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Abstract—Coordinated charging of plug-in electric vehi-
cles (PEVs) can effectively mitigate the negative effects imposed
on the power distribution grid by uncoordinated charging.
Simultaneously, coordinated charging algorithms can accommo-
date the PEV user’s needs in terms of desired state-of-charge
and charging time. In this paper, the problem of tracking an
arbitrary power profile by coordinated charging of PEVs is for-
mulated as a discrete scheduling process, while accounting for
the heterogeneity in charging rates and restricting the charging
to only the maximum rated power. Then, a novel distributed
algorithm is proposed to coordinate the PEV charging and elim-
inate the need for a central aggregator. It is guaranteed to track,
and not exceed, the power profile imposed by the utility, while
maximizing the user convenience. A formal optimality analysis
is provided to show that the algorithm is asymptotically opti-
mal in case of Homogeneous charging, while it has a very small
optimality gap for the heterogeneous case. Numerical simulations
considering realistic charging scenarios with different penetra-
tion levels and tracking of a valley-filing profile are presented to
validate the proposed charging algorithm.

Index Terms—Coordinated charging, distributed algorithm,
power profile tracking, plug-in electric vehicle.

I. INTRODUCTION

PLUG-IN electric vehicles (PEVs) are the building blocks
of a transportation electrification paradigm. However,

uncoordinated charging of a large fleet can have adverse
effects on the power grid, including increased peak load, trans-
mission loss, and stress on distribution transformers [1]–[5].
Coordinated charging strategies can address such negative
effects. From the user’s perspective, the convenience of charg-
ing the battery to a desired state-of-charge (SOC) within the
required charging time is important. This user convenience can
be quantified as a function of battery capacity and charging
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time [6], [7]. From the utility perspective, it is important to
reduce the peak and variance of the load profile imposed on
the grid by PEVs [8]. Moreover, the grid operator may require
the PEVs to track a charging profile, e.g., to address the inter-
mittency of renewable energies [9] or exhibit a valley-filling
profile [10], [11], in a centralized [12] or decentralized [13]
fashion.

Often-neglected practical aspects in coordinated charging of
PEVs include the limitation of charger technologies and the
heterogeneity of the charging process. Most charging schemes
consider a continuous charging scenario, e.g., [7], [10], [14]
to name a few, where the PEVs can withdraw any power from
the grid. However, in practice PEVs are charged with power
electronics chargers with given power ratings. Discrete charg-
ing scenarios can be formulated as a scheduling problem at
the charger’s maximum power rating. The on/off switching
behavior of discrete charging process may potentially allow the
battery some cool off time and mitigate rapid temperature rise,
an important factor for battery lifetime longevity [15]. Very
few existing work discuss heterogeneous charging scenarios,
e.g., [6], [8], [16]–[20]. In general, heterogeneous coordinated
charging of PEVs, with discrete charging rates, is largely
unexplored.

Existing decentralized charging strategies distribute the
computational overhead from the central aggregator to the
PEVs, with a hierarchical, tree-like, communication topology.
In [6], a two-layer hierarchical structure is considered, where
sub-aggregators (SAs) accumulate data from a set of PEVs and
report them to the central aggregator constraining the power
at both layers. In [21], a layered structure, with constraints
accounting for the entire distribution grid, is considered. The
algorithms with a central aggregator need a high level of net-
work connectivity, and require high-bandwidth communication
links to exchange data. Moreover, in centralized systems, the
central aggregator exposes a single point-of-failure, i.e., the
failure of the aggregator results in the collapse of the entire
system. Similarly, in a hierarchical setup (e.g., [6] and [21]), if
the link between a sub-aggregator and the central aggregator
collapses, all the PEVs under the SA will be left uncontrolled.
Alternatively, distributed charging scenarios replace the central
aggregator with multiple sub-aggregators that communicate
amongst themselves. Thus, even if a link between two SAs is
broken, an alternative communication path connecting the SAs
could be used, and the distributed framework is still functional.
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Fig. 1. Example of a sparse communication network with 6 sub-aggregators.

If a SA goes down, of course the PEVs connected to it will
remain uncontrolled. Thus, the main advantage of a distributed
architecture is that, since there is no central aggregator as in a
hierarchical or centralized setting, not all PEVs end up being
uncontrolled in the case of a single failure.

The main contributions of the paper are the following:
• The problem of tracking an arbitrary power profile by

coordinated charging of PEVs is formalized consider-
ing the realistic case of PEVs with different charging
rates (heterogeneous scenario). Thus, the classical valley-
filling behavior is just a sub-case of the more general
problem considered in this work.

