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ABSTRACT

Simple equations are developed to express regional climate changes for the twenty-first century and
associated uncertainty in terms of the global temperature change (GTC) without a dependence on the
underlying emission pathways. The equations are applied to regional temperature and precipitation changes
over different regions of the world, and relevant parameters are calculated using the latest multimodel
ensemble of global climate change simulations. Examples are also shown of how to use the equations to
develop probability density functions (PDFs) of regional climate change based on PDFs of GTC. The main
advantage of these equations is that they can be used to estimate regional changes from GTC obtained
either from simple and intermediate complexity models or from target CO2 stabilization concentrations.

1. Introduction

It is a remarkable property of the climate change
signal simulated by current atmosphere–ocean general
circulation models (AOGCMs) that various surface cli-
mate variables show regional patterns of change that
are very similar across different scenarios and time
slices (e.g., Mitchell et al. 1999; Mitchell 2003; Räisänen
et al. 2004; Giorgi 2005a). Among such variables are
mean surface air temperature and, somewhat to a lesser
extent, precipitation. Although the patterns of change
are similar across the scenarios, the magnitude of the
changes tends to increase monotonically with the
greenhouse gas (GHG) forcing and the globally aver-
aged temperature response. This feature underlies the
so-called pattern-scaling method (Mitchell et al. 1999;
Mitchell 2003), a tool used to produce regional climate
change information based on a limited number of glob-
al model simulations and scenarios.

What makes this scaling behavior particularly re-
markable is that it seems to hold relatively well, even if
the emission scenarios have quite different regional fea-
tures, such as the emission and distribution of atmo-
spheric aerosols. It also seems to hold across a relatively
wide range of GHG concentrations and global tem-

perature responses regardless of the underlying emis-
sion pathways, especially when the change signal is
strong (Giorgi 2005a). Therefore, this robust mono-
tonic dependence would suggest that global tempera-
ture change (GTC) might be used as either an indepen-
dent variable or a predictor for regional climate change.

This would give us a powerful tool for regional cli-
mate change prediction in different ways. First, the pre-
diction of regional change would be independent of
specific aspects of the underlying emission scenarios
and it would only be tied to the global temperature
response. This would allow us, for example, to estimate
regional changes based on assumptions concerning the
GTC without having to account for underlying assump-
tions on the corresponding emission pathways. Second,
results from simple or intermediate complexity models
could be used to directly infer regional changes in rel-
evant climatic variables. As a result, for example,
probabilistic predictions of regional climate change
could be estimated from probabilistic predictions of
GTC, based on the use of simplified climate models
(e.g., Wigley and Raper 2001; Andronova and Schle-
singer 2001; Webster et al. 2003; Mastrandrea and
Schneider 2004).

On the basis of these considerations, in this paper a
simple equation is developed to express the changes in
regional surface climate variables for the twenty-first
century in terms of the GTC. In addition, a correspond-
ing equation is developed to relate the uncertainty of
the regional change to the GTC. This adds important
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information concerning the predictive value of the re-
gional change equation. The regional climate variables
considered here are mean surface air temperature and
precipitation, and the parameters of the predictive
equations are estimated from the latest set of AOGCM
simulations performed in support of the Intergovern-
mental Panel on Climate Change (IPCC) Fourth As-
sessment Report, and stored at the Program for Cli-
mate Model Diagnosis and Intercomparison (PCMDI;
available online at http://www-pcmdi.llnl.gov). This
dataset is here referred to as the Multi Global Model
Ensemble (MGME).

To illustrate the behavior of the proposed equations,
they are applied to twenty-first-century climate change
projections for the northern Europe (NEU) and Medi-
terranean (MED) regions as defined by Giorgi and Bi
(2005). The values of relevant parameters for 26 land
regions worldwide are, however, also provided. Finally,
examples are shown of the use of this methodology to
produce probability density functions (PDFs) of re-
gional temperature and precipitation change based on
PDFs of GTC.

Section 2 first presents a description of the methods
and datasets used in this study. Results from the appli-
cation of the method to the northern Europe and Medi-
terranean regions are shown in section 3, while section
4 presents relevant parameters calculated for 26 regions
worldwide. Section 5 describes the use of the method to
produce PDFs of regional changes, while summary con-
siderations and recommendations for future work are
presented in the concluding section 6.

2. Methods and datasets

a. The equations for regional climate change and
related uncertainty

We here develop equations in which the change in a
regional climate variable is expressed as a function of
the GTC (also referred to as �Tg). Given a regional
variable (e.g., surface air temperature T, or precipita-
tion P), its change can be expressed as

��T, P� � ���T, P���Tg��Tg � F�T,P���Tg��Tg, �1�

where T and P are temperature and precipitation, re-
spectively, and F(T,P)(�Tg) is a transfer function that
expresses the dependency of the regional temperature
or precipitation change on the GTC. The parameters
characterizing this function can be found empirically
from the MGME (or any other ensemble of AOGCM
simulations), as illustrated in the next section. Although
F(T,P)(�Tg) can have any functional form, as we will
see, in most cases it can be approximated by a constant
or a linear function.

Once the transfer function F(T,P)(�Tg) is calculated,
we need to estimate the related uncertainty. Here we
consider two sources of uncertainty. The first is asso-
ciated with the different simulations of regional re-
sponse to global warming by different AOGCMs, and it
is referred to as “intermodel uncertainty.” This can be
measured by the intermodel standard deviation of the
simulated F(T,P)(�Tg), which is here referred to as
�IM,(T,P)(�Tg), because it is also expressed as a function
of the GTC. Previous studies have indicated that the
intermodel uncertainty is a dominant source of uncer-
tainty in regional climate change projections (e.g., Kit-
tel et al. 1997; Giorgi and Francisco 2000).

The second source of uncertainty is due to the natu-
ral internal variability of the climate system. As dis-
cussed by Giorgi (2005a), changes inferred by ensemble
means of AOGCM simulations only capture average
trends. However, multidecadal variability (or multide-
cadal “noise”) needs to be added to the mean change in
order to account for natural multidecadal oscillations,
which, especially for variables such as precipitation, in-
deed can be large compared to the mean trends (Giorgi
2005a). We measure this source of uncertainty [referred
to as a �IV,(T,P)(�Tg)] with the standard deviation of the
changes produced by different realizations with a given
model of a given climate change scenario.

