in-

dependent influences on T, but rather because the aim

is to compare their predictive abilities. The VARs are

estimated in levels to avoid the possibility of imposing

false restrictions on the models (Sims et al. 1990). The

orders of the VARs are selected using the BIC (Diebold

and Mariano 1995).

To avoid a dimensionality problem in our VARs

(when the number of variables increase, VAR forecast

performance deteriorates very fast), a number of in-

fluences on temperature considered in previous ap-

proaches, in particular solar forcing, are not included.

As stated previously, the models used here include past

temperature as a predicting variable. This permits the

exclusion of this variable because it does not ‘‘cause’’

temperature in a Granger sense, as shown in Attanasio

et al. (2012) and Pasini et al. (2012). In fact, it is well

known that, if a variable y does not cause a variable x

(T in this case), it implies that there is no additional

information contained in the time series of y for the

forecast of x in comparison with that included in the time

series of x. In short, the time series of temperature ac-

commodates these omitted influences. In any case, at the

end of this section, the analysis has been extended to

include the influence of volcanic forcing.

In this framework, as we will see, the analysis per-

formed in the present paper permits the separate as-

sessment of the roles of GHGs and ENSO in influencing

future temperatures at global and hemispheric scales,

and in distinct periods throughout the last 70 years.

In the first forecasting experiment, global tempera-

tures are considered, the two models are trained using

the period 1866–1940, and predictions are performed,

via a direct method, for the test period 1941–2011 at

annual forecast horizons h 5 1, . . . , 30. In this way 42

forecasts for each horizon were obtained. The results are

summarized in Fig. 4, where the MSEs at each horizon

are plotted. As can be seen, the SOI-T model errors in-

crease steeply as the forecast horizon h increases, while

the GHG-RF-T model shows only a slightly increasing

trend with enhanced variability. These errors appear

comparable until h 5 18. After this forecast horizon, the

GHG-RF-T model predictions appear more realistic. To

quantify the statistical significance of the differences in

the predictions, theDM test has been adopted, and shows

that after h5 21 the difference is significant at a 5% level.

These results are not completely consistent with the

commonly accepted idea of a purely short-range in-

fluence of ENSO on T: here we find that information

about ENSO can be important also at medium range

(about 20 yr), whereas over longer time scales in-

formation about GHG-RF is needed in order to obtain

a reasonable prediction.

It is worth noting that in this exercise the short-range

forecasts concern a period with a quasi-stationary tem-

perature trend, while, as h increases, the predictions

refer to a period characterized by a steep increase in T

(and in GHGs). Therefore, accordingly to this evidence,

it is interesting to consider two subperiods (1941–81 and

1971–2011) that present different structural features:

several studies recognized a structural break in the time

series of global temperatures around 1976 (Mills 2013;

Gay-Garcia et al. 2009). Using these two periods should

test the whether the short- and medium-range influence

of ENSO and long-range importance of GHGs are fixed

features of the variables or if they are sensitive to the

period considered. This new analysis gives a quite dif-

ferent picture (Fig. 5).

Here, in order to obtain an equal number of forecasts

to be averaged for any h, only predictions up to h 5 20

were considered. In the first period the performances of

the two models are comparable and slightly worsen as

the time horizon increases. We note that the forecasting

performance of the SOI-T model is almost always better

than that of the GHG-RF-Tmodel. However, according

to the DM test, their differences are never significant at

the 5% level. This confirms the result presented pre-

viously. Conversely, in the second period, after the very

first forecast horizons, the performances of the two

models diverge greatly.

This clearly shows that the influences of GHGs and

ENSO on T are equally important and persist in time

during the period of quasi-stationary temperature

FIG. 4. Performance of our models shown in terms of forecast

errors (MSE), GHG-RF-T model (red) and SOI-T model (blue);

the dashed vertical line represents the forecast horizon where the

performance of the models diverges significantly, according to the

DM test.
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behavior. On the other hand, in the period of increasing

T the influence of ENSO persists only over a very short

range and then is rapidly overwhelmed by the dominant

role of GHGs.

Thus, the predictive ability of ENSO is sensitive to the

dynamical evolution of the temperature time series.

When the time series is characterized by a strong trend,

ENSO shows poor predictive ability, whereas in station-

ary periods, when the cyclic component of the series be-

comes important, ENSO predictive ability is comparable

to that of GHGs. Therefore, the crucial element for un-

derstanding the differing performance of ENSO is not the

forecast horizon, but rather the absence or presence of

a trend in T. It is worthwhile to note that this result is not

a trivial one, because our predictivemodels do not regress

T versus SOI only, but temperature is also an explicative

variable which contains information on trends.

Thus a significant change in the influence role of ENSO

on T is seen depending on the time periods considered. It

is therefore worthwhile to investigate if similar changes

can be foundwhen different spatial domains (e.g., the two

hemispheres) are considered.

