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On codes achieving zero error capacities
in limited magnitude error channels

Bella Bose, Fellow Member, IEEE, Noha Elarief, and Luca G. Tallini

Abstract—Shannon in his 1956 seminal paper introduced the
concept of the zero error capacity, C0, of a noisy channel. This is
defined as the least upper bound of rates at which it is possible
to transmit information with zero probability of error. At present
not many codes are known to achieve the zero error capacity.
In this paper, some codes which achieve zero error capacities in
limited magnitude error channels are described. The code lengths
of these zero error capacity achieving codes can be of any finite
length n = 1, 2, . . ., in contrast to the long lengths required for
the known regular capacity achieving codes such as turbo codes,
LDPC codes and polar codes. Both wrap around and non-wrap
around limited magnitude error models are considered in this
paper. For non-wrap around error model, the exact value of
zero error capacities are derived, and optimal non-systematic
and systematic codes are designed. The non-systematic codes
achieve the zero error capacity with any finite length. The optimal
systematic codes achieve the systematic zero error capacity of
the channel, which is defined as the zero error capacity with the
additional requirements that the communication must be carried
out with a systematic code. It is also shown that the rates of the
proposed systematic codes are equal to or approximately equal
to the zero error capacity of the channel. For the wrap around
model bounds are derived for the zero error capacity and in
many cases the bounds give the exact value. In addition, optimal
wrap around non-systematic and systematic codes are developed
which either achieve or are close to achieving the zero error
capacity with finite length.

Index terms: Capacity, zero error capacity, asymmetric
channel, symmetric channel, limited magnitude errors, positive
and negative errors.

I. INTRODUCTION

Let the codes be over the alphabet

ZZm = {0, 1, . . . ,m− 1} ⊆ ZZ.

In this paper, we are concerned with the limited magnitude
channel error models for both wrap around and non-wrap
around cases. In particular, for l−, l+∈IIN such that l−+ l+ ≤
m − 1, the wrap around channel error model with negative
errors of limited magnitude l− and positive errors of limited
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Fig. 1. Limited magnitude, l = 1
asymmetric error model with wrap
around.
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Fig. 2. Limited magnitude, l = 1
symmetric error model with wrap
around.

magnitude l+ (briefly, WA-(l−, l+)-channel), is defined by the
relations

for all a∈ZZm and i∈ZZ, (1)
i 6∈ [−l−, l+] =⇒
P (Y = (a+ i) mod m|X = a) = 0;

where X∈ZZm and Y ∈ZZm are the channel input and output
symbol random variables, respectively.

When l− = 0 and l+ = l we get the totally asymmetric
wrap around channel with errors of limited magnitude l. On
the other hand, when l− = l+ = l, we get the symmetric wrap
around limited magnitude l error model.

For m = 8 and l = 1, the asymmetric and symmetric error
models of limited magnitude 1 with wrap around are shown
in Figure 1 and Figure 2, respectively.

In the case of non-wrap around errors, the channel error
model with negative errors of limited magnitude l− and
positive errors of limited magnitude l+ (briefly, NW-(l−, l+)-
channel), is defined by the relations

for all a∈ZZm and i∈ZZ, (2)
i 6∈ [−l−, l+] or a+ i∈ZZ− ZZm =⇒
P (Y = (a+ i) mod m|X = a) = 0;

Copyright c© 2017 IEEE
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where, again, X ∈ ZZm and Y ∈ ZZm are the channel input
and output symbol random variables, respectively. From (1)
and (2), note that the NW-(l−, l+)-channels are particular WA-
(l−, l+)-channels.

The asymmetric and symmetric limited magnitude error
models have applications in flash memories [8], in m-phase
shift keying (m-PSK) communication systems [4], [5], [15]
and, for m = +∞, in correcting repetition errors [19].

The capacity, C, of a channel is defined as [9]

C = max
p(x)

I(X,Y ) = max
p(x)

(H(Y )−H(Y |X)) (3)

where I(X,Y ) is the mutual information between X and Y ,
H(Y ) is the entropy of Y , H(Y |X) is the conditional entropy
of Y given X and the maximum is taken over all possible input
probability distribution p(x). Since H(Y |X = x) is constant
with respect to the input symbol x ∈ ZZm, it is readily seen
that the capacity, C(WA), of the general wrap around channel
given in (1) is

C(WA) = logm− h
(
p−l− , . . . , p−1, p0, p1, . . . , pl+

)
, (4)

where pi
def
= P (Y = (a+ i) mod m|X = a), for all a∈ZZm

and i∈ZZ, and

h(q0, q1, . . . , qD−1) = −
D−1∑
h=0

qh log qh

is the D variable entropy function. Note that, for all a∈ZZm,

P (Y = a|X = a) = p0 = 1−

 ∑
i∈[−l−,l+]−{0}

pi

 .

It is well known that n ∈ IIN uses of a discrete memoryless
channel does not change the capacity, C, of the channel per
single use.

In [18], Shannon introduced the concept of zero error
capacity, C0, of a noisy channel. This is defined as the least
upper bound (i. e., the supremum) of rates at which it is
possible to transmit information with zero probability of error.
In general, the zero error capacity of a channel, C0, is always
less than or equal to the regular capacity of the channel, C; i.
e., C0 ≤ C. We readily note that, unlike the regular capacity,
this zero error capacity per single use may depend on the
number n ∈ IIN of uses of the discrete memoryless channel,
so that

C0 = sup
n∈IIN

C0(n);

where C0(n) is the maximum information rate achievable by
using the channel n times. This makes the problem of finding
the zero error capacity achieving codes a difficult and inter-
esting combinatorial problem [3], [7], [11], [13], [14], [17],
[18]. In all these papers except [17] the zero error capacities
of graphs are described. Only in [17], some nontrivial limited
magnitude one asymmetric error correcting linear codes over
ZZm are described. In [8], the authors consider t (instead of
all) limited magnitude l error correcting codes.