• A novel distributed algorithm coordinates the PEV charg-
ing and eliminates the need for a central aggregator. It is
guaranteed to track, and not exceed, the power profile
imposed by the power utility, while maximizing the user
convenience.

• A formal optimality analysis of the proposed algorithm
is provided. Asymptotic optimality is proven in the case
of homogeneous charging. An optimality gap is derived
for the heterogeneous case and shown to be very small
in practical settings (ensuring near optimality).

The rest of this paper is organized as follows. Section II
formulates the charging process as a scheduling algorithm and
defines a user convenience function based on battery SOC and
plug-off time. In Section III, the proposed distributed charging
algorithm is discussed and an optimality analysis is provided.
In Section IV, the algorithm effectiveness is demonstrated
by tracking different target profiles and studying different
penetration levels. The complexity and scalability of the algo-
rithm is also discussed. Finally, Section V provides concluding
remarks.

II. PROBLEM FORMULATION

A. Sub-Aggregator Configuration

PEVs are divided amongst disjoint groups, each represented
by a SA. The SA is a virtual entity, which communicates
only with the PEVs in its respective group and with some of
the neighboring SAs in the power distribution network. An
example of a charging platform, with six SAs, is shown in
Fig. 1. This architecture can be exploited by a distributed algo-
rithm to coordinate PEV charging with a low communication
rate between a PEV and its SA, and a higher communica-
tion rate among SAs. This cyber architecture can be mapped
into the physical power distribution network [6]. The SA can

be mapped onto a power substation that receives power from
the grid and distributes it locally among PEVs. Thus, since
the total available power from the grid is assumed to be lim-
ited, a coordination among SAs is required. In addition, a SA
can also handle the transformer capacity, i.e., the limit on the
maximum power available at a substation.

B. Problem Statement

Assume the charging time horizon is discretized in time
slots of a few minutes each (e.g., 15 minutes). For a given
time slot, the total number of PEVs to be charged is N, the
number of SAs is K, and the number of PEVs in the k-th SA
is Nk. For the k-th SA, the set of connected PEVs is denoted
by Sk, thus, Nk = |Sk| (the cardinality of set Sk).

The charging strategy is controlled by binary decision
variables via which each PEV is either allowed, or denied
to charge during each time slot. The coordinated charg-
ing problem is focused on selecting PEVs to charge during
each time slot, while fulfilling the power grid constraints
and maximizing the user convenience. The problem formu-
lation is motivated by the one discussed in [6] and can be
expressed as

maximize: J =
K∑

k=1

Nk∑

i=1

Ji,kLi,ksi,k (1)

subject to
Nk∑

i=1

si,kLi,k ≤ Pk (2)

K∑

k=1

Nk∑

i=1

si,kLi,k ≤ P (3)

where si,k ∈ {0, 1} denotes the binary charging variable for
i-th PEV in k-th SA at the rated power Li,k. The objective
function J in (1) is the cumulative user convenience function,
where Ji,k is the user convenience function per unit power
for the i-th PEV in the k-th SA. Thus, the user convenience
for the i-th PEV in the k-th SA is given by Ji,kLi,k; more
details on the user convenience function per unit power, Ji,k,
are provided in the next section. The constraints (2) and (3)
represent the limits on the available power to each SA, Pk,
and to all PEVs, P. In details, the constraint (2) relates to
the maximum power accessible to the k-th SA which takes
into account the physical limitations of the substation. Instead,
the constraint (3) states that the total power to charge the
PEVs cannot exceed the available power. In line with [22],
a successful PEVs charging strategy should conceal the EV
penetration from the system to maintain the original peak
demand level without PEVs. Thus, to achieve this goal, the
maximum available power P is set to the original peak demand
level as in [6].

C. User Convenience

The present work proposes the following function to quan-
tify the user convenience per unit power required in (1):

Ji,k = SOCdesired
i,k − SOCcurrent

i,k

Li,k · max
(

1, tplug−off
i,k − tcurr

) (4)
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where SOCdesired
i,k and SOCcurrent

i,k represent the expected SOC

at the plug-off time, tplug−off
i,k , and the SOC at the current time,

tcurr, respectively, for i-th PEV in k-th SA. This function is
inspired from the weights function in [6].