The overall uncertainty in the estimate of the transfer
function F(T,P) (�Tg) is thus given by

�F�T,P�
��Tg� � ��IM,�T,P���Tg�2 � �

IV,�T,P�
��Tg�2�0.5, �2�

where it is assumed that the two sources of uncertainty
are independent of each other. All of the quantities in
Eqs. (1) and (2) are calculated from the MGME simu-
lations as illustrated in section 3. The MGME is de-
scribed in section 2b. Note that all the functions in Eqs.
(1) and (2) depend only on the GTC and not on the
particular emission pathway that leads to a certain
value of GTC. This is the key assumption underlying
the use of our proposed approach and it is valid to the
extent that the regional patterns of climate change scale
with the GTC. Therefore, to the extent that this as-
sumption is valid, the GTC can be considered as an
effective predictor for regional temperature and pre-
cipitation change. The validity (or, better, the lack of
validity) of the scaling assumption is measured by the
uncertainty defined by Eq. (2). When this uncertainty is
greater than the ensemble average signal, Eq. (1) can-
not be expected to have a predictive value.

b. Datasets and illustrative cases

The MGME used here is described in Table 1. It
includes 19 models from laboratories around the world
spanning a relatively wide range of resolutions, from
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about 1° to 5°. Note that two of the original MGME
models are neglected [the Flexible Global Ocean–
Atmosphere–Land System (FGOALS) and Beijing Cli-
mate Center (BCC) models] because of their poor per-
formance in simulating the climate of the European
region, which is used here for our illustrative cases (see
below).

The following simulations are available from the
MGME dataset (see Table 1): twentieth-century cli-
mate, using observed GHG and aerosol forcing (re-
ferred to as 20C experiments), and twenty-first-century
climate, using GHG and aerosol forcing from the A1B,
A2, and B1 emission scenarios of Nakicenovic et al.
(2000; referred to as A1B, A2 and B1 experiments, re-
spectively). This set of scenarios spans almost the entire
IPCC scenario range, with the B1 experiment being close
to the low end of the range (CO2 concentration of
about 550 ppm by 2100), the A2 experiment being close
to the high end of the range (CO2 concentration of about
850 ppm by 2100), and the A1B experiment being close
to the middle of the range (CO2 concentration of about
700 ppm by 2100). As shown in Table 1, many models
include multiple realizations for the same experiment,
which is important to allow us to estimate the uncer-
tainty associated with the internal model variability.

Monthly data for the MGME experiments are ob-
tained from the PCMDI Web site (see above), and the
reader is referred to this online resource for more in-
formation on the participating models. To facilitate the
model intercomparison, the data are interpolated onto
a common 1° grid before being analyzed, which is a grid
close to that of the highest resolution models. A com-

mon 1° land mask grid is also defined based on the
half-degree grid of the observed dataset from the Cli-
matic Research Unit (CRU) of the University of East
Anglia (New et al. 2000). This implies that, given that a
land-only analysis is presented, some uncertainty is
present from the different land definitions at the differ-
ent model grids. Except for one model, the dataset in
Table 1 is the same as that used by Giorgi and Bi
(2005).

The changes in climate variables are here calculated
for periods of 20 yr. This length of period is sufficient to
filter out interannual variability (e.g., resulting from
ENSO) but to retain multidecadal variability. The
twenty-first century is thus first divided into five con-
secutive 20-yr periods (2001–20, 2021–40, 2041–60,
2061–80, 2081–2100). Changes are then calculated as
the difference between the mean temperature and pre-
cipitation for each of these periods and the period of
1961–80, which is chosen as reference because it is the
latest 20-yr period in the twentieth century in which the
anthropogenic signature is relatively minor (Houghton
et al. 2001). Our conclusions, however, do not depend
on the choice of the twentieth-century reference pe-
riod. When multiple realizations of the twentieth-
century simulation are available for a given model, the
reference period model climatology is calculated as the
ensemble average of all available realizations.

We here consider changes in mean surface air tem-
perature and precipitation calculated for the 26 regions,
wet seasons, and dry seasons as defined in Table 1 of
Giorgi and Bi (2005). For illustrative purposes we dis-
cuss in detail results only for the MED (30°–47°N,
10.5°W–37.5°E) and NEU (47°–70°N, 10.5°W–27.5°E)
regions. Based on the CRU climatology, in the
Mediterranean the wet season is October–March
(ONDJFM) and the dry season is April–September
(AMJJAS), while over northern Europe AMJJAS is
the wet season and ONDJFM is the dry season (Giorgi
and Bi 2005). The regional averages include only land
points in the CRU-based land mask grid. These two
regions were chosen to be particularly representative
because they show large changes for both temperature
and precipitation and different signs of the precipita-
tion change [positive in northern Europe and negative
in the Mediterranean; see below and Giorgi and Bi
(2005)]. Indeed, Giorgi (2006) places these regions
among the most prominent climate change hot spots.

3. Results for the Mediterranean and northern
Europe regions

Figures 1 and 2 show the dependency of northern
Europe and Mediterranean wet and dry season tem-
perature and precipitation change on the GTC.

TABLE 1. List of models and simulations used in this study. See
the PCMDI Web site for more information.

Model Twentieth century A1B A2 B1

BCCR-BCM2–0 1 — 1 1
CCMA-3-T47 5 4 2 4
CNRM-CM3 1 1 1 1
CSIRO-MK3 2 1 1 1
GFDL-CM2–0 3 1 1 1
GFDL-CM2–1 3 1 1 —
GISS-AOM 2 2 — 2
GISS-EH 5 4 — —
GISS-ER 1 2 1 1
INMCM3 1 1 1 1
IPSL-CM4 1 1 1 1
MIROC3–2II 1 1 - 1
MIROC3–2M 3 3 3 3
MTUB-ECTTO-G 5 3 3 3
MPI-ECIIAM5 3 2 3 3
MRI-CGCM2 5 5 5 5
MCAR-CCSM3 8 6 4 8
MCAR-PCM1 1 3 4 2
UKMO-HADCM3 1 1 1 1
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Changes for the five 20-yr periods of the twenty-first
century with respect to 1961–80 (see section 2b), includ-
ing all models and scenario simulations, are reported in
the scatterplots and, when multiple realizations are
available, the ensemble average of the changes is used.

