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Abstract
Introduction: Electrolyte disorders are common findings in 
kidney diseases and might represent a useful biomarker pre-
ceding kidney injury. Serum potassium [K+] imbalance is still 
poorly investigated for association with acute kidney injury 
(AKI), and most evidence came from intensive care units. The 
aim of our study was to comprehensively investigate this as-
sociation in a large, unselected cohort of hospitalized pa-
tients. Methods: We performed a retrospective observation-
al cohort study on the inpatient population admitted to Fon-
dazione Policlinico Universitario A. Gemelli IRCCS between 
January 1, 2010 and December 31, 2014, with inclusion of 
adult patients with at least 2 [K+] and 3 serum creatinine 
measurements who did not develop AKI during an initial 10-
day window. The outcome of interest was in-hospital AKI. 
The exposures of interest were [K+] fluctuations and hypo 
(HoK) and hyperkalemia (HerK). [K+] variability was evaluated 
using the coefficient of variation. Cox proportional hazards 
regression models were used to obtain hazard ratios and 

95% confidence intervals of the association between the ex-
posures of interest and development of AKI. Results: About 
21,830 hospital admissions from 18,836 patients were in-
cluded in our study. During a median follow-up of 5 (inter-
quartile range [IQR] 7) days, AKI was observed in 555 hospital 
admissions (2.9%); median time for AKI development was 5 
(IQR 7) days. Higher [K+] variability was independently asso-
ciated with increased risk of AKI with a statistically significant 
linear trend across groups (p value = 0.012). A significantly 
higher incidence of AKI was documented in patients with 
HerK compared with normokalemia. No statistically signifi-
cant difference was observed between HoK and HerK (p val-
ue = 0.92). Conclusion: [K+] abnormalities including fluctua-
tions even within the normal range are associated with de-
velopment of AKI. © 2022 The Author(s) 

Published by S. Karger AG, Basel

Introduction

Acute kidney injury (AKI) is a severe pathological con-
dition often observed in the hospitalized population [1, 
2]. The reported incidence is quite variable, ranging from 
7% to 57% [3, 4]. Higher morbidity and mortality associ-
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ated with such a severe disease justify medical and scien-
tific interest [5]. AKI is strongly associated with increased 
short-term (more than 4-fold increased likelihood of 
death in some reports [5]) and long-term mortality (mor-
tality risk ranging from 40% to 60% [6]), higher risk of 
incident chronic kidney disease (CKD) or progression of 
preexisting CKD [7] as well as increased hospital resource 
utilization with a significant burden on the healthcare 
systems [8].

Since the kidney is the main organ involved in the ho-
meostasis of water and electrolytes, it is not surprising 
that electrolyte disturbances have been frequently ob-
served in AKI patients [9, 10]. However, the few studies 
focusing on the electrolyte imbalances preceding kidney 
injury [11–14] reported a significant association between 
electrolyte disorders and AKI [11, 12, 14]. The electrolyte 
alterations associated with AKI were often described as 
simple bystanders that accompany other pathological 
conditions [9, 10], although a direct and independent 
causal association with kidney injury might be hypothe-
sized [11, 12, 14]. Embracing this point of view, electro-
lyte disorders might represent a useful biomarker preced-
ing overt kidney damage and potentially improving time-
ly medical intervention.

Serum potassium [K+] disorders preceding AKI are 
still poorly investigated in the medical literature. To date, 
no works have comprehensively explored the relation-

ship between [K+] imbalance and kidney injury or have 
explored its direct association with kidney damage. In or-
der to provide new insights on such topic, we performed 
an observational study on a large cohort of hospitalized 
patients aimed at investigating the relationship between 
[K+] disorders (including [K+] variability, hyperkalemia 
[HerK], and hypokalemia [HoK]) and AKI.