At hemispheric scales (see Fig. 6), with reference to the

results discussed for the global scale over the full period

(1941–2011), the results show that in the Northern

Hemisphere the performance of SOI-T model is gener-

ally comparable to that of GHG-RF-T model up to h 5
25 (the differences are not significant at the 5% level),

while over longer ranges theGHG-RF-Tmodel performs

better. For the Southern Hemisphere the results are

comparable only up to h 5 6, after which the model

predictions diverge significantly.

These hemispheric results also show (Fig. 6) that the

predictive abilities of ENSO are quite similar in the two

hemispheres. As far as the role of GHGs is concerned,

we find that the GHG-RF-T model performance is

better in the Southern Hemisphere. This could be con-

sidered in contrast with the generally accepted view of

a more significant influence from GHGs at northern

high latitudes and over land. In this case, the better

forecast performance of GHGs in the Southern Hemi-

sphere should not be interpreted tomean that their role is

greater here. We suggest that the increased predictability

in the Southern Hemisphere is due to the smoother (i.e.,

more persistent) temperature time series, as a result of

the dominant influence of the oceans. This can be shown

by simple calculation of the autocorrelation functions, or

by the persistence analysis of hemispheric time series

performed in Triacca et al. (2014). Furthermore, in the

Northern Hemisphere, the GHG-RF-T model perfor-

mance probably suffers because of the presence of en-

hanced interannual oscillations in T.

During the first subperiod, 1941–81, at hemispheric

scales (Fig. 7) we note that the performance of the SOI-T

model does not substantially depend on the hemisphere

considered, while the GHG-RF-T model gives better

results for the Southern Hemisphere. When the second

FIG. 5. Forecast errors of the two models (in terms of MSE) in

the two periods considered: GHG-RF-T model 1941–81 (red line);

SOI-T model 1941–81 (blue line); GHG-RF-T model 1971–2011

(green line); and SOI-T model 1971–2011 (magenta line). The

vertical line shows the forecast horizon where the difference be-

tween model performances in the second period becomes signifi-

cant at the 5% level.

FIG. 6. Forecast errors of the two models (in terms of MSE) for

the Northern and Southern Hemispheres: GHG-RF-T model NH

(red line); SOI-T model NH (blue line); GHG-RF-T model SH

(green line); and SOI-T model SH (magenta line). The vertical

lines show the forecast horizons where the differences in model

performance become significant at the 5% level.
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period, 1971–2011, is considered, there is a clear evi-

dence of a worsening in the SOI-T model performance

in the Northern Hemisphere after h 5 10.

To test the robustness of the results, volcanic forcing

was included as a context variable in trivariate VARs.

However after including volcanic forcing, the roles of

GHGs and ENSO do not change substantially, which-

ever temporal or spatial domain was considered. These

results are available on request by authors.

Finally, it is important to underline the inferential

nature of the results. The comparison of the MSEs for

the different models is based on a statistical (DM) test

that allows the evaluation of the differences to ascertain

whether they are significant or not. To evaluate the ro-

bustness of the results from the statistical tests, the

bootstrap-based test of Ashley (1998) was also used. The

results obtained were very similar.

5. Conclusions

The results presented here are, in part, not consistent

with the idea of ENSO as a purely short-range driver of

interannual variability in T, and give a deeper insight in

its role. In particular, we discover that the crucial ele-

ment for understanding the differing performance of

ENSO as a predictor is not the forecast horizon, but the

absence or presence of a trend in T. It is worthwhile to

note that this is not a trivial result, because, even if ENSO

does not exhibit a trend, the presence of the delayed

values of T in Eq. (3) allows the effect of the trend to be

removed. Thus, in principle, there is no reason to main-

tain that in a period of steeply increasingT, ENSO should

provide a worse predictive performance than GHGs.

While the choice of different spatial domains (the two

hemispheres) does not lead to substantial new results,

the consideration of two time intervals—endowed with

distinct structural features within the temperature time

series—leads to the identification of a change in the role

of ENSO linked to these features.

Summing up, ENSO short-range action is confirmed

only for the recent period of steeply increasing temper-

ature, while in the previous quasi-stationary period we

find its role is very similar to that of GHGs, as far as both

strength and time range of their influences are concerned.

This suggests thatENSO lost itsmedium-range role in the

most recent decades because of the overwhelming in-

fluence of GHGs, and that in other situations we can

expect it to have an enhanced role. In this framework,

further investigations are needed in order to understand

if this will be the case if the recent hiatus in temperatures

(Guemas et al. 2013) should persist into the near future.

The predictive ability of GHGs is most evident in the

Southern Hemisphere, where the temperature series is

smoother.
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