These figures indicate warming in all cases, de-
creased precipitation over the Mediterranean in both
seasons, increased precipitation for the NEU ONDJFM
case, and a mixed signal in the NEU AMJJAS case.
They give two important messages. First, both for tem-
perature and precipitation, the monotonic dependence
of the regional change on the GTC appears to be ro-
bust. The only exception is the NEU AMJJAS precipi-
tation change case, in which this monotonic depen-
dence is not present when looking at the overall en-
semble, although it is present in individual models. In
this case the MGME does not indicate a clear com-
pounded precipitation change signal (Giorgi and Bi
2005), and in fact, as we will see below, the uncertainty
is much larger than the signal. The second message is
that it is essentially impossible to distinguish between

different scenarios in terms of the dependency of the
regional change on the GTC. This supports the ap-
proach of using the GTC as an independent predictor
variable, regardless of the underlying emission path-
way.

To verify this assumption we calculated the linear
trend values between the GTC and the regional
changes of Figs. 1 and 2 for the three scenarios sepa-
rately and when compounding all of the scenarios to-
gether. For temperature the slopes of the trend lines
varied by less than 10% between the individual and
compounded scenarios. For precipitation they varied
by less than 28% in the three cases where a clear rela-
tionship is found (MED AMJJAS, MED ONDJFM,
NEU ONDJFM), while it was very large for the NEU
AMJJAS case in which a clear change signal is not
found. This indicates that the basic assumption under-
lying Eq. (1) is robust for the temperature change,
while it is more uncertain for precipitation. The uncer-
tainty related to this assumption is measured by Eq. (2),
as shown below.

FIG. 1. Scatterplots of global temperature change vs regional temperature change for the MGME ensemble and
the four cases: MED O-M (ONDJFM), MED A-S (AMJJAS), NEU O-M (ONDJFM), and NEU A-S (AMJJAS).
The changes are calculated for different 20-yr periods of the twenty-first century compared to the reference period
of 1961–80 (see text).
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The regional changes in Figs. 1 and 2 can be replotted
as a function of �(T, P)/�Tg, that is, as a function of
F(T,P)(�Tg) in Eq. (1). The resulting scatterplots are
shown in Figs. 3 and 4. They show “Christmas tree”–
like distributions by which the simulation spread is at a
maximum for small values of GTC and decreases with
increasing GTC. The Christmas trees are mostly verti-
cal, indicating that, on average, the function F(T,P)

(�Tg) remains nearly constant with respect to the GTC,
except for the NEU ONDJFM temperature change
case (Fig. 3), in which a slight tilt appears. In this case,
FT(�Tg) is evidently a decreasing function of the GTC.
The noticeable exception in Figs. 3 and 4 is again the
case of the NEU AMJJAS precipitation change in
which, as already discussed, the MGME does not give a
clear compounded signal.

To calculate the compounded values of F(T,P)(�Tg)
and �IM,(T,P)(�Tg) from the MGME the following pro-
cedure is used. Given that the number of points in the
scatterplots of Figs. 3 and 4 is not large, the full range of

simulated GTC is divided into relatively wide bins of
0.5°C width. The average and standard deviation of all
the simulated F(T,P)(�Tg) by the individual models
falling within each bin are then calculated. This proce-
dure thus provides an estimate of the mean value of
F(T,P)(�Tg) and of �IM,(T,P)(�Tg) as a function of the
�Tg of each bin. For our ensemble, at least nine indi-
vidual model simulations are included in each bin. The
mean function F(T,P)(�Tg) and intermodel uncertainty
�IM,(T,P)(�Tg) resulting from these calculations at each
�Tg bin for the Mediterranean and northern Europe
cases are given in Tables 2 and 3.

Note that the calculations are carried out only for
values of �Tg greater than 0.5°C, because the model
spread is much larger than the actual signal for smaller
changes. Also, in the MGME simulations analyzed here
the value of �Tg for the 20-yr periods considered does
not exceed 4°C. Strictly speaking, our approach can
thus be considered to be valid only for the GTC range
of 0.5°–4°C.

FIG. 2. Same as Fig. 1, but for global temperature change vs regional precipitation change.
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Table 2 first shows that, for temperature, the function
FT(�Tg) is essentially constant for the NEU AMJJAS
(	1.16°C/°C), MED ONDJFM (	1.08°C/°C), and MED
AMJJAS (	1.48°C/°C) cases, while it shows a decreas-
ing trend with increasing �Tg for NEU ONDJFM. The
latter is possibly due to an incremental decrease of
snow cover over northern Europe as the global warm-
ing increases. This causes a decrease in the snow–al-
bedo feedback process and thus a decrease in the re-
gional temperature sensitivity to global warming. The
largest values of FT(�Tg) occur for the warm–dry sea-
son over the Mediterranean and reflect the pronounced
sensitivity of summer Mediterranean climate to global
warming found in previous studies (Giorgi and Bi 2005;
Giorgi 2006).

Concerning the intermodel temperature standard de-
viation �IM,T(�Tg), we notice two features. First, the
values of �IM,T(�Tg) are much smaller than those of
FT(�Tg), which is an indication of the robustness of the
simulated temperature change signals. Second, in all
regional and seasonal cases we find a decreasing trend
of �IM,T(�Tg), with �Tg. In other words, relative to the
GTC, the models tend to agree more as the change
signal increases (while in absolute terms the opposite is

true). This is consistent with the finding by Giorgi
(2005a) that the scaling approach increases in validity
as the magnitude of the forcing and change signal in-
creases.

Turning our attention to precipitation (Table 3), we
find roughly constant values of bin-averaged FP(�Tg)
in both seasons over the Mediterranean, both showing
decreases (	
3.59%/°C in ONDJFM and 	
7.63%/
°C in AMJJAS). Over northern Europe we find a de-
creasing trend of FP (�Tg) with increasing �Tg in
NEU ONDJFM and large variations of values in
NEU AMJJAS when, as mentioned above, the change
signal by the MGME is not consistent across models.
The values of �IM,P(�Tg) for precipitation show a con-
sistent decreasing trend with increasing �Tg. For
NEU ONDJFM, MED ONDJFM, and MED AMJJAS,
the values of �IM,P(�Tg) are comparable to those of
FP(�Tg) for small �Tg, indicating that the multimodel
signal is not large compared to intermodel noise. For
large �Tg, however, �IM,P(�Tg) becomes substantially
smaller than FP(�Tg), indicating an increased robust-
ness of the multimodel signal. The exception in Table 3
is the NEU AMJJAS case, for which the intermodel
uncertainty is always larger than the multimodel signal.