Example 1.1: For example, the wrap around limited mag-
nitude l = 1 asymmetric error channel with m = 5 has [18]

C0(1) = log 2 <
log 5

2
≤ C0(2),

and, indeed, it has been proved that C0 = (1/2) log 5 [11],
[13]. In fact, an optimal solution is given by the code [18],

C def
= {00, 12, 24, 31, 43} ⊆ ZZ2

5;

which is a systematic code, where the underlined digit is the
information digit.

In a systematic code the information part is separated
from the check part and hence, the data processing and the
encoding/decoding can be done in parallel. Since here we
are also interested in systemaic codes we give the following
definition.

Definition 1.1 (systematic zero error capacity): Let the
systematic zero error capacity, C0,sys, of a noisy channel be
defined as the least upper bound (i. e., the supremum) of
rates at which it is possible to transmit information with zero
probability of error by using a systematic code.
Note that, like the Shannon’s (non-systematic) zero error
capacity, this systematic zero error capacity per single use
may depend on the number n ∈ IIN of uses of the discrete
memoryless channel, so that

C0,sys = sup
n∈IIN

C0,sys(n);

where C0,sys(n) = k/n is the maximum information rate
achievable by using the channel n times with a systematic
code of length n∈IIN conveying k∈IIN information digits.

In this paper we describe codes achieving zero error ca-
pacities in limited magnitude error channels. Interestingly, the
length of these zero error capacity achieving codes can be
of any finite length, n = 1, 2, . . . in contrast to the regular
capacity achieving known codes, which require a long code
length. Both systematic and non-systematic codes are designed
here.

The rest of the paper is organized as follows. In Section II,
the combinatorial characterization of error correcting codes
for the non-wrap around error model is given based on the
max L1 distance, then the zero error capacity derivation
and error correcting code designs for both non-systematic
and systematic codes are described. These topics for wrap
around limited magnitude error channel model are discussed
in Section III. In Section IV, an efficient systematic coding
algorithm is presented. Some concluding remarks are given in
Section V.

In the following, X , Y , Z, . . . indicate vectors or words,
XY Z . . . indicate their concatenation and xi, yi, zi, . . ., where
i∈ IIN, indicate the i-th component or digit of X , Y , Z, . . .,
respectively. Also, for a, b∈IIN, we let

〈a〉b
def
= a mod b∈ZZb = {0, 1, . . . , b− 1}.

Furthermore, given d, k∈IIN and R∈ZZkd , let

[R]d∈IIN

indicate the natural number whose expression in radix d is R.
On the other hand, given a, b, l∈IIN with l ≥ dlogb(a+ 1)e∈
IIN, let

(a)
[l]
b ∈ZZ

l
b

indicate the length l radix b expression of the natural number
a.



0018-9448 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2703171, IEEE
Transactions on Information Theory

BOSE et al.: ON CODES ACHIEVING ZERO ERROR CAPACITIES IN LIMITED MAGNITUDE ERROR CHANNELS 3

II. NON-WRAP AROUND ERROR CHANNEL

The case of non-wrap around (l−, l+) error channel model
is defined by (2).

Here, we design error correcting codes that achieve the zero
error capacities for the non-wrap around error model. These
codes are capable of correcting all limited magnitude of l−
negative errors and l+ positive errors and are referred to as
(l−, l+)-AEC ((l−, l+)-All Error Correcting) codes. Similarly,
codes capable of correcting all asymmetric errors of limited
magnitude l and codes capable of correcting all symmetric
errors of limited magnitude l are referred to as l-AAEC (l-All
Asymmetric Error Correcting) and l-ASEC (l-All Symmetric
Error Correcting) codes, respectively. Before describing the
code design methods, some preliminaries which are useful for
the code designs are given.

A. Combinatorial characterization of error correcting codes
for the non-wrap around error model

For m ∈ IIN, let x, y ∈ ZZm. The L1 distance D(L1)(x, y)
between x and y is defined as the absolute value of the real
difference between x and y. That is,

D(L1)(x, y)
def
= |x− y|.

For example, if m = 7, x = 2 and y = 6, then D(L1)(2, 6) =
|2 − 6| = 4. The following distance metric is useful in
designing (l−, l+)-AEC codes.

Definition 2.1 (max L1 distance): Given n∈ IIN, let X =
(xn−1, xn−2, . . . , x0)∈ZZnm and Y = (yn−1, yn−2, . . . , y0)∈
ZZnm. The max L1 distance, D(L1)

max(X,Y ), between X and Y
is defined as:

D(L1)
max(X,Y ) = max

i∈[0,n−1]

{
D(L1)(xi, yi) = |xi − yi|

}
. (5)

For example, if m = 7, n = 4, X = (0, 4, 2, 1) and
Y = (4, 2, 3, 1) then D

(L1)
max(X,Y ) = max{4, 2, 1, 0} = 4.

It is worth noting that D(L1)
max(X,Y ) is a metric. Furthermore,

D
(L1)
max(X,Y )∈ [0,m−1] because D(L1)(x, y)∈ [0,m−1] and

(5).
The following theorem and the corollaries give the neces-

sary and sufficient conditions on the minimum distance for
error correction.

Theorem 2.1 (characterization of (l−, l+)-AEC for non-
wrap around errors): Let m,n ∈ IIN and l−, l+ ∈ IIN. A
code C ⊆ ZZnm is capable of correcting all negative errors
of magnitude up to l− and all positive errors of magnitude up
to l+ if, and only if,

for all X,Y ∈C, (6)

X 6= Y =⇒ D(L1)
max(X,Y ) > l− + l+.

Proof: Given (2), for all n = 1, 2, . . ., let

S
(NW )
m,n,l−,l+

(X)
def
=

{
Z∈ZZnm

∣∣∣∣∣ for all i∈ [0, n−1],
zi = xi + ei and
−l− ≤ ei ≤ l+

}
= (7)

{Z∈ZZnm : for all i∈ [0, n− 1], zi∈ [xi − l−, xi + l+]}

be the set of all m-ary vectors obtained from X∈ZZnm due to
any number of negative errors of magnitude up to l− and any
number of positive errors of magnitude up to l+.