The user convenience value in (4) includes remaining SOC,
remaining time to charge, and charging rate. The numerator
is the percentage of remaining SOC to fully satisfy the user,
considering the desired SOC at the plug-off time. Its range
is [0, 100], and it decreases to 0 when the battery is charged
(i.e., SOCcurrent

i,k = SOCdesired
i,k ). The denominator includes the

PEV charging rate, Li,k, and the remaining time for charging
with respect to the expected plug-off time provided by the
user at the plug-in time. The charging rate provides a user
convenience per unit power. The times are expressed in time
slot units, so that in a day they range from 0 to 96, assum-
ing 15 minute time slot each. The maximum operator in the
denominator ensures that if the user leaves the PEV connected
after the expected plug-off time, the denominator in (4) stays
positive. This user convenience function is bounded between
minimum J = 0 and maximum J = 100/L, where L is the
lowest possible charging rate.

Finally, note that although the user convenience per unit
power in (4) is adopted here, any arbitrary user convenience
function may be used in its place. The problem formulation
does not depend on an specific user convenience function.
Moreover, the definition of user convenience has no bearing
on the optimality and convergence of the distributed algorithm
proposed in the next section.

III. DISTRIBUTED CHARGING STRATEGY

A. Algorithm Description

The goal is to maximize the cumulative user convenience
in (1), by selecting a subset of PEVs to charge at each time
slot. The rationale of the proposed approach is to collect the
user convenience values of all PEVs in a distributed fashion
and locally choose the subset of PEVs allowed to charge in
order to maximize the cumulative user convenience.

The proposed algorithm involves a two stage procedure. In
the first stage, each SA collects and sorts the user convenience
values of the PEVs in its area (steps 1-4 of the algorithm).
Here, the local power constraints Pk for each SA k are satis-
fied. In the second stage, a consensus procedure is performed
among SAs to allow each SA to collect the user convenience
values of all PEVs in the system (step 5 of the algorithm).
Then, each SA can locally evaluate a control signal for the
PEVs in its area, i.e., a threshold value defining the set of PEVs
allowed to charge (steps 6-7 of the algorithm). The global
constraint on the available power P is satisfied at this second
stage. The proposed algorithm is described by the following
steps that are also illustrated in Fig. 2.

1) Computation of User Convenience Value at Each PEV:
The i-th PEV of k-th SA locally computes its user conve-
nience, Ji,k. Then, it transmits Ji,k, and the rated power Li,k,
to its SA.

2) Sorting User Convenience Values at Each SA: The SA
collects the user convenience values from all PEVs in its
area and sorts them in a descending order. For the k-th SA,

this ordered set is

Pk =
{

Jo1,k, Jo2,k, . . . , Joi,k, . . . , JoNk ,k

}
(5)

with o1, o2, . . . , oNk as the indexes of the sorted PEVs in Sk,
where

Joi,k ≥ Joi+1,k, ∀i ∈ [1, Nk − 1] (6)

3) Satisfying Local Power Constraints at Each SA: To sat-
isfy the local power constraints Pk at each SA k, each SA can
truncate the ordered set Pk in (5) such that the total power
required by the PEVs in the truncated Pk is not greater than
the available power Pk. Formally, if

∑oNk
i=o1

Li,k > Pk, the SA
updates the set Pk as

Pk =
{

Jo1,k, Jo2,k, . . . , JoÑk
,k

}
, (7)

where Ñk fulfills the local power limitations, i.e.,

oÑk∑

i=o1

Li,k ≤ Pk <

oÑk+1∑

i=o1

Li,k. (8)

4) Building the Histogram of User Convenience Values of
the PEVs at Each SA: Since the user convenience function
may provide infinite values in the set of real numbers, the
collected values in (7) are discretized in arbitrarily small bins
(intervals) to obtain a finite set of values. Thus, the range of
Ji,k values, namely the interval [J, J], is divided into M bins,
such that the m-th bin corresponds to

bm = [
J + (m − 1)�, J + m�

]
(9)

where � = (J − J)/M denotes the bin width. Then, the power
requirement of the PEVs in each bin, bm, is calculated at each
SA first. Let Pk,m denote the user convenience values in the
set Pk of the k-th SA which fall within the m-th bin, i.e.,

Pk,m = {
Joi,k ∈ Pk and Joi,k ∈ bm

}
(10)

with power requirement ρk,m = ∑
Ji,k∈Pk,m

Li,k. Thus, it can
easily be deduced that

Pk =
M⋃

m=1

Pk,m. (11)

5) Applying a Consensus Procedure to Find the Total Power
Required by PEVs in Each Bin: Since there may be PEVs
with Ji,k ∈ bm connected to different SAs, all SAs have to
collaborate to determine the total required power, �m, in each
bin bm. This can be expressed by

�m =
K∑

k=1

ρk,m = K
1

K

K∑

k=1

ρk,m = K�̄m, m ∈ [1, M]. (12)