Materials and Methods

Setting and Study Population
We performed a retrospective observational cohort study on 

the inpatient population admitted to the Fondazione Policlinico 
Universitario Agostino Gemelli IRCCS between January 01, 2010 
and December 31, 2014. We included only adult patients (≥18 
years) with at least 2 [K+] and 3 serum creatinine (sCr) measure-
ments during the study period (Fig. 1). At least 2 [K+] and 2 sCr 
measurements during a 10-day window starting at in-hospital ad-
mission were considered necessary in order to explore the relation-
ship between [K+] variability and AKI (Fig. 2). All patients devel-
oping AKI during the 10-day window were excluded, as well as 
patients with end-stage kidney disease.

Data Collection
Demographic, clinical, and laboratory data were collected for 

each patient: age, sex [K+], sCr, primary and secondary Interna-
tional Classification of Disease, 9th Revision, Clinical Modifica-
tion (ICD-9-CM) diagnostic codes at hospital discharge, and vital 
status at hospital discharge. The same flame photometer was used 
for [K+] measurements during the whole study period (normal 

Fig. 1. Flowchart of the study.
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[K+] laboratory range 3.0–5.0 mmol/L; analytical coefficient of 
variation (CV) below 2.3% [range 1.3–1.7%]). Extreme [K+] levels 
(<2.0 mmol/L and >7.5 mmol/L), that could introduce distortion 
in the analyses and reflect untrue values (e.g., due to hemolysis), 
were removed.

Definitions
The CV was used as the measure of [K+] variability. Creatinine 

kinetics criteria were used for AKI definition [15]. The presence of 
AKI was assessed using absolute increases of sCr concentration 
during hospitalization. To do this, we calculated the difference be-
tween each sCr and the previously measured value during hospi-
talization. According to creatinine kinetics criteria, we defined 
AKI as an absolute increase in sCr of ≥0.3 mg/dL over 24 h or ≥0.5 
mg/dL over 48 h observed after the initial 10 days [15].

Patients were categorized according to all [K+] values recorded 
during hospital stay in the following groups: HoK (any [K+] value 
<3.0 mmol/L), HerK (any [K+] value >5.0 mmol/L), and normo-
kalemia (NK, all [K+] values ≥3.0 mmol/L and ≤5.0 mmol/L). Pa-
tients with a mixed [K+] disorder (lowest [K+] value <3.0 mmol/L 
and highest [K+] >5.0 mmol/L) were classified as HoK or HerK, 
whichever occurred first.

Comorbid conditions (cardiovascular diseases, malignancies, 
gastrointestinal diseases, genitourinary disorders, endocrine/met-
abolic disorders, infectious, and respiratory diseases) were identi-
fied using ICD-9-CM codes. End-stage kidney disease was identi-
fied using ICD-9-CM diagnostic and procedural codes or labora-
tory data (baseline estimated glomerular filtration rate [eGFR] <15 
mL/min/1.73 m2) [14].

Outcomes and Exposures
In-hospital AKI was the main outcome of interest. [K+] vari-

ability, expressed as quartiles of [K+] CV and analyzed as both cat-
egorical and numerical variable, was the main exposure of interest. 
HoK and HerK were also evaluated for association with the out-
come of interest.

Statistical Analysis
Quantitative variables were reported as mean and standard de-

viation or median and interquartile range (IQR) as appropriate. 
Categorical variables were described using frequencies and per-
centages. Normality of distribution for continuous variables was 
evaluated by inspecting Q-Q plots and histograms.

The association between [K+] variability and [K+] disorders 
with AKI was explored using a Cox regression hazard model. To 
account for multiple in-hospital admissions from the same patient, 
we used a Cox proportional hazards mixed effect “frailty” regres-
sion model, which incorporates a random intercept per patient. 
Survival time was defined as the time from the end of the 10-day 
window after in-hospital admission to development of AKI, end of 
the hospital stay (hospital discharge or death), or end of follow-up 
(30 days after the start of time at risk). All alive patients were cen-
sored at the time of hospital discharge or at the end of follow-up 
(Fig. 2). Hazard ratios with 95% confidence intervals were report-
ed for all survival analyses. The covariates included in multivari-
able regression analyses were: age, sex, comorbidities, [K+] value 
at hospital admission, and eGFR value at hospital admission.