First note that, C is (l−, l+)-AEC if, and only if,

for all X,Y ∈C, (8)

X 6= Y =⇒ S
(NW )
m,n,l−,l+

(X) ∩ S(NW )
m,n,l−,l+

(Y ) = ∅.

So, the equivalence between (6) and (8) must be shown.
Suppose (6) holds. From (5), this implies that for all X,Y ∈
C with X 6= Y , there exists an index i∈ [0, n − 1] such that
|xi−yi| > l−+l+. Let x def

= max{xi, yi} > min{xi, yi}
def
= y.

So,

x− y = |xi − yi| > l− + l+ =⇒
y + l+ < x− l− =⇒
[y − l−, y + l+] ∩ [x− l−, x+ l+] = ∅ =⇒
S
(NW )
m,n,l−,l+

(x) ∩ S(NW )
m,n,l−,l+

(y) =

[x− l−, x+ l+] ∩ [y − l−, y + l+] ∩ ZZm = ∅ =⇒
S
(NW )
m,n,l−,l+

(X) ∩ S(NW )
m,n,l−,l+

(Y ) = ∅;

that is, (8) holds.
Conversely, if (6) does not hold then there exists X,Y ∈C

such that D(L1)
max(X,Y ) ≤ l− + l+. Hence, from l−, l+ ∈ IIN,

X,Y ∈ZZnm and (5), for all integer i∈ [0, n− 1],

max{xi, yi} −min{xi, yi} = |xi − yi| ≤ l− + l+ =⇒
max{xi, yi} − l− ≤ min{xi, yi}+ l+ =⇒

[max{xi, yi} − l−,min{xi, yi}+ l+] ∩ ZZm 6= ∅.

So, for all integer i ∈ [0, n − 1], choose zi ∈ [max{xi, yi} −
l−,min{xi, yi} + l+] ∩ ZZm and let the well defined vector,
Z ∈ ZZnm, be Z

def
= (zn−1, zn−2, . . . , z0). The word Z ∈

S
(NW )
m,n,l−,l+

(X)∩S(NW )
m,n,l−,l+

(Y ) 6= ∅; that is, (8) does not hold.

Corollary 2.2 (characterization of l-AAEC for non-wrap
around errors): Let m,n, l ∈ IIN. A code C ⊆ ZZnm is an
l-AAEC code if, and only if,

for all X,Y ∈C, X 6= Y =⇒ D(L1)
max(X,Y ) > l. (9)

Proof: Let l− = 0 and l+ = l in the above Theorem 2.1.

Corollary 2.3 (characterization of l-ASEC for non-wrap
around errors): Let m,n, l ∈ IIN. A code C ⊆ ZZnm is an
l-ASEC code if, and only if,

for all X,Y ∈C, X 6= Y =⇒ D(L1)
max(X,Y ) > 2l. (10)

Proof: Let l− = l+ = l in the above Theorem 2.1.
Suppose X,Y ∈ ZZnm. If m − 1 ≤ l− + l+ then

D
(L1)
max(X,Y ) ≤ m − 1 ≤ l− + l+ and so, the (l−, l+)-

AEC code can have at most only one codeword, which is
not interesting. So, in the rest of the paper, for the non-wrap
around error model, it is assumed that l− + l+ < m− 1.
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B. Zero error capacity derivations
Given m,n, l−, l+∈IIN, let

D
def
= l− + l+ + 1∈IIN,

ANW (m,n, l−, l+) ∈ IIN be the maximum cardinality for a
non-wrap around (l−, l+)-AEC code of length n, and

C
(NW )
0 (m,n, l−, l+) =

logANW (m,n, l−, l+)

n
∈IR

be the maximum information rate achievable by using the
channel n times, where log indicates a base m logarithm.

The zero error capacity of the m-ary NW-(l−, l+)-channel
model is defined as

C
(NW )
0 (m, l−, l+) = sup

n∈IIN
C

(NW )
0 (m,n, l−, l+)

From Theorem 2.5 below, it is readily seen that the non-
wrap around zero error capacity behaves like the normal
capacity and does not depend on the number of indepen-
dent uses of the channel. Indeed, it is possible to determine
ANW (m,n, l−, l+) exactly as below. First note that, from
Theorem 2.1, we have

ANW (m,n, l−, l+) =ANW (m,n, 0, l− + l+)
def
= (11)

ANW (m,n,D − 1).

Now, the following theorem can be found in [1] and the proof
is given here for completeness.

Theorem 2.4 (the maximum cardinality of non-wrap around
L-AAEC codes [1]): If m,n,D∈IIN then

ANW (m,n,D − 1) =
⌈m
D

⌉n
.

Proof: If C ⊆ ZZnm is an (D − 1)-AAEC code then

|C| ≤
⌈m
D

⌉n
. (12)

In fact, let

ϕ : ZZm → ZZb(m−1)/Dc+1 =

{
0, 1, . . . ,

⌊
m− 1

D

⌋}
be the function defined as

ϕ(x) =
⌊ x
D

⌋
, for all x∈ZZm = {0, 1, . . . ,m− 1}. (13)

Also, let ϕ : ZZnm → ZZnb(m−1)/Dc+1 be defined as

ϕ(X) = (ϕ(xn−1), ϕ(xn−2), . . . , ϕ(x0)),

for all X = (xn−1, xn−2, . . . , x0)∈ZZnm;

and
ϕC : C → ZZnb(m−1)/Dc+1

be the restriction of the above ϕ to C ⊆ ZZnm defined by
ϕC(X) = ϕ(X), for all X ∈ C. Now, the function ϕC is
injective. In fact, if X,Y ∈ C and ϕC(X) = ϕC(Y ) then,
for all i = 0, 1, . . . , n− 1,⌊xi

D

⌋
= ϕ(xi) = ϕC(xi) = ϕC(yi) = ϕ(yi) =

⌊yi
D

⌋
=⇒

xi − 〈xi〉D =
⌊xi
D

⌋
D =

⌊yi
D

⌋
D = yi − 〈yi〉D =⇒

xi − yi = 〈xi〉D − 〈yi〉D∈ [−(D − 1), (D − 1)] =⇒
D(L1)(xi, yi) ≤ |xi − yi| ≤ D − 1.