FIG. 3. Same as Fig. 1, but for global temperature change vs �T(reg)/�Tg.
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As mentioned, the second source of uncertainty we
consider here is that due to internal multidecadal
variability as measured by the standard deviation
�IV,(T,P)(�Tg) (see section 2). This quantity is calcu-
lated as follows. Each model simulation falling in each

GTC bin is first identified. If, for a given model sce-
nario simulation, more than one realization is available,
the anomaly of the change for each realization is cal-
culated as compared to the ensemble average change
for that model. This produces a set of anomalies asso-

TABLE 2. Values of the temperature functions FT (�Tg), �IM,T (�Tg), and �IV,T (�Tg) for different �Tg bins in the NEU ONDJFM,
NEU AMJJAS, MED ONDJFM, and MED ONDJFM cases (see text). Units: °C/°C.

�Tg 0.5°–1.0°C 1.0°–1.5°C 1.5°–2.0°C 2.0°–2.5°C 2.5°–3.0°C 3.0°–3.5°C 3.5°–4.0°C

FT (�Tg)
NEC ONDJFM 1.72 1.56 1.54 1.50 1.41 1.40 1.21
NEC AMJJAS 1.16 1.15 1.13 1.14 1.15 1.18 1.18
MED ONDJFM 1.08 1.08 1.10 1.08 1.09 1.08 1.00
MED AMJJAS 1.50 1.48 1.47 1.47 1.49 1.48 1.49

�IM,T (�Tg)
NEU ONDJFM 0.47 0.35 0.31 0.28 0.30 0.20 0.12
NEC AMJJAS 0.31 0.23 0.22 0.24 0.20 0.19 0.19
MED ONDJFM 0.20 0.15 0.12 0.13 0.11 0.12 0.06
MED AMJJAS 0.27 0.20 0.18 0.18 0.18 0.19 0.14

�IV,T (�Tg)
NEU ONDJFM 0.38 0.22 0.13 0.11 0.07 0.05 0.04
NEC AMJJAS 0.18 0.13 0.09 0.08 0.04 0.04 0.06
MED ONDJFM 0.16 0.11 0.09 0.07 0.04 0.03 0.03
MED AMJJAS 0.16 0.13 0.11 0.12 0.04 0.03 0.03

FIG. 4. Same as Fig. 1, but for global temperature change vs �P(reg)/�Tg.
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ciated with each simulation for models with multi-
ple realizations of a given scenario. These anomalies
are then squared and added including all different
model simulations falling within a GTC bin. Finally,
�IV,(T,P)(�Tg) is approximated by the root-mean-
square of this value. In other words, �IV,(T,P)(�Tg) is
defined by the root-mean-square anomaly of the model
realizations with respect to the corresponding ensemble
average for that model falling within a given GTC bin.
Only models for which more than one realization is
available are included in the root-mean-square average.
In addition, in order to produce values comparable to
those of �IV,(T,P)(�Tg), each anomaly is normalized by
the respective simulated GTC. It should be emphasized
that this procedure gives only a first-order estimate of
the internal variability, limited by the availability of a
small number of multiple realizations, and evidently
gives more weight to the models that completed larger
ensembles of realizations.

Tables 2 and 3 summarize the values of �IV,(T,P)(�Tg)
for temperature and precipitation change in the north-
ern Europe and Mediterranean cases. We first note that
in all cases �IV,(T,P)(�Tg) decreases with �Tg. This is
essentially because of the normalization by �Tg, be-
cause the actual values of the root-mean-square multi-
decadal anomalies do not vary much with increasing
�Tg. This implies that the multidecadal variability does
not change much throughout the twenty-first century
MGME simulations. Tables 2 and 3 show that the val-
ues of �IV,(T,P)(�Tg) are consistently lower than those
of �IM,(T,P)(�Tg), both for temperature and precipita-
tion, and especially for large �Tg. This indicates that
the uncertainty due to internal variability is lower than
the intermodel uncertainty, a result consistent with as-
sessments of previous generations of AOGCM simula-

tions (e.g., Giorgi and Francisco 2000). The contribu-
tion of internal variability is however not insignificant,
especially for precipitation at relatively small �Tg.

Finally, the temperature and precipitation changes
along with the related total uncertainty estimates (Eq.
2) for the NEU ONDJFM, NEU AMJJAS, MED
ONDJFM, and MED AMJJAS cases are reported as a
function of �Tg in Figs. 5 and 6. Also shown are the
corresponding least squares fit lines. For temperature
change the total uncertainty estimates [as measured by
�F,T(�Tg)] are much lower than the values of the trans-
fer function FT(�Tg) in all cases. In three of the cases
the function FT(�Tg) is essentially a constant, while in
the NEU ONDJFM case it is a decreasing function of
�Tg that is well approximated by a linear fit.

For precipitation (Fig. 6), in all cases, �F,P(�Tg) de-
creases with increasing �Tg, while the value of FP(�Tg)
decreases with �Tg in the northern Europe cases but is
essentially constant in the Mediterranean cases. In the
NEU AMJJAS case the magnitude of the uncertainty
estimate �F,P(�Tg) is actually larger than the magni-
tude of the transfer function FP(�Tg) for all values of
�Tg, while the opposite mostly occurs in the other
cases.

We thus see that, especially for precipitation, there is
a substantial case-to-case variability in the shape of the
function F(T,P)(�Tg) and in its relative magnitude com-
pared to the corresponding uncertainty estimate �F,(T,P)

(�Tg). Figures 5 and 6 also show that a linear fit pro-
vides a reasonably good first-order approximation of
the �Tg dependence of F(T,P)(�Tg) and �F,(T,P)(�Tg),
at least in the range examined here (0.5°–4°C). This fit
is especially good for temperature, while for precipita-
tion it underestimates the uncertainty at low �Tg and
overestimates it at high �Tg. In this latter case a higher-

TABLE 3. Values of the precipitation functions FP (�Tg), �IM,P (�Tg), and �IV,P (�Tg) for different �Tg bins in the NEU ONDJFM,
NEU AMJJAS, MED ONDJFM, and MED ONDJFM cases (see text). Units: %/°C.