Thus, the SAs perform a consensus-based procedure to eval-
uate �m. In detail, the average power requirement of PEVs
in each bin, �̄m, can be computed by running an averag-
ing consensus algorithm [23]. In practice, a certain number
of iterations is required to reach consensus, i.e., the consen-
sus procedure stops when each SA knows the total required
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Fig. 2. Summary of the proposed algorithm.

power at bin m, �m. Thus, the following stopping criterion is
considered⌊

�̂τ
k,mK

⌉
=

⌊
�̂τ

k′,mK
⌉
, ∀k, k′ ∈ {1, 2, ...K}, (13)

where τ is the iteration number for the consensus procedure
and �̂τ

k,m is the local estimate of �m at the k-th SA after
the τ -th iteration, while �·	 denotes the rounding operation.
It takes a finite number of iterations to satisfy the stopping
criterion in (13) as will be shown later in the case studies.

Finally, the number of SAs, K, is assumed to be known to
all the SAs, or it can be computed in a distributed fashion
using, e.g., the approach in [24].

6) Finding the Threshold for User Convenience Values to
Set the Charging Decision Variables at Each SA: Each SA
locally evaluates a threshold value, ϕk, that is a control signal
for the PEVs in its area. Only the PEVs with user convenience
Ji,k greater than the threshold ϕk are allowed to charge in
the current time slot. First, each SA computes the cumulative
required power,

Cm =
M∑

k=m

�k, (14)

to charge all PEVs whose user convenience values lie on the
M −m+1 rightmost bins. Then, assuming the available power
P is known, each SA calculates the bin μ where the threshold
ϕk lies as follows:

μ =
⎧
⎨

⎩

M, CM ≥ P
m, Cm ≥ P ≥ Cm+1
1, P ≥ C1.

(15)

Thus all PEVs in bins with index greater than μ are allowed to
charge, while only some PEVs in bin μ can charge. Since at
any SA the exact user convenience values and charging rates
of the PEVs from other SAs is not available, each SA can
evaluate the power made available to bin μ as

�k,μ = P − Cμ+1

�μ

⎛

⎝
∑

Ji,k∈Pk,μ

Li,k

⎞

⎠, (16)

i.e., in proportion to the cumulative charging load of the PEVs
in the μ-th bin of the SA. Then, the number i� of PEVs that
can charge from the μ-th bin of the k-th SA is evaluated as

i�∑

i=1

Loi,k ≤ �k,μ <

i�+1∑

i=1

Loi,k. (17)

Finally, the threshold ϕk, i.e., the control signal for PEVs in
its area, is computed as

ϕk = Loi� ,k. (18)

7) Charging Decision at Each PEV: Each SA broadcasts
the threshold ϕk to PEVs in its group. Then, each PEV makes
a binary charging decision

si,k =
{

1, if Ji,k ≥ ϕk

0, otherwise
, ∀k ∈ {1, . . . , K}, i ∈ Sk (19)

to decide if the i-th PEV connected to the k-th SA is allowed
to charge (when the user convenience Ji,k is greater than the
threshold ϕk) or not.

B. Optimality Analysis

The cumulative user convenience function J can be rewrit-
ten, by exploiting the information about the bin μ where the
threshold ϕk lies, as

J =
K∑

k=1

Nk∑

i=1

Ji,kLi,ksi,k =
K∑

k=1

μ−1∑

m=1

∑

Ji,k∈Pk,m

Ji,kLi,ksi,k

+
K∑

k=1

∑

Ji,k∈Pk,μ

Ji,kLi,ksi,k

+
K∑

k=1

M∑

m=μ+1

∑

Ji,k∈Pk,m

Ji,kLi,ksi,k (20)

Since bins {μ + 1, μ + 2, . . . , M} represent PEVs with higher
Ji,k that will be charged, and that the PEVs belonging to
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{1, 2, . . . , μ − 1} cannot be charged, the maximum J in (1)
will be

max(J) =
K∑

k=1

M∑

m=μ+1

∑

Ji,k∈Pk,m

Ji,kLi,k

+ max

⎛

⎝
K∑

k=1

∑

Ji,k∈Pk,μ

Ji,kLi,ksi,k

⎞

⎠, (21)

where the max in (21) is found such that
K∑

k=1

∑

Ji,k∈Pk,μ

Li,ksi,k ≤ P − Cμ+1. (22)

Instead, the proposed algorithm due to step (6) can achieve a
maximum user convenience, max(Jalg), given by

max
(

Jalg
)

=
K∑

k=1

M∑

m=μ+1

∑

Ji,k∈Pk,m

Ji,kLi,k

+
K∑

k=1

max

⎛

⎝
∑

Ji,k∈Pk,μ

Ji,kLi,ksi,k

⎞

⎠ (23)

which is different from (21) as each SA individually tries
to maximize J for its local PEVs connected to it. Each
maximization inside the sum in (23) is performed such that

∑

Ji,k∈Pk,μ

Li,ksi,k ≤ �k,μ. (24)

Considering (21) and (23), the following propositions can be
derived.