Since D(L1)(xi, yi) ≤ D − 1, for all integer i∈ [0, n − 1], it
follows that D(L1)

max((X,Y ) ≤ D− 1. From Corollary 2.2, this
implies X = Y because X,Y ∈C and C is an (D− 1)-AAEC
code. Since ϕC is injective it follows that

|C| = |ϕC(C)| ≤
∣∣∣ZZnb(m−1)/Dc+1

∣∣∣ =(⌊
m− 1

D

⌋
+ 1

)n
=
⌈m
D

⌉n
;

and (12) is proved.
Recall that 〈a〉b

def
= a mod b ∈ ZZb, for a, b ∈ IIN, and

consider the m-ary codes of length n∈IIN defined as follows.

For all V def
= (vn−1, vn−2, . . . , v0)∈ZZnD ⊆ ZZnm, (14)

C def
= Cn(V )

def
=

n−1∏
i=0

{x∈ZZm : 〈x〉D = vi } =
n−1∏
i=0

C1(vi),

where the product indicates a cartesian product. Note that the
minimum max L1 distance of the code C is

D(L1)
max(C) def

= max
X,Y ∈C: X 6=Y

D(L1)
max(X,Y ) ≥ D

because, up to a constant, every codeword component is a
multiple of D. When V = (0, 0, . . . , 0) = 0∈ZZnD, the code

Cn(0)
def
= {(xn−1, xn−2, . . . , x0)∈ZZnm : (15)

〈xi〉D = 0, for all integer i∈ [0, n− 1]} =

{x∈ZZm : 〈x〉D = 0}n = C1(0)n

has a cardinality which is exactly equal to |C1(0)|n =
dm/Den. Thus, from Corollary 2.2, this code is a (D − 1)-
AAEC code with cardinality dm/Den and the equality in the
statement is proved.

We note that the above function (13) is an adjacent reducing
mapping [18] for the non-wrap around asymmetric channel.
So, the theorem may follow from Theorem 3 in [18].

Theorem 2.5 (zero error capacity for the m-ary non-wrap
around (l−, l+) error model): If m,n, l−, l+, D = l−+l++1∈
IIN then

C
(NW )
0 (m,n, l−, l+) =

logANW (m,n, l−, l+)

n
= log

⌈m
D

⌉
.

Hence, the zero error capacity is independent of n and

C
(NW )
0 (m, l−, l+) = sup

n∈IIN
C

(NW )
0 (m,n, l−, l+) = (16)

C
(NW )
0 (m, 1, l−, l+) = log

⌈m
D

⌉
,

for all m, l−, l+, D = l− + l+ + 1∈IIN.
Proof: It follows from (11) and Theorem 2.4.

So, from Theorem 2.5, for the non-wrap around asymmetric
limited magnitude error channel (where l− = 0 and l+ = l),
the zero error capacity is given by

C
(NW )
0 (m, 0, l) = log

⌈
m

(l + 1)

⌉
. (17)

Similarly, for the non-wrap around symmetric limited magni-
tude error channel (where l− = l+ = l), the zero error capacity
is given by

C
(NW )
0 (m, l, l) = log

⌈
m

(2l + 1)

⌉
. (18)
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C. Code designs

First, we describe the non-systematic (l−, l+)-AEC code
design, where l−, l+∈IIN and D − 1 = l− + l+ < m− 1. In
Subsection II-B, we have seen that some zero error capacity
achieving codes are the ones given in (15) and can be obtained
by taking the code symbols input to the channel as bD, where
b = 0, 1, 2 . . . , dm/De−1. For these codes, a received symbol
y∈ZZm is decoded into the code symbol x∈ZZm by rounding
it to a multiple of D according to the following rule.

x =



⌊ y
D

⌋
D = y − 〈y〉D

if 〈y〉D∈ [0, l+],

(19)(⌊ y
D

⌋
+ 1
)
D = y +D − 〈y〉D

if 〈y〉D∈ [D − l−, D − 1].

Example 2.1: Let m = 16 and consider the code C =
{0, 5, 10, 15} ⊆ ZZ16. For any n ∈ IIN, the code Cn has a
minimum max L1 distance of D = 5 and so it is capable of
correcting all symmetric errors of magnitude 2 (that is, Cn is
2-ASEC), or, all asymmetric errors of magnitude 4 (that is, Cn
is 4-AAEC), or, in general, all negative errors of magnitude
up to l− = l and all positive errors of magnitude up to l+ =
4 − l, for all l ∈ {0, 1, 2, 3, 4}. Also, the code Cn is optimal
because its rate is R = (1/n) log 4n = log 4 = log d16/5e =

C
(NW )
0 (m, l−, l+).
Now, we turn our attention to the (l−, l+)-AEC systematic

code design. Before that, we derive the following bound which
is useful in proving the optimality of the proposed systematic
codes. The following theorem generalizes Theorem 4 and 10
given in [16] and shows a lower bound on the number of
check digits to design a systematic (l−, l+)-AEC code with k
information digits.

Theorem 2.6: Let C be a systematic m-ary non-wrap around
(l−, l+)-AEC code such that the number of information digits
in a codeword is k. Then, the number of check digits, r,
satisfies the following condition.

r ≥
⌈

k logD

log dm/De

⌉
; (20)

where D = l− + l+ + 1.
Proof: Because of Theorem 2.1, C is a systematic m-ary

(D − 1)-AAEC code. So, consider the subset of information
vectors,

V = {(vk−1, vk−2, . . . , v0) : 0 ≤ vi < D and i∈ [0, k − 1]}.