To determine whether CKD modifies the relationship between 
[K+] disorders (HoK and HerK) and AKI, an interaction term for 
the baseline eGFR, higher or lower than 60 mL/min/1.73 m2, was 
entered into the model. To confirm our results, as sensitivity anal-
ysis, a subanalysis was performed only in NK patients. To evaluate 
the effect of number of [K+] measurements and differences in ob-
servation time between the first and last [K+] measurement on the 
association between [K+] variability and the outcome of interest, 
interaction analyses between subgroups (defined according to me-
dian values of those variables and reported as dichotomous vari-
ables) and [K+] variability were performed.

For analysis and data calculation, we used the R software (ver-
sion 3.4.4, R Foundation for Statistical Computing Platform). A 
two-tailed p-value <0.05 was considered as statistically significant.

Results

Overall, 21,830 hospital admissions from 18,836 pa-
tients were included in our study (Fig. 1). Descriptive mea-
surements of the study population are reported in Table 1.

Patients with higher [K+] variability were older with 
more comorbidities. In particular, we observed a higher 
prevalence in cardiovascular, genitourinary, gastrointes-
tinal, and respiratory diseases. As expected, patients in 
the highest quartile of [K+] variability showed a lower 

Fig. 2. Study design.
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baseline eGFR. During a median follow-up of 5 (IQR 7) 
days, AKI was observed in 555 hospital admissions (2.9%), 
median time for AKI development 5 (IQR 7) days.

Table 2 reports the association between [K+] variabil-
ity and AKI. Higher [K+] variability was independently 
associated with increased risk of kidney injury with a sta-
tistically significant linear trend across groups (p value = 
0.012); patients in the quartile of [K+] variability had a 
43% higher risk (95% confidence interval: 10, 85%) com-
pared with the first quartile. Results were materially un-
changed in analyses restricted to NK patients (online sup-
pl. Table 1; see www.karger.com/doi/10.1159/000521833 
for all online suppl. material). No significant interaction 
was observed for the number of [K+] measurements and 

observation time (p values for interaction 0.44 and 0.46, 
respectively) on the association between [K+] variability 
and AKI.

The prevalence of [K+] disorders was not different 
compared to what already reported in the literature [16]. 
In our study population, HerK and HoK were observed 
in 1,573 (7.2%) and 1,475 (6.8%) hospital admissions, re-
spectively. A significantly higher incidence of AKI was 
documented in patients with HerK compared with NK 
(Table 3). However, there was no statistically significant 
difference between HoK and HerK (p value = 0.92). No 
statistically significant interactions by the baseline eGFR 
were observed (p values for interaction 0.93 and 0.15 for 
HerK and HoK, respectively).

Table 1. Baseline characteristics of the study population stratified by quartile of [K+] variability

Q1
CV ≤4.62
(n = 4,775)

Q2
4.62 < CV ≤7.44
(n = 4,713)

Q3
7.44 < CV ≤10.88
(n = 4,728)

Q4
CV >10.88
(n = 4,620)

Age, mean (SD), years 61.9 (17.5) 63.2 (16.8) 64.5 (16.5) 66.7 (16.0)
Males, n (%) 2,461 (51.5) 2,596 (55.1) 2,469 (52.2) 2,094 (45.3)
Comorbidities, n (%)