Proposition 1: In a homogeneous scenario (where all PEVs
have the same charging rate, i.e., Li,k = L, ∀i, k), the
proposed algorithm maximizes the user convenience in (1)
asymptotically as the number of bins increases.

Proof: See Appendix A.
Proposition 2: In the general case of a heterogeneous sce-

nario, as the number of bins increases, the proposed algorithm
maximizes the user convenience in (1) asymptotically if the
μ-th bin has only one PEV. Otherwise, a percentage optimality
gap ε% is defined as

ε% =
⎧
⎨

⎩max

⎛

⎝
K∑

k=1

∑

Ji,k∈Pk,μ

Ji,kLi,ksi,k

⎞

⎠

−
K∑

k=1

max

⎛

⎝
∑

Ji,k∈Pk,μ

Ji,kLi,ksi,k

⎞

⎠

⎫
⎬

⎭

/
max(J), (25)

where the max operators are subject to (22) and (24), respec-
tively.

Proof: See Appendix A.
It is worthy to note that the numerator of (25) depends only

on the PEV selection from the μ-th bin and, hence, majority of
PEVs have no impact on ε%, while the denominator represents
all the charging PEVs from a SA. Moreover, the sub-optimality
related to the numerator corresponds to just one PEV per SA,
i.e., a total of K PEVs in the whole power system. Therefore,
as the number of PEVs being charged per SA increases, the
optimality gap ε% goes to zero.

Fig. 3. Example of division of the range [J, J] with (a) normal procedure
and (b) recursive approach. The red line represents the threshold.

C. Recursive Bin Splitting

The proposed algorithm maximizes the objective function
in (1) accurately as the number of bins, M, tends to infinity.
However, this increases the complexity of the consensus proce-
dure in step (5) of the algorithm. Moreover, such an increment
of bins across the entire range [J, J] is not necessary, since
only a small interval of values around the unknown threshold
ϕk is beneficial for the proposed algorithm’s near optimality
(or asymptotically exact in the homogeneous case).

A recursive approach is proposed to trade-off between the
algorithm optimality and complexity. The idea is to recur-
sively divide the range of user convenience values into a small
number of bins, M̆, moving towards the threshold ϕk at each
recursion. Therefore, the number of bins around the thresh-
old increases, decreasing the optimality gap, and ensuring
asymptotic optimality in the homogeneous case. The sequen-
tial processing introduced by the recursive bin splitting may
increase the execution time, but the number of computations
and communicated data remains the same. However, one can
note that this time increment is extremely small (order of sec-
onds) compared to the time slot duration (order of minutes).
It will be shown in Appendix B, that the optimal value of M̆
for the recursive bin splitting is 3.

Fig. 3 illustrates the idea and the computational advan-
tages of the recursive process. The basic procedure shown in
Fig. 3(a) requires the simultaneous consensus on 27 bins. The
recursive approach shown in Fig. 3(b) requires the consensus
on only 9 bins and a triple execution time. Note that, in both
scenarios, the final bin width is the same, i.e., (J − J)/27.

IV. CASE STUDIES

A. Tracking Arbitrary Charging Profile

The aim of this section is to show the ability of the pro-
posed algorithm to track any given power profile specified
by the grid operator. The algorithm treats the target profile
as the total power available for charging, P. Each PEV is
assumed to have a 12.5kWh battery with 0% initial SOC.
The target SOC is 80% (i.e., a required charge of 10kWh
for each PEV). Three possible charging rates are considered:
(a) Level 1 charger with 1.4kW, (b) single-phase Level 2
chargers with 3.3kW, and (c) three-phase Level 2 chargers
with 6.6kW [25]. Such charger types are considered for 40%,
40% and 20% of the PEVs, respectively. Finally, the value of
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Fig. 4. Tracking examples with two different profiles in (a) and (b).

J = 30/L is considered, with L =1.4kW. A value of 30/L is
used instead of the earlier suggested 100/L since it has been
observed in the simulation that the user convenience never
exceeds 30/L.