Vectors of V can be viewed as the set of all vectors of length
k over ZZD. Hence, for all X,Y ∈ V , D(L1)

max(X,Y ) < D,
and |V | = Dk. Therefore, from Theorem 2.1, the D(L1)

max of
every two checks assigned to vectors in V must be at least D.
Theorem 2.4 gives a bound on the number of vectors satisfying
such criterion and we get

|V | = Dk ≤ ANW (m, r,D − 1) =
⌈m
D

⌉r
.

Taking the log on both sides of the above inequality we get
the desired property.

By using the same systematic code design given in [16]
for (D−1)-AAEC codes, we get optimal systematic (l−, l+)-
AEC codes with the number of check digits reaching the lower
bound in (20), i. e., the codes require exactly

r =

⌈
k logD

log dm/De

⌉
(21)

check digits to encode any number k ∈ IIN of information
digits, with D = l− + l+ + 1∈ IIN. We briefly describe this
code design.

Algorithm 2.1 (Encoding Algorithm):
Input: The information word:

X = (xk−1, xk−2, . . . , x0)∈ZZkm.

Output: The codeword:

X A = (xk−1, xk−2, . . . , x0, ar−1, ar−2, . . . , a0)∈ZZk+rm .

Perform the following steps.
1) Perform the following steps.

1.a) Compute the component-wise modD operation of
the vector X:

Y = (yk−1, yk−2, . . . , y0) =

(〈xk−1〉D, 〈xk−2〉D, . . . , 〈x0〉D) = 〈X〉D∈ZZkD.

1.b) Compute the natural number whose expression in
radix D is Y :

z = [Y ]D =

k−1∑
i=0

yiD
i∈ZZDk ⊆ IIN.

2) Represent the number z in base b = dm/De as a vector:

Z = (zr−1, zr−2, . . . , z0) = (z)
[r]
b ∈ZZ

r
b .

3) Compute the check symbol as

A = (ar−1, ar−2, . . . , a0) =

(Dzr−1, Dzr−2, . . . , Dz0)∈ZZrm.

4) Output the codeword X A and exit.
Example 2.2: Let m = 10, D = 3 and k = 4. We encode the

word X = (6, 2, 8, 1) over ZZ10, assuming a maximum error
level of l− = l+ = 1. The number of check digits needed is
r = d4 log(2 + 1)/ log d10/(2 + 1)ee = 4. With notation as
above,

z = 0× 33 + 2× 32 + 2× 31 + 1× 30 = 25

and thus Z = (0, 1, 2, 1) is the representation of z in base b =
dm/De = d10/3e = 4. Therefore, the check is A = (0, 3, 6, 3)
and the encoded codeword is X A = (6, 2, 8, 1, 0, 3, 6, 3).

The (l−, l+)-AEC decoding for these (D−1)-AAEC codes
is done as follows.

Algorithm 2.2 (Decoding Algorithm):
Input: The channel output:

X ′A′ = (x′k−1, x
′
k−2, . . . , x

′
0, a
′
r−1, a

′
r−2, . . . , a

′
0)∈ZZk+rm .
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Output: The recovered codeword:

X A = (xk−1, xk−2, . . . , x0, ar−1, ar−2, . . . , a0)∈ZZk+rm .

Perform the following steps.
1) Recover the check word, A = (ar−1, ar−2, . . . , a0),

with (19); that is, either subtract at most l+ or add at
most l− from each a′i so that each ai is a multiple of
D.

2) Perform the following steps.
2.a) Compute the vector

Z = (zr−1, zr−2, . . . , z0) =(ar−1
D

,
ar−2
D

, . . . ,
a0
D

)
=
A

D
∈ZZrb .

2.b) Compute the natural number whose expression in
radix b = dm/De is Z:

z = [Z]b =
k−1∑
i=0

zib
i∈ZZbk ⊆ IIN.

3) Represent the number z in base D as a vector:

Y = (yk−1, yk−2, . . . , y0) = (z)
[k]
D ∈ZZ

k
D.

4) Perform the following steps.
4.a) Compute the error vector

E = (ek−1, ek−2, . . . , e0)∈ [−l−, l+]k

such that:

ei ≡ 〈yi − x′i〉D mod D and ei∈ [−l−, l+] ⊆ ZZ.

4.b) Recover the information word as X = X ′ + E.
5) Output the codeword X A and exit.
Example 2.3: Let the encoded word be as in Example

2.2. Let the channel output be X ′A′ = (5, 3, 7, 2, 1, 2, 5, 4).
Rounding the check symbols to the nearest multiple of 3,
we get A = (0, 3, 6, 3). As in Steps 2) and 3) of the
algorithm, we compute z = [0121]4 = 25, and Y = (25)43 =
(0, 2, 2, 1). As in Step 4.a), we compute E ∈ [−l−, l+]4 such
that E ≡ 〈Y − X ′〉3 mod 3 ≡ 〈(−5,−1,−5,−1)〉3 mod
3 ≡ (1, 2, 1, 2) mod 3. Thus, E = (1,−1, 1,−1). As in
Step 4.b), we compute X = X ′ + E = (5, 3, 7, 2) +
(1,−1, 1,−1) = (6, 2, 8, 1). Therefore, the correct codeword
is X A = (6, 2, 8, 1, 0, 3, 6, 3).

A more general decoding algorithm for the codes is ex-
plained in Section IV of this paper.

From (21), the information rate of these optimal non-
systematic non wrap-around (l−, l+)-AEC codes of length
n(k) = k + r∈IIN is

R(NW )
sys (k)

def
= R(NW )

sys (m,D;n(k))
def
= (22)

k

k + r
=

k

k + dk logD/ log dm/Dee
;

where k∈ IIN is the number of information digits. Note that,
from x ≤ dxe ≤ x+ 1,

1

1 + logD/ log dm/De+ 1/k
≤R(NW )

sys (k) ≤ (23)

1

1 + logD/ log dm/De
.