�Tg 0.5°–1.0°C 1.0°–1.5°C 1.5°–2.0°C 2.0°–2.5°C 2.5°–3.0°C 3.0°–3.5°C 3.5°–4.0°C

FP (�Tg)
NEU ONDJFM 6.49 5.66 5.63 5.38 5.07 5.61 4.30
NEU AMJJAS 3.26 2.07 0.89 1.30 0.32 
0.76 0.25
MED ONDJFM 
3.78 
3.23 
3.52 
3.50 
3.41 
4.25 
3.42
MED AMJJAS 
7.56 
7.48 
7.70 
7.99 
7.94 
8.23 
6.47

�IM,P (�Tg)
NEU ONDJFM 4.19 2.48 2.06 1.96 1.56 2.31 1.50
NEU AMJJAS 3.72 3.26 2.86 2.17 2.83 3.58 3.20
MED ONDJFM 3.86 3.04 2.13 1.89 1.99 1.55 1.54
MED AMJJAS 7.32 5.05 3.83 4.01 3.63 4.36 3.41

�IV,P (�Tg)
NEU ONDJFM 2.35 1.32 0.80 0.80 0.59 0.52 0.34
NEU AMJJAS 2.47 1.40 1.01 0.77 0.66 0.30 0.28
MED ONDJFM 3.47 1.90 1.45 1.11 1.04 0.88 0.60
MED AMJJAS 3.28 2.21 1.70 1.19 1.20 0.43 0.74
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FIG. 5. Values of the mean function FT (�Tg) (mean) and of �F,T (�Tg) (sigma) at the different �Tg bins for the
MGME ensemble and the four cases in Fig.1. The values are associated to the centers of the bins. Also shown are
the corresponding best-fit trend lines.

FIG. 6. Same as Fig. 5, but for FP (�Tg) (mean) and of �F,P (�Tg) (sigma).
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order polynomial fit or an exponential fit might be
more accurate.

4. Parameter calculations for other regions

In the previous section we have seen that the trans-
fer function F(T,P)(�Tg) and uncertainty estimate
�F,(T,P)(�Tg) can be approximated either by a constant
or by a linear function of �Tg. We calculated these
values for all the 26 regional wet and dry season cases
defined by Giorgi and Bi (2005; the reader is referred
thereto for the definitions of regions and wet and dry
seasons).

The results are reported in Tables 4 and 5, which
show a number of parameters. First, the cases in which
a trend in F(T,P)(�Tg) or �F,(T,P)(�Tg) is found to be
statistically significant at the 90% confidence level ac-
cording to a two-tailed t test are identified. In these
cases, F(T,P)(�Tg) and �F,(T,P)(�Tg) are expressed by
formulas of the type a � (b�Tg), and Tables 4 and 5
report the values of [a � (b � 0.5)] [i.e., the intercepts
of the F and � functions at the value �Tg � 0.5, because
Eqs. (1) and (2) are valid only for �Tg greater than 0.5]
and b (i.e., the slope of the trend line). When a statis-
tically significant trend is not present, F(T,P)(�Tg) and
�F,(T,P)(�Tg) are assumed to be constant and equal to
their average value across the entire �Tg range. For
these cases this average value is reported in Tables 4
and 5. Finally, for precipitation, cases are highlighted in
bold for which the mean value of FP(�Tg) across the
�Tg range is greater than the mean value of �F,P(�Tg),
that is, when the signal-to-noise ratio is relatively large.
For temperature this is always the case.

Before we analyze the results of Tables 4 and 5, it
should be mentioned that the underlying hypothesis of
this work (i.e., that the relation of the regional change
on the GTC does not depend on the underlying emis-
sion scenario) was evaluated for all cases in Tables 4
and 5. As in section 3, this was done by comparing the
linear trend lines calculated for the different scenarios
separately and for all scenarios compounded together.
For temperature we again found that the line slopes
varied by less than 10% in the vast majority of cases,
showing the solidity of this assumption. For precipita-
tion, the differences were less than 30% for the bold
cases in Tables 4 and 5, that is, for the cases in which the
signal is greater than the noise. This shows the greater
uncertainty present in the use of Eq. (1) for regional
precipitation compared to temperature.

Table 4 shows that for temperature �F,T(�Tg) is al-
ways characterized by a significant and negative depen-
dence on �Tg. This indicates that the uncertainty of the
predictive regional temperature equation always de-

TABLE 4. Values of the temperature parameters (see text):
FT (0.5); trend in FT (�Tg), bF; mean value of FT (�Tg), FM;
�F,T (0.5); and trend in �F,T (�Tg), b�. Units: °C/°C for the func-
tion F and °C/°C2 for the trends. Parameter values are reported
for the regional cases defined by Giorgi and Bi (2005; see therein
for the definition of the regions). May–October (MJJASO), No-
vember–April (NDJFMA), February–July (FMAMJJ), August–
January (ASONDJ), June–November (JJASON), and Decem-
ber–May (DJFMAM).