In Fig. 4(a), up-scaling the simulation setup in [10], 4000
PEVs are assumed to track a target profile with a certain reg-
ular shape. A total of 10 sub-aggregators are considered, each
with 400 PEVs whose plug-in and plug-off times are uniformly
distributed between 9:00-11:00 and 15:00-17:00, respectively.
As can be seen from Fig. 4(a), the target profile is closely
tracked and the power requirement never exceeds the avail-
able power. In the figure, a limited amount of power is not
allocated and as a result the power profile with the proposed
algorithm dips below the target profile between 16:00 hours
and 17:00 hours, this is due to the absence of connected PEVs
to charge. Another example with an arbitrary profile to track
is illustrated in Fig. 4(b). Here, the profile shape is more
variable than in the previous case. A population of 20000
PEVs connected from the first to the last time slot is con-
sidered. The profile obtained with the proposed distributed
algorithm is the same as the target profile, demonstrating again
the effectiveness of the proposed approach.

To compare the solution obtained by the proposed algorithm
with the optimal one, the total optimality gap (εtot) over a time
horizon [t0, tfin] is defined as a function of the optimality gap
ε%(t) at time slot t in (25)

εtot =
tfin∑

t=t0

w(t)ε%(t), (26)

with

w(t) = min
(
P(t), Ltot(t)

)

tfin∑
t=t0

min(P(t), Ltot(t))

(27)

and

Ltot(t) =
K∑

k=1

Nk∑

i=1

Li,k. (28)

Thus, the total optimality gap is the weighted average of the
optimality gap at each time slot of the time horizon, where
the weights are proportional to the power required to charge
PEVs during the time slot.

For the considered case studies, the total optimality gap
is a very small number. In detail, for the target profile in
Fig. 4(a), mean and max total optimality gaps are a mere
0.04% and 0.09%, respectively, while for the case given
in Fig. 4(b) they are 0.10% and 0.86%, respectively. Thus,
the proposed distributed algorithm can effectively track any
given profile. Moreover, compared to the existing approaches
in [6] and [10] where the power profile of the coordinated
charging can potentially go above the target profile to be
tracked, the proposed solution guarantees that the coordinated
charging profile with our algorithm never goes above the target
profile. Such guarantees are necessary since in their absence
the algorithms may potentially overload the system resulting
into catastrophic outcomes.

B. Obtaining Valley-Filling Profile

The tracking capabilities of the proposed algorithm can be
exploited to achieve a valley filling behavior, i.e., to schedule
the PEVs during the night hours when the power cost is lower.
This case study considers a residential setting with 10000
houses. The daily average load for the houses in the Southern
California Edison area [26] is used to generate the base load
profile. The set of PEVs includes sedans, compacts, and road-
sters with a share of 40%, 40% and 20%, respectively. The
batteries of sedans, compacts, and roadsters require 3, 8, and
12 hours of charging with a 3.3kW charger, respectively [25].
Charger types and distribution is the same as considered in
the previous case study. Initial SOC is considered to be a
Gaussian distributed random variable with mean at 0.5 and
variance of 0.1 [8]. Plug-in and plug-off times are Gaussian
distributed random variables with means at 5 PM and 7 AM
(the next day), respectively, while their variances are consid-
ered to be 2 hours and 1 hour, respectively [8]. The target
SOC is 80%. The average number of PEVs per household is
1.86 based on the National Household Travel Survey [27].

A total of 10 sub-aggregators with 15%, 14%, 13%, 12%,
10%, 10%, 8%, 7%, 6%, 5% of the PEVs, respectively, are
considered in this case study. The power constraints are in
line with [6]. The constraints on total available power, P, is
set as the maximum value of the base load curve. In detail,
the local power constraints at each sub-aggregator, Pk, are set
to be 25% larger than the mean power requirement across all
sub-aggregators. On average, 10% of PEVs are connected to a
sub-aggregator and, hence, Pk is the power required to charge
12.5% of PEVs.

In Fig. 5(a), the proposed algorithm is shown to allocate
the PEVs load to non-peak periods, unlike the uncoordinated
PEV charging that increases the peak load. This case study
considers the scenario with 20% PEV penetration level and
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Fig. 5. Example of obtaining a valley-filling behavior: (a) aggregated load
profile including PEVs, (b) profile to track for PEV charging only, and
(c) cumulative user convenience values.

three different target profiles for the proposed algorithm. The
three target profiles are considered to be 60%, 80%, and 100%
of the peak base-load profile, respectively. As can be inferred
from Fig. 5(a), the proposed algorithm closely follows the tar-
get profiles in all three cases. Indeed, in a practical scenario,
the available power for PEV charging can be defined consid-
ering the generation capacity of the utility in conjunction with
forecasts of base and PEV loads. Fig. 5(b) shows the three
different target profiles to track for the proposed algorithm.
The charging profile never exceeds the available power and
closely follows the target profile. Thus, the proposed algorithm
can be effectively exploited to obtain a valley filling profile.
Finally, the cumulative user convenience value is illustrated in
Fig. 5(c) for both the optimal case and the proposed algorithm,
under different target profiles. These curves nearly overlap at
all time instants. Thus, the proposed algorithm can achieve
near-optimality in a heterogeneous setup, as also reported in
Proposition 2.