Hence, from the code optimality shown in Theorem 2.6, the
systematic zero error capacity

C
(NW )
0,sys (m, l−, l+) = lim

k→∞
R(NW )
sys (k) = (24)

1

1 + logD/ log dm/De
=

logdm/De
log (D·dm/De)

.

In order to estimate how fast the sequence

{R(NW )
sys (k) : k∈IIN}

converges to the above quantity, consider the real function
f(x)

def
= (1 + x)−1 and let x̄ def

= logD/ log dm/De ∈ IR+.
Note that, from the mean value theorem,

0 ≤ f(x̄)− f
(
x̄+

1

k

)
= |f ′(ξ)| ·

∣∣∣∣1k
∣∣∣∣ ≤ 1

(1 + x̄)2k
,

with ξ∈(x̄, x̄+ 1/k).

So, from this, (23) and (24) it follows,

C
(NW )
0,sys −R(NW )

sys (k) ≤
1

1 + logD/ log dm/De
− 1

1 + logD/ log dm/De+ 1/k
=

f(x̄)− f
(
x̄+

1

k

)
≤ 1

(1 + x̄)2k
≤ 1

k
.

Hence, the sequence {R(NW )
sys (k) : k ∈ IIN} reaches C(NW )

0,sys

in such a way that R(NW )
sys (k) is very close to C

(NW )
0,sys even

for small values of k. In particular, if

k̄
def
=

1

x̄
=

log dm/De
logD

∈IIN (25)

then, from (22) and (24),

R(NW )
sys (m,D;n(k̄)) =

k̄

k̄ + 1
= (26)

C
(NW )
0,sys (m, l−, l+) ≤C(NW )

0 (m, l−, l+);

and so the systematic zero error capacity is reached with finite
length n̄ def

= k̄ + 1. For example, if m∈ [253, 256] and D = 4
then n̄ = 4 and k̄ = 3. Furthermore, if (25) holds and D|m
then

R(NW )
sys (m,D;n(k̄)) = C

(NW )
0,sys (m, l−, l+) =

C
(NW )
0 (m, l−, l+) = logm

(m
D

)
because of (16), (24) and (26). Hence, in this case, the
proposed optimal systematic (l−, l+)-AEC codes also reach
the zero error capacity with finite length n̄. For example,
R(256, 4; 4) = C

(NW )
0,sys (256, l−, l+) = C

(NW )
0 (256, l−, l+) =

0.75. In general, if log dm/De ' log (m/D) then

R(NW )
sys (m,D;n(k̄)) ' C(NW )

0,sys (m, l−, l+) '
log dm/De

logm
= logm

⌈m
D

⌉
= C

(NW )
0 (m, l−, l+)

because of (16).
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III. WRAP AROUND ERROR CHANNEL

The wrap around (l−, l+) error channel model is defined
by (1). In this section, the probelm of designing systematic
and non-systematic efficient m-ary wrap around (l−, l+)-AEC,
m, l−, l+∈IIN, codes is addressed for this channel model.

A. Combinatorial characterization of error correcting codes
for the wrap around error model

In order to design codes for the wrap around error model,
a slightly different distance metric, which is defined below, is
useful.

For m∈IIN, let x, y∈ZZm. The m-ary Lee distance

D(Lee)(m;x, y)
def
= D(Lee)(x, y)

between x and y is defined as

D(Lee)(x, y)
def
= min{〈x− y〉m, 〈y − x〉m} (27)
= min{〈x− y〉m,m− 〈x− y〉m}

= min
{
D(L1)(x, y),m−D(L1)(x, y)

}
= min{|x− y|,m− |x− y|}

=D(Lee)(0, |x− y|)∈
[
0,
⌊m

2

⌋]
.

For example, when m = 7, x = 2 and y = 6, D(Lee)(2, 6) =
min{3, 4} = 3. The following distance metric is useful in
designing (l−, l+)-AEC codes.

Definition 3.1 (m-ary max Lee distance): Given n ∈
IIN, let X = (xn−1, xn−2, . . . , x0) ∈ ZZnm and Y =
(yn−1, yn−2, . . . , y0)∈ZZnm. The m-ary max Lee distance,

D(Lee)
max (m;X,Y )

def
= D(Lee)

max (X,Y ),

between X and Y is defined as:

D(Lee)
max (X,Y ) = (28)

max
i∈[0,n−1]

{
D(Lee)(xi, yi)=min{|xi − yi|,m− |xi − yi|}

}
.

For example, if m = 7, n = 4, X = (0, 4, 2, 1) and Y =

(4, 2, 3, 1) then D
(Lee)
max (X,Y ) = max{3, 2, 1, 0} = 3. It is

worth noting that, as D(L1)
max(X,Y ), D(Lee)

max (X,Y ) defines a
metric. Furthermore, for all m,n∈IIN,

for all X,Y ∈ZZnm, D(Lee)
max (m;X,Y ) ≤ D(L1)

max(X,Y ); (29)

because of (27), (28) and (5). Also, D(Lee)
max (X,Y )∈ [0, bm/2c]

because of (27).
The following theorem gives the necessary and sufficient

conditions on the minimum distance for error correction.
Theorem 3.1 (characterization of (l−, l+)-AEC for wrap

around errors): Let m,n∈IIN and l−, l+∈IIN. An m-ary code
C ⊆ ZZnm is capable of correcting all negative wrap around
errors of magnitude up to l− and all positive wrap around
errors of magnitude up to l+ if, and only if,

for all X,Y ∈C, (30)

X 6= Y =⇒ D(Lee)
max (m;X,Y ) > l− + l+.

Proof: Given (1), for all n = 1, 2, . . ., let

S
(WA)
m,n,l−,l+

(X)
def
=

Z∈ZZnm
∣∣∣∣∣∣

for all i∈ [0, n− 1],
zi = 〈xi + ei〉m and
ei∈ [−l−, l+] ∩ ZZ

 (31)

be the set of m-ary vectors obtained from X ∈ ZZnm due to
any number of negative errors of magnitude up to l− and
any number of positive errors of magnitude up to l+, where
the errors may wrap around. Given (31), the proof follows
similarly to the proof of Theorem 2.1.