FT (0.5) bF FM �F,T (0.5) b�

NEU MJJASO 1.16 0.33 
0.046
NEU NDJFMA 1.72 
0.142 0.56 
0.132
MED ONDJFM 1.08 0.24 
0.052
MED AMJJAS 1.48 0.29 
0.046
NEE MJJASO 1.39 0.43 
0.068
NEE NDJFMA 1.99 0.72 
0.147
NAS MJJASO 1.37 0.027 0.37 
0.044
NAS NDJFMA 1.97 0.50 
0.075
CAS NDJFMA 1.30 0.32 
0.070
CAS MJJASO 1.64 
0.038 0.34 
0.063
TIB AMJJAS 1.43 0.28 
0.047
TIB ONDJFM 1.54 0.34 
0.067
EAS AMJJAS 1.11 0.40 0.24 
0.034
EAS ONDJFM 1.27 0.36 
0.082
SAS MJJASO 1.07 0.24 
0.032
SAS NDJFMA 1.28 0.27 
0.050
SEA AMJJAS 0.95 0.15 
0.027
SEA ONDJFM 0.89 0.013 0.16 
0.031
NAU NDJFMA 1.15 0.018 0.29 
0.041
NAU MJJASO 1.30 
0.029 0.27 
0.049
SAU MJJASO 1.05 
0.037 0.26 
0.051
SAU NDJFMA 1.05 0.013 0.26 
0.045
SAH NDJFMA 1.29 0.24 
0.055
SAH MJJASO 1.57 
0.035 0.27 
0.044
WAF MJJASO 1.22 0.30 
0.045
WAF NDJFMA 1.23 0.24 
0.017
EAF MJJASO 1.21 0.26 
0.018
EAF NDJFMA 1.20 0.22 
0.027
EQF FMAMJJ 1.11 0.22 
0.027
EQF ASONDJ 1.08 0.23 
0.026
SQF NDJFMA 1.12 0.025 0.20 
0.026
SQF MJJASO 1.28 0.28 
0.039
SAF ONDJFM 1.17 0.015 0.26 
0.039
SAF AMJJAS 1.23 
0.008 0.27 
0.041
ALA JJASON 1.35 0.38 
0.060
ALA DJFMAM 1.83 
0.020 0.63 
0.131
GRL JJASON 1.51 0.38 
0.043
GRL DJFMAM 1.87 0.55 
0.115
WNA ONDJFM 1.19 0.038 0.38 
0.071
WNA AMJJAS 1.53 0.37 
0.058
CAN AMJJAS 1.54 0.40 
0.042
CAN ONDJFM 1.39 0.41 
0.085
ENA AMJJAS 1.37 0.30 
0.036
ENA ONDJFM 1.48 
0.024 0.39 
0.082
CAM MJJASO 1.22 0.022 0.25 
0.037
CAM NDJFMA 1.08 0.025 0.25 
0.053
AMZ NDJFMA 1.12 0.028 0.22 
0.021
AMZ MJJASO 1.27 0.031 0.24 
0.018
CSA ONDJFM 1.07 0.024 0.25 
0.036
CSA AMJJAS 1.04 0.18 
0.028
SSA AMJJAS 0.73 
0.015 0.21 
0.050
SSA ONDJFM 0.84 
0.027 0.27 
0.060
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TABLE 5. Values of the precipitation parameters (see text): FP (0.5); trend in FP (�Tg), bF; mean value of FP (�Tg), FM; �F,P (0.5);
trend in �F,P (�Tg), b�; and mean value of �F,P (�Tg), �M. Units are %/°C for the function F and %/°C2 for the trends. Parameter values
are reported for the regional cases defined by Giorgi and Bi (2005; see therein for the definition of the regions). Bold cases are those
in which the mean value of F is greater than the mean value of �.

Case FP (0.5) bF FM �F,P(0.5) b� �M

NEU MJJASO 2.95 
1.089 3.34
NEU NDJFMA 6.35 
0.519 3.90 
0.802
MED ONDJFM 
3.59 4.55 
1.039
MED AMJJAS 
7.62 6.83 
1.159
NEE MJJASO 3.94 
0.827 5.28 
0.929
NEE NDJFMA 7.24 3.62 
0.754
NAS MJJASO 4.17 1.86
NAS NDJFMA 8.47 0.621 3.48 
0.585
CAS NDJFMA 
0.46 5.25 
1.172
CAS MJJASO 
3.00 8.48 
1.387
TIB AMJJAS 3.15 2.91
TIB ONDJFM 5.84 3.66 
0.427
EAS AMJJAS 1.25 0.653 3.40 
0.598
EAS ONDJFM 1.11 0.561 5.53 
0.70
SAS MJJASO 3.50 5.07 
0.934
SAS NDJFMA 
3.30 0.918 8.71 
1.684
SEA AMJJAS 1.86 0.197 3.04 
0.401
SEA ONDJFM 0.79 0.493 2.77 
0.376
NAU NDJFMA 2.14 8.30 
1.703
NAU MJJASO 
3.72 16.02 
3.776
SAU MJJASO 
4.74 9.13 
2.035
SAU NDJFMA 3.58 
0.976 9.37 
1.961
SAH NDJFMA 
6.17 12.68 
2.822
SAH MJJASO 
0.11 26.19 
5.359
WAF MJJASO 
0.61 4.19 
0.603
WAF NDJFMA 
0.12 3.81
EAF MJJASO 1.70 3.60
EAF NDJFMA 2.31 0.582 6.25 
1.057
EQF FMAMJJ 1.89 1.151 5.20 
0.740
EQF ASONDJ 2.74 0.874 3.70
SQF NDJFMA 0.44 2.90 
0.555
SQF MJJASO 
3.08 6.78 
1.276
SAF ONDJFM 
0.25 5.61 
0.886
SAF AMJJAS 
4.55 7.82 
1.674
ALA JJASON 3.92 0.440 2.90 
0.368
ALA DJFMAM 5.72 0.469 3.18 
0.530
GRL JJASON 4.97 2.20 
0.368
GRL DJFMAM 6.37 0.522 4.29 
0.780
WNA ONDJFM 1.88 5.47 
1.101
WNA AMJJAS 
4.34 0.648 6.45 
10.368
CAN AMJJAS 0.74 
0.915 4.63
CAN ONDJFM 2.40 
0.438 4.85 
0.685
ENA AMJJAS 3.00 
0.869 2.71
ENA ONDJFM 4.01 4.94 
0.906
CAM MJJASO 
2.71 
0.620 5.59 
0.339
CAM NDJFMA 
7.17 0.337 5.52
AMZ NDJFMA 2.05 
0.331 2.66
AMZ MJJASO 
1.23 
0.379 4.19
CSA ONDJFM 1.22 3.35
CSA AMJJAS 
1.50 7.84 
1.460
SSA AMJJAS 0.39 
0.299 2.97 
0.606
SSA ONDJFM 
5.12 0.564 4.14 
0.828
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creases with the magnitude of the signal. Quite a wide
range of trend values is found, from 
0.018°C/°C to

0.147°C/°C. In particular, the trend is largest in
Northern Hemisphere high-latitude regions [northeast-
ern Europe (NEE), Alaska (ALA), northern Europe
(NEU), and Greenland (GRL)] during the cold sea-
sons. This is possibly tied to the progressive reduction
of snow and ice cover, which leads to a decrease in
intermodel uncertainty. Note also that over these re-
gions the �Tg � 0.5 uncertainty intercept is also the
highest, indicating a large uncertainty in the regional
temperature sensitivity to global change.