Cardiovascular 1,999 (41.9) 2,152 (45.7) 2,205 (46.6) 2,205 (47.7)
Malignancies 1,654 (34.6) 1,846 (39.2) 1,752 (37.1) 1,691 (36.6)
Gastrointestinal 714 (15.0) 775 (16.4) 812 (17.2) 902 (19.5)
Genitourinary 494 (10.3) 538 (11.4) 571 (12.1) 670 (14.5)
Endocrine/Metabolic 914 (19.1) 940 (19.9) 970 (20.5) 1,000 (21.6)
Infectious 395 (8.3) 417 (8.8) 424 (9.0) 536 (11.6)
Respiratory 871 (18.2) 969 (20.6) 952 (20.1) 1,085 (23.5)

eGFR, mL/min/1.73 m2, mean (SD) 79.1 (25.6) 76.8 (26.3) 75.9 (26.5) 74.2 (26.9)
[K+], mean (SD), mmol/L 4.0 (0.4) 4.0 (0.4) 4.0 (0.5) 3.9 (0.7)
[K+] measurements, median (IQR) 3 (2) 4 (2) 4 (2) 4 (3)
Observation time, days, median (IQR) 7 (3) 8 (3) 8 (3) 8 (3)
[K+] CV, median (IQR) 3.0 (2.0) 6.0 (1.4) 9.0 (1.7) 13.9 (4.5)

CV, coefficient of variation; SD, standard deviation.

Table 2. Association between [K+] variability and in-hospital AKI

CV quartile Events, 
n (%)

Person-
time, 
years

Events per 
1,000 person-
years

Model 1 Model 2

HR (95% CI) p value 
for trend

HR (95% CI) p value 
for trend

Q1 100 (1.8) 101.3 987 1.00 (reference)

p = 0.001

1.00 (reference)

0.012
Q2 147 (2.7) 100.9 1,457 1.48 (1.14, 1.91) p = 0.003 1.36 (1.05, 1.76) p = 0.019
Q3 151 (2.8) 98.6 1,531 1.56 (1.21, 2.01) p < 0.001 1.40 (1.08, 1.80) p = 0.011
Q4 157 (2.9) 102.4 1,533 1.56 (1.21, 2.01) p < 0.001 1.43 (1.10, 1.85) p = 0.007

Model 1: univariable model. Model 2: multivariable model adjusted for age, sex, comorbidities, [K+] value at hospital admission, eGFR, 
and value at hospital admission. CI, confidence interval; CV, coefficient of variation; HR, hazard ratio.
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Discussion

Our study demonstrates a relationship between [K+] 
disorders and subsequent AKI. Based on these findings, 
[K+] disorders are not only a consequence of kidney im-
pairment but can also be considered a risk factor for the 
development of overt kidney injury. Analyzing a large co-
hort of hospitalized patients, we demonstrated a signifi-
cant association between higher [K+] variability and ab-
normalities and kidney injury (also confirmed in NK pa-
tients).

Serum potassium [K+] imbalance is still poorly inves-
tigated for association with AKI and most evidence come 
from the intensive care unit (ICU). A recent paper from 
Chen et al. [17] documented a significant association be-
tween [K+] disorders and AKI in a cohort of ICU patients. 
To our knowledge, our study is the first to assess the re-
lationship between [K+] disorders and AKI in a general 
hospitalized population. Most of the previous studies 
have focused on electrolyte disorders following kidney 
injury. Recent scientific evidence has raised new interest 
on electrolyte derangements and their relationship with 
patient outcomes [11–14, 18, 19]. Since the kidney is the 
main organ involved in the balance of water and electro-
lytes, its relationship with such disorders is not surpris-
ing.

Whether [K+] disturbances are contributors to AKI or 
rather simple epiphenomena is not clear and was never 
discussed in previous studies. The direct mechanism un-
derlying the association between [K+] imbalance and AKI 
is not easy to hypothesize. Several kidney abnormalities 
have been related to hypokalemic status. Lower [K+] con-
centrations are known to induce renal structural changes, 
consisting of renal hypertrophy, cystic changes, and tu-
bulointerstitial injury and fibrosis [20, 21]. It is plausible 
that preexisting status of chronic kidney impairment, still 
unrevealed by sCr concentration, due to long-standing 
[K+] depletion, may predispose to AKI development. An-

other possible explanation of our findings lies on the re-
lationship between [K+] and acid-base disorders and so 
between HerK and metabolic acidosis [22]. It might be 
that HerK condition or positive [K+] fluctuations could 
reflect an initial or overt acid-base disorder. Accumulat-
ing evidence identifies the significant association between 
acidosis and kidney damage [23–26]. From a biological 
perspective, metabolic acidosis may reduce renal blood 
flow [24] and increase the release of inflammatory me-
diators [25], resulting in kidney injury.