From Theorem 3.1, the following corollaries follow analo-
gously to the non-wrap around case.

Corollary 3.2 (characterization of l-AAEC for wrap around
errors): Let m,n, l∈IIN. A code C ⊆ ZZnm is an l-AAEC code
if, and only if,

for all X,Y ∈C, X 6= Y =⇒ D(L1)
max(X,Y ) > l.

Corollary 3.3 (characterization of l-ASEC for wrap around
errors): Let m,n, l∈IIN. A code C ⊆ ZZnm is an l-ASEC code
if, and only if,

for all X,Y ∈C, X 6= Y =⇒ D(L1)
max(X,Y ) > 2l.

Suppose X,Y ∈ZZnm. If bm/2c ≤ l− + l+ then

D(Lee)
max (X,Y ) ≤

⌊m
2

⌋
≤ l− + l+

and so, the (l−, l+)-AEC code can have only one code word,
which is not interesting. So, in the rest of the paper, for the
wrap around error model, it is assumed that l−+ l+ < bm/2c;
that is, 2(l− + l+) ≤ m− 1. Also, note that any wrap around
(l−, l+)-AEC code is a non-wrap around (l−, l+)-AEC code
because of Theorem 2.1, Theorem 3.1 and (29).

B. Zero error capacity derivations and bounds

As in Subsection II-B, given m,n, l−, l+∈IIN, let

D
def
= l− + l+ + 1∈IIN,

AWA(m,n, l−, l+) ∈ IIN be the maximum cardinality for a
wrap around (l−, l+)-AEC code of length n,

C
(WA)
0 (m,n, l−, l+) =

logAWA(m,n, l−, l+)

n

be the maximum information rate achievable by using the
channel n times and

C
(WA)
0 (m, l−, l+) = sup

n∈IIN
C

(WA)
0 (m,n, l−, l+)

be the the zero error capacity of the m-ary WA-(l−, l+)-
channel model. As in the non-wrap around case, we have

AWA(m,n, l−, l+) =AWA(m,n, 0, l− + l+)
def
= (32)

AWA(m,n,D − 1).

This comes from Theorem 3.1. However, as the 5-ary WA-
(0, 1) channel example mentioned in Example 1.1 shows, the
wrap around zero error capacity may depend on the number,
n, of independent uses of the channel and determining the
exact value of AWA(m,n, l−, l+) may be challenging, unless
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D divides m, in which case, we get an exact value as derived
below.

Theorem 3.4: If m,n, l−, l+, D = l− + l+ + 1∈IIN then(⌊m
D

⌋)n
≤ AWA(m,n, l−, l+) ≤

⌊(m
D

)n⌋
≤
(m
D

)n
.

(33)
Hence, if D|m then

AWA(m,n, l−, l+) =
(m
D

)n
,

and so, the zero error capacity is

C
(WA)
0 (m, l−, l+) = sup

ν∈IIN
C

(WA)
0 (m, ν, l−, l+) =

C
(WA)
0 (m,n, l−, l+) =

logAWA(m,n, l−, l+)

n
= log

(m
D

)
.

Thus, if D|m then the zero error capacity is independent of
n.

Proof: Unlike the non-wrap around case, a sphere packing
argument can be used to derive a good upper-bound because
the error spheres in (31) have the same cardinality given by

|S(WA)
m,n,l−,l+

(X)| = Dn, for all X∈ZZnm.

Thus, if C is any (l−, l+)-AEC code of length n then

|C|Dn =
∑
X∈C
|S(WA)
m,n,l−,l+

(X)| ≤ |ZZnm| = mn;

and so, the following upper-bound holds.

|C| ≤ AWA(m,n, l−, l+) ≤
(m
D

)n
. (34)

With respect to a lower-bound, consider the m-ary codes of
length n∈IIN defined as follows.

For all V def
= (vn−1, vn−2, . . . , v0)∈ZZnm, (35)

C def
= Cn(V )

def
=

n−1∏
i=0

{
x∈ZZm : x = 〈vi + bD〉m and b∈ZZbm/Dc

}
=

n−1∏
i=0

C1(vi),

where, as in (14), the product indicates a cartesian product.
Note that the minimum max Lee distance of these codes is
D because, up to a constant, every codeword component is a
multiple of D under the mod m operation and because b ≤
bm/Dc− 1. Note also that the cardinality of the above codes
is

|Cn(V )| = |C1(0)|n =
∣∣ZZbm/Dc∣∣n =

⌊m
D

⌋n
(36)

≤ AWA(m,n, l−, l+).

The rest of the theorem follows from (34), (36) and the zero
error capacity definition.

When D does not divide m, determining the exact value of
the zero error capacity is still an open problem [11]. However,
the bounds in (33) are still valid, and so the following bounds

hold for the wrap around zero error capacity and the maximum
achievable information rate.

log
⌊m
D

⌋
= C

(WA)
0 (m,n = 1, l−, l+) ≤ (37)

C
(WA)
0 (m,n = 2, l−, l+) ≤

C
(WA)
0 (m, l−, l+) ≤ log

(m
D

)
.

We note that, from the general Theorem 1 in [18], the
above upper-bound C

(WA)
0 (m, l−, l+) ≤ log (m/D) can also

be derived by taking the minimum of the normal capacity
C(WA) = C(WA)(p−l− , p−l−+1, . . . , p+l+) in (4) over the
probability distribution defined by the pi’s for i∈ [−l−, l+].

From Theorem 3.4, note that when D = l−+ l+ +1 divides
m, the zero error capacity for the wrap around asymmetric
limited magnitude error channel (where l− = 0 and l+ = l)
is given by

C
(WA)
0 (m, 0, l) = log

(
m

l + 1

)
. (38)

Similarly, when D|m, the zero error capacity for the wrap
around symmetric limited magnitude error channel (where
l− = l+ = l) is given by

C
(WA)
0 (m, l, l) = log

(
m

2l + 1

)
. (39)

In general, for both cases, the bounds in (37) hold for
C

(WA)
0 (m, 0, l) and C(WA)

0 (m, l, l).