In terms of the temperature transfer function FT(�Tg)
(Table 4), which has essentially the same meaning as
the regional warming amplification factor of Giorgi and
Bi (2005), we can see a relatively equal split of regional
cases with and without a statistically significant trend.
A majority of constant FT(�Tg) values is found over
the European, Asian, African, and North American re-
gions, while the presence of trends prevails over the
Australian, and Central and South American regions.
The values of FT (�Tg) are generally largest over
Northern Hemisphere high-latitude regions in the cold
season, indicating a maximum climate response over
these regions. Different from the case of �F,T(�Tg), we
find trends in FT(�Tg) of both positive and negative
signs.

In the case of precipitation (Table 5), we find a more
varied picture. First of all, only in about 40% of the
cases the average value of FP(�Tg) is greater than that
of �F,P (�Tg). This indicates that in the majority of
cases the uncertainty in the prediction of regional cli-
mate change is larger than the compounded signal. This
is for a number of reasons: the small magnitude of the
precipitation change signal, the large interdecadal vari-
ability of regional precipitation, the inconsistency of
regional precipitation projections across models, and
the need of large ensembles to extract the change
signal from the underlying multidecadal and inter-
model noise. Among the regions where the magnitude
of FP(�Tg) is greater than that of �F,P(�Tg), we find
the European regions; Tibet and the north, East, and
South Asia regions; eastern equatorial Africa; Alaska;
Greenland; and the eastern North America, Central
America, and southern South America regions.

Similarly to the case of temperature, the trend in
�F,P(�Tg) is always negative, indicating a relative de-
crease of uncertainty with increasing �Tg, except for a
few cases of constant values (i.e., trends not statistically
significant). Also, the trends in FP(�Tg) are of both
positive and negative signs, and this sign does not ap-
pear to be specifically tied to the sign of the precipita-
tion change signal itself. Among the regions with the

largest values of FP(�Tg), we highlight the northern
high-latitude regions (positive values in both wet and
dry seasons), the Mediterranean and Central America
(large negative values especially in the dry seasons),
eastern equatorial Africa (increases in both long and
short rainy seasons), and southern South America
(large decrease in the dry–cold season).

5. An example of application to the probabilistic
prediction of regional climate change

In this section we illustrate how Eqs. (1) and (2) can
be applied to produce PDFs of regional climate change
from PDFs of GTC. The advantage of this type of ap-
plication, for example, is that it can be used to produce
regional climate PDFs from GTC PDFs generated by
large ensembles of simple or intermediate complexity
models. This would allow us to better cover the climate
change phase space defined by ensembles of models
and scenarios and by the internal variability of the cli-
mate system (e.g., Giorgi 2005b). In this regard, we base
our illustrative application on the GTC PDF shown in
Fig. 7. This is a normal PDF distribution close to (al-
though not the same as) the one referred to as “2070”
in Fig. 4 of Wigley and Raper (2001), which was ob-
tained using a very large ensemble of simulations with
a highly simplified climate system model. Note that the
distribution on Fig. 7 fits nicely within the GTC range
found in the MGME and used to calculate the transfer
functions in this work.

We show two sets of applications. In the first, the
transfer function F(T,P)(�Tg) is used without consider-
ation of the associated uncertainty, while in the second
the uncertainty is accounted for by use of the function
�F,(T,P)(�Tg). For illustrative purposes, these functions

FIG. 7. Global temperature change PDF used for the illustrative
applications shown in section 5. The PDF is a normal distribution
with central value at 2°C and std dev of 0.5°C.
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are applied to estimate the PDFs of temperature and
precipitation change in the NEU ONDJFM and MED
AMJJAS cases of section 3 using the GTC PDF of
Fig. 7.

To apply our method, the GTC range of 0.5°–4°C is
first divided into 350 equally spaced bins (i.e., 100 bins
per degree). In fact, Fig. 7 shows the PDF based on
values calculated at each bin from a normal PDF with
mean at 2°C and standard deviation of 0.5°C. In the
first type of application, when the uncertainty is not
accounted for, the regional change PDF is simply ob-
tained by multiplying the value of the GTC at each bin
of the PDF by the transfer function F(T,P)(�Tg) (with
the proper unit normalization for temperature and pre-
cipitation). This defines a new range of change for the
set of 350 bins. The probability density of a given bin is
then retained for the “transformed” bins, thereby lead-
ing to a transformed PDF.

The results for temperature and precipitation in the
NEU ONDJFM and MED AMJJAS cases are shown in
Fig. 8. These PDFs can be compared with the “parent”
GTC PDF of Fig. 7. For the MED AMJJAS case we
first find a shift of the distribution, which retains a
shape similar to that of the original GTC PDF. This is

because the function F(T,P)(�Tg) is a constant for both
temperature and precipitation (see Tables 4 and 5). In
the NEU ONDJFM case, however, we notice not only
a shift, but also a deformation of the PDF, which be-
comes slightly asymmetric. This is because the function
F(T,P)(�Tg) has a decreasing trend with increasing GTC
(see Tables 4 and 5). In addition, the transformed PDFs
for the regional temperature changes are somewhat
broader compared to the original GTC PDF, as evi-
denced by the fact that the standard deviation increases
from 0.5°C in the GTC PDF to 0.61° and 0.73°C for the
MED AMJJAS and NEU ONDJFM cases, respec-
tively.

To include the effect of the uncertainty defined by
the function �F,(T,P)(�Tg) we proceed as follows. First,
we assume that the uncertainty at any given bin can be
described by a normal PDF centered on the bin, having
a standard deviation equal to �F,(T,P)(�Tg) and a me-
dian probability density value equal to the probability
density of the GTC PDF at that bin. We then apply the
transfer function F(T,P)(�Tg) to the GTC PDF bin
range in order to generate a new set of “transformed”
bins for the regional changes. At each of the trans-
formed bins we add the contribution to the probability

FIG. 8. Regional (top) temperature and (bottom) precipitation change PDFs for the MED A-S (AMJJAS) and
NEU O-M (ONDJFM) cases obtained by applying the transfer function F(T,P)(�Tg) to the �Tg PDF of Fig. 7
without consideration of the uncertainty.
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density deriving from each PDF of all individual trans-
formed bins. Finally, the resulting distribution is nor-
malized in order to preserve the integral of the original
GTC PDF.