C. Numerical Performance

Table I and II present statistical information about the algo-
rithm performance at 20%, 50%, and 100% PEV penetration
levels with the target SOC of 80% and 100%, respectively.

TABLE I
COMPARISON OF SOC AT DIFFERENT PENETRATION

LEVELS WITH TARGET SOC AS 80%

TABLE II
COMPARISON OF SOC AT DIFFERENT PENETRATION

LEVELS WITH TARGET SOC AS 100%

TABLE III
COMPARISON OF APPROXIMATION ERROR WITH DIFFERENT

NUMBER OF RECURSIVE BIN SPLITTING ITERATIONS

A target profile such that the aggregated profile does not
exceed 100% of the peak of the base load profile has been con-
sidered. PrX represents percentage of PEVs with SOC greater
than X% at the plug-off time, while SOC is the mean of the
final SOC. The values obtained have been found over 100 runs
of the algorithm. It is possible to note that the total optimality
gap is about 0.1-0.2%, irrespective of the number of PEVs
to charge. In the 20% penetration case, there are 3720 PEVs
to be charged and almost all of them reach the target SOC
of 80%. Similar results are reported for the 50% penetration
case with 9300 PEVs. Even for the extreme case of 100%
penetration, more than 90% of the PEVs achieve 70% SOC,
with an average SOC of 77%, and with a negligible optimality
gap of 0.10%. Naturally, not all PEVs achieve the target SOC
due to the limited available power. For the 100% target SOC
case with 20% and 50% PEV penetration levels, almost all
PEVs reach the target SOC. Finally, it is worthy to note that
the total optimality gap is even smaller for 100% target SOC
compared to the previous case with 80% target SOC.

Table III shows that the recursive bin splitting reduces the
difference between the optimal solution and the one achieved
by the proposed algorithm, while linearly increasing the num-
ber of actual bins. Indeed, for a single splitting operation,
the mean and maximum total optimality gaps are 8.37%
and 24.67%, respectively. Instead, with 6 splitting operations,
the number of actual bins is increased only to 18, while the
mean and maximum total optimality gaps are reduced to the
very small values of 0.10% and 0.59%, respectively.

D. Algorithm Complexity and Scalability

This section investigates the algorithm complexity by com-
parison with a distributed algorithm based on the well-known
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TABLE IV
COMPARISON OF PROPOSED ALGORITHM AND

ADMM-BASED ALGORITHM IN [6]

ADMM method [6]. Considering the distributed nature of the
algorithms, it is worthy to note that the method in [6] requires a
central aggregator in addition to the SAs, and it cannot guaran-
tee the fulfillment of the power constraints (which are reported
to be violated in 5% cases even after 60 iterations [6]). A sum-
mary of the required communications for both the proposed
algorithm and [6] is summarized in Table IV, considering
PEVs, SAs, and the central aggregator (AGG) for [6], where M
is the number of bin splitting operations and I1 is the number
of iterations to reach consensus for the proposed algorithm,
while I2 is the number of ADMM iterations in [6].

Let us consider a case study with 20000 PEVs, equally
distributed among 10 SAs, where each SA can communi-
cate on average with a number of neighbor SAs, N , equal
to |N | = 4.8. The proposed algorithm requires six bin split-
ting operations (i.e., M = 18) and 70 iterations (I1 = 70)
to reach a consensus on (12), while the work in [6] requires
I2 = 60 ADMM iterations. Note that the number of consen-
sus iterations, I1, for the proposed algorithm has been chosen
equal to 70 since a campaign of experiments performed with
random connections among the SAs has reported that 66 iter-
ations are required on average. For every charging interval, at
each SA, the proposed algorithm exchanges a total of 12×103

units of data with its neighbors, and receives 4 × 103 units of
data from the PEVs, and broadcasts just one unit of data to
the PEVs. The ADMM-based algorithm exchanges only 180
units of data with the central aggregator, but receives 1.2×105

units of data from the PEVs, and has to broadcast 120 units of
data to the PEVs. Thus, one can note that the total amount of
data required for both transmission and reception is about one
order of magnitude less with the proposed algorithm compared
to the ADMM-based algorithm in [6].