However, it is worth noting that even subclinical AKI 
[27], yet undocumented by the rise in sCr, could justify 
electrolyte abnormalities. As sparsely reported in the sci-
entific literature, electrolyte derangements may also ac-
company or precede kidney damage [11, 12, 14], serving 
as useful serological marker of renal impairment. Previ-
ous studies have already revealed the relationship be-
tween AKI and specific electrolyte disorders including 
hypernatremia, hyponatremia, hyperchloremia, and hy-
pomagnesemia [11–14, 28]. Recently, Chen et al. [12] es-
tablished and validated a new risk scoring system involv-
ing several serum electrolyte disorders with a good per-
formance on AKI prediction. Since sCr is a suboptimal 
marker of kidney injury and kidney research still strug-
gles seeking the “optimal” biomarker [29, 30], electrolyte 
imbalance could play an important role on this issue im-
proving AKI diagnosis and timely medical intervention. 
Embracing this concept, [K+] disorders could represent a 
marker of patient instability, of the severity of the under-
lying diseases [9, 10] as well as the need for greater use of 
medications that increase the risk of kidney injury. From 
this perspective, monitoring [K+] variability and disor-
ders might represent a useful serological marker that ac-
companies or anticipates kidney injury.

With our paper, we propose a new point of view. Sure-
ly, [K+] disorders commonly follow AKI, but they may 
also precede overt kidney injury. Higher [K+] variability, 
which may suggest possible subsequent renal impair-

Table 3. Association between [K+] disorders and AKI

Disorder Events, 
n (%)

Person- 
time, years

Events per 
1,000 person-years

Model 1 HR (95% CI) Model 2 HR (95% CI) Model 2 HR (95% CI)

NK 429 (2.3) 341.0 1,258 1.00 (reference) 1.00 (reference) 0.75 (0.55, 1.04) p = 0.086
HoK 51 (3.5) 31.8 1,604 1.27 (0.95, 1.71) p = 0.11 1.33 (0.96, 1.83) p = 0.086 1.00 (reference)
HerK 75 (4.8) 30.4 2,467 1.98 (1.54, 2.54) p < 0.001 1.36 (1.02, 1.82) p = 0.039 1.02 (0.65, 1.60) p = 0.92

Model 1: univariable model. Model 2: multivariable model adjusted for age, sex, comorbidities, [K+] value at hospital admission, eGFR, 
and value at hospital admission. CI, confidence interval; HR, hazard ratio.
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ment, should warrant medical attention in order to pur-
sue an early diagnosis of kidney damage and consequent-
ly establish timely therapy.

Our study has several strengths. It is the first to com-
prehensively analyze the relationship between [K+] disor-
ders and subsequent AKI development in a general co-
hort of hospitalized patients. Furthermore, the large sam-
ple size, the robustness of results to sensitivity analyses, 
and a creatinine-based model for AKI definition provide 
strength to our findings. Moreover, using a 10-day win-
dow since in-hospital admission with stable creatinine 
gave us the opportunity to exclude AKI during the first 
days, thus reducing the risk of reverse causation by attrib-
uting an AKI event already in development at admission 
to our exposure of interest. Finally, the inclusion of pa-
tients from medical and surgical wards as well as intensive 
and non-ICUs provide more generalizability to our re-
sults. However, our study also has limitations, including 
the retrospective design, the lack of information on med-
ications used during hospital stay, and the use of ICD-9-
CM codes for comorbidities definition.

In conclusion, potassium abnormalities including 
fluctuations even within the normal range are associated 
with development of AKI. Future longitudinal studies 
with prospective design are needed to provide more in-
sights in such interesting topic.
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