The results from this procedure are shown in Fig. 9
and can be compared with the PDFs of Fig. 8 and the
parent GTC PDF of Fig. 7. Note in Fig. 9 that the PDFs
are defined only within the range of GTC used to de-
rive the transfer and uncertainty functions; however,
they could be extrapolated to wider GTC ranges with
proper extrapolation of the functions F(T,P)(�Tg) and
�F,(T,P)(�Tg). An overall intercomparison of the PDFs
in Figs. 8 and 9 shows that the addition of the uncer-
tainty does not shift much the distributions, but affects
the shape of the PDFs. In general, as can be expected,
the PDFs become wider when the uncertainty is ac-
counted for (for temperature the standard deviations
increase from 0.5°C in the GTC PDF to 0.88° and
1.13°C in the MED AMJJAS and NEU ONDJFM
cases, respectively). The smallest effect of the uncer-
tainty is found for the temperature change in the MED
AMJJAS case, when the value of �F,T(�Tg) is small
(see Table 4). The largest effects are found in the case
of the precipitation change PDFs, where in particular
the tails of the distributions are modified. The trans-

formed regional precipitation change PDFs cannot be
considered Gaussian any more and are asymmetric with
respect to the center of the distribution, with the large
change portion of the distribution becoming effectively
a straight line.

6. Summary considerations and discussion

In this paper simple equations are developed for re-
gional climate change prediction and related uncertain-
ties, where both these equations are expressed as a
function of the GTC. The key underlying assumption in
the use of Eqs. (1) and (2) is the remarkable scaling
property that some surface climate variables show with
respect to the global radiative forcing and GTC re-
sponse. These properties hold especially well for tem-
perature, giving Eqs. (1) and (2) a good level of robust-
ness. For precipitation, the assumption holds, although
in a less robust way, only for the cases in which the
change signal is greater than the underlying uncer-
tainty. It should be emphasized that, compared to the
standard scaling approach, the method described here
adds the estimate of the uncertainty due to intermodel
and internal variability.

The recently developed MGME dataset (online at

FIG. 9. Same as Fig. 8, but applying the transfer function F(T,P)(�Tg) and the uncertainty function �F,(T,P)(�Tg).
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http://www-pcmdi.llnl.gov) is used to derive the param-
eters of our equations. The methodology and the func-
tioning of our equations are illustrated using tempera-
ture and precipitation change data over two subconti-
nental scale regions, northern Europe and the
Mediterranean (as defined by Giorgi and Bi 2005). Pa-
rameter values are also presented, however, for tem-
perature and precipitation change over 26 regions
(from Giorgi and Bi 2005), encompassing all land areas
of the globe (except for Antarctica). Finally, examples
are shown of the application of Eqs. (1) and (2) to the
generation of PDFs of regional climate change based
on GTC PDFs.

This last application makes Eqs. (1) and (2) espe-
cially useful, because it allows us to estimate probabili-
ties of regional climate change from the output of
simple or intermediate complexity models. These mod-
els can in fact be run for very large ensembles encom-
passing much of the climate change parameter space.
The approach presented in this paper thus provides a
tool for probabilistic regional climate change prediction
to complement existing methodologies (Räisänen and
Palmer 2001; Giorgi and Mearns 2002, 2003; Stott and
Kettleborough 2002; Forest et al. 2002; Tebaldi et al.
2005; Harris et al. 2006; Räisänen and Ruokolainen
2006; Stott et al. 2006).

Another attractive characteristic of our approach is
that it provides a first-order estimate of regional cli-
mate change disentangling this estimate from the issue
of scenarios and emission pathways, which has drawn
much debate recently (e.g., Holtsmark and Alfsen
2005). Rather, the regional change estimates are only
based on the GTC. Therefore, our equations would, for
example, allow us to estimate the first-order regional
response associated with given target GTC and GHG
stabilization levels along with the associated uncer-
tainty.

The limit of the approach evidently resides in the
magnitude of the uncertainty, which in our case de-
pends on the contributions of intermodel and internal
variability. This uncertainty is a measure not only of the
signal-to-noise ratio, but also of the validity of the basic
underlying scaling assumption. We have seen that for
temperature the uncertainty [as measured by the func-
tion �F,T(�Tg)] is much smaller than the signal [as mea-
sured by the function FT(�Tg)] for all cases, so that the
signals deriving from the use of Eqs. (1) and (2) can be
considered robust. Conversely, for precipitation this is
the case only for a much more limited number of cases,
in which the precipitation change signal is especially
large.

This method can be extended in various directions,
first of all by considering the application to different

variables (e.g., sea level pressure or circulation indica-
tors) and/or higher-order statistics (e.g., variability and
extremes). It would also be important to verify the scale
limit for which the approach is valid. This paper focuses
on the subcontinental scale, primarily because the reso-
lution of the MGME models is highly variable, with
some models still being run at rather coarse horizontal
resolutions (4°–5°). It has been shown, however, that
the surface climate change signal, in particular precipi-
tation, shows substantial finescale structure in response
to local forcings (e.g., topography; Gao et al. 2006), so
that the scaling hypothesis underlying our approach
needs to be verified at fine scales.

Another important issue concerns the effects of re-
gional–local (aerosols, land-use change) versus global
(GHG concentration) forcings. It can be expected that
these different forcings might have different regional
effects, which would in turn affect the scalability as-
sumption underlying the validity of Eq. (1). The simu-
lations analyzed here included both types of forcings
(GHG and aerosol), which varied across different sce-
narios. Remarkably enough, although the aerosol fac-
ings are different in the different scenarios (Nakicen-
ovic et al. 2000), the scalability assumption still seems to
hold, which is suggestive of a dominant contribution of
the GHG forcing for the experiments employed. These
experiments however did not include all aerosols, so
that aerosol effects might indeed be underestimated. In
addition, they did not account for the effects of land-use
change, which can also be especially important at the
regional scale (Feddema et al. 2005). Therefore, the
issue of regional versus global forcing needs to be care-
fully considered with more comprehensive model ex-
periments.

The method developed in this paper hinges upon the
availability of a sufficiently large number of intercom-
parable AOGCM simulations to develop meaningful
calculations of the different parameters appearing in
Eqs. (1) and (2), in particular the uncertainty functions.
In this regard, the author would like to commend the
MGME effort and recommends that such efforts be
continued and further extended in the future to pro-
duce large enough ensembles of climate change simu-
lations to improve our understanding and predictive
capability of regional climate change.
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