Finally, one can note that the communication overhead
for the proposed approach is increased by only one trans-
mission per PEV for every new PEV added. Indeed, the
PEV parameters have to be sent to the SA only once dur-
ing each time interval. On the other hand, the algorithm in [6]
requires a communication overhead of the order of the num-
ber of ADMM iterations, I2. Considering a typical value of
I2 = 60 [6], it is straightforward to note that the proposed
approach exhibits a better scalability property compared to
the literature. Thus, the order of the transmission data and
the improved scalability shows the efficiency of the proposed
distributed approach.

V. CONCLUSION

A distributed algorithm for PEV coordinated charging is
proposed to maximize the user convenience under the power
constraints imposed by the power utility. It can track any given
power profile provided by the power utility, while maximizing
the user satisfaction in terms of state of charge and charg-
ing time. The heterogeneity in the charging rates has been
included to incorporate PEVs charging process at residence,
parking lots, or charging stations, into a unified coordina-
tion framework. Moreover, discrete charging rates have been
considered to accommodate for the limitation imposed by
the charger technologies. The algorithm is implemented in
a distributed fashion by exploiting consensus algorithms for
inter-sub-aggregator communications, thus it is easily scal-
able and tolerant to network faults. The effectiveness of the
algorithm has been demonstrated in realistic scenarios, with
a heterogeneous PEVs population, under different penetration
levels. As a particular case of the tracking feature, the proposed
distributed algorithm has also been shown to be effective to
track valley-filling profiles. Finally, future work will inves-
tigate alternative user convenience functions capturing other
potential aspects of interest, e.g., economical issues.

APPENDIX A
OPTIMALITY ANALYSIS OF THE ALGORITHM

A. Proof of Proposition 1

Let us consider the asymptotic behavior, i.e., M → ∞, in the
simplified case of a homogeneous scenario. Each bin bm has
bin-width � → 0, and every user convenience value in [J, J]
is represented by a distinct bin. Considering (21) and (23), one
can note that the optimality depends only on the sub-selection
in μ-th bin. Let ημ be the PEV number in μ-th bin, then the
following two cases may be verified.

1) ημ = 1: The only PEV in bin μ, say ĩ, is assumed to
be connected to SA k̃. Then, from (21), it follows

max

⎛

⎝
K∑

k=1

∑

Ji,k∈Pk,μ

Ji,kLi,ksi,k

⎞

⎠ = Jĩ,k̃Lĩ,k̃ (29)

and, from (23), it follows

K∑

k=1

max

⎛

⎝
∑

Ji,k∈Pk,μ

Ji,kLi,ksi,k

⎞

⎠ = Jĩ,k̃Lĩ,k̃, (30)

under the constraints in (22) and (24), respectively. Thus, the
proposed algorithm achieves the result in (30) which is equal
to the optimal one in (29).

2) ημ > 1: The μ-th bin has more than one PEV, thus sub-
selection is required. However, since all PEVs in μ-th bin have
the same user convenience values, any of them can be selected
without affecting the result. Thus, the proposed algorithm is
also optimal in this case.

B. Proof of Proposition 2

Let us consider the asymptotic behavior in the general case
of heterogeneous scenario. Similar to the previous proof, two
cases are considered.
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1) ημ = 1: The argument presented in Appendix A-A1 is
repeated, and the optimal solution is achieved by the proposed
algorithm.

2) ημ > 1: Optimality gap ε in (25) directly follows
from (21) and (23).

APPENDIX B
OPTIMAL NUMBER OF BINS

We demonstrate that the optimal number of bins M̆ for the
recursive bin splitting operation is 3. Let x and y denote the
number of recursions and bins, respectively. If the consensus
averaging is done for a maximum of M bins, it is required to
maximize y = (M̆)x under the constraint that x ·M̆ = M. Then,

ln(y) = M

M̆
ln

(
M̆

)
(31)

Differentiating both sides yields

1

y

dy

dM̆
= − M

M̆2
ln

(
M̆

) + M

M̆2
(32)

dy

dM̆
= M

M̆2

[
1 − ln

(
M̆

)]
M̆M/M̆ (33)

Setting dy/dM̆ = 0 and finding the maximum of the cost
function leads to

M

M̆2
[1 − ln(x)]M̆M/M̆ = 0. (34)

Considering finite values of M̆ yields

1 − ln
(
M̆

) = 0, and M̆ = e. (35)

Since M̆ should be an integer we set the number of bins
for the recursive bin splitting operation is 3, i.e., the closest
integer to e.
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