C. Code designs

As before, first, we describe the non-systematic (l−, l+)-
AEC code design, where l−, l+∈IIN and D− 1 = l− + l+ ≤
bm/2c. In Subsection III-B, we have seen that the codes in
(35) are zero error capacity achieving (i. e., optimal) if D
divides m. The codes are obtained by taking the code symbols
input to the channel as

〈v + bD〉m = (v + bD) mod m,

where b = 0, 1 . . . , bm/Dc−1 and v∈ZZm is a fixed element.
For example, by letting v = 0 for every component, the
following codes are obtained.

Cn(0)
def
= {(xn−1, xn−2, . . . , x0)∈ZZnm : (40)

xi/D∈ZZbm/Dc for all i∈ [0, n− 1]
}

={
x∈ZZm : x = bD with b∈ZZbm/Dc

}n
= C1(0)n

For these last codes, a received symbol y ∈ ZZm is decoded
into the code symbol x ∈ ZZm by rounding it to the closest
integer multiple of D according to the rule in (19), taking into
account the modm operation (i. e., the wrap around).

Example 3.1: Let m = 16 and consider the code C =
{0, 4, 8, 12} ⊆ ZZ16. For any n ∈ IIN, the code Cn has a
minimum max Lee distance of D = 4 and so it is capable
of correcting all negative errors of magnitude up to l− = l
and all positive errors of magnitude up to l+ = 3− l, for all
l ∈ {0, 1, 2, 3}. Also, the code Cn is optimal because its rate
is R = (1/n) log 4n = log 4 = log b16/4c = log(16/4) =

C
(WA)
0 (m, l−, l+).
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When D does not divide m, the codes in (35), which are
obtained by concatenating optimal non-systematic codes of
length n = 1, are close to optimal non-systematic (l−, l+)-
AEC codes for the wrap around error model. However, they
may not be optimal in general, as the following Example 3.2
shows.

Example 3.2: Let m = 16 and consider the code C =
{0, 5, 10} ⊆ ZZ16 (note that, unlike the code in Example 2.1
for the non-wrap around model, the symbol 15 cannot be in C).
For any n∈IIN, the code Cn has a minimum max Lee distance
of D = 5 and so it has exactly the same error correcting
abilities of the code in Example 2.1, but for the wrap around
error model. Also, the code rate is R = log(3), wheras

C
(WA)
0 (m = 16, l−, l+)∈

[
log

⌊
16

5

⌋
, log

(
16

5

)]
=

[log(3), log(3.2)].

By considering the concatenation of codes of length n = 2,
some improvement can be obtained, as shown in the following
two examples.

Example 3.3: Let m = 8, n = 2 and D = 3. Consider the
code

C = {00, 13, 36, 41, 64} ⊆ ZZ2
8.

The code C has length 2, cardinality 5 (> 4), a minimum max
Lee distance of D = 3 and, hence, an information rate of

R =
1

2
log(5) = log

(√
5
)

= log(2.236).

On the other hand,

C
(WA)
0 (m = 8, l−, l+)∈

[
log

⌊
8

3

⌋
, log

(
8

3

)]
=

[log(2), log(2.666)].

Example 3.4: Let m = 16, n = 2 and D = 3. Consider the
code

C = {0 0, 0 4, 1 7, 1 10, 2 13,

3 0, 3 3, 4 6, 4 9, 5 12,

6 2, 6 15, 7 5, 7 8, 8 11,

9 1, 9 14, 10 4, 10 7, 11 10,

12 13, 13 0, 13 3, 13 6, 14 9,

15 13} ⊆ ZZ2
16.

The code C has length 2, cardinality 26 (> 25), a minimum
max Lee distance of D = 3 and, hence, an information rate
of

R =
1

2
log(26) = log

(√
26
)

= log(5.099).

On the other hand,

C
(WA)
0 (m = 16, l−, l+)∈

[
log

⌊
16

3

⌋
, log

(
16

3

)]
=

[log(5), log(5.333)].

We suspect all the above examples to be indeed optimal
non-systematic minimum max Lee distance D codes. Also,
a general method of how to construct these codes is still an
open problem.

Now we focus our attention on systematic code design.
Before describing the code design method, first we investigate
the minimum number of check digits needed to encode infor-
mation vectors of a certain length in any systematic (l−, l+)-
AEC code.

Theorem 3.5: Let C be any systematic m-ary wrap around
(l−, l+)-AEC code of length n∈ IIN such that the number of
information digits in a codeword is k∈IIN. Then, the number
of check digits, r = n− k∈IIN, satisfies the relation,

r ≥
⌈

k logD

log(m/D)

⌉
; (41)

where D = l− + l+ + 1.
Proof: The proof follows exactly as that of Theorem 2.6.

Let d∈IIN be defined as

d
def
=

⌈
m

bm/Dc

⌉
≥ m

bm/Dc
≥ D (42)

and note that if D|m then d = D. Furthermore,⌊m
D

⌋
≥
⌈m
d

⌉
≥ m

d
. (43)

In the rest of the paper, given m, l−, l+, L ∈ IIN with D =
l− + l+ + 1, optimal or close to optimal m-ary (l−, l+)-AEC
systematic codes which require

r =

⌈
k log d

log bm/Dc

⌉
≤
⌈

k log d

log(m/d)

⌉
∈IIN (44)

check digits are presented, where k ∈ IIN is the number of
information digits. From (42), (43) and (44), when k is large,
the information rate of these codes of length n(k) = k+r∈IIN
is

R(WA)
sys (m,D;n(k))

def
=

k

k + r
= (45)

k

k + dk log d/ log bm/Dce
=

k

k + dk log dm/ bm/Dce / log bm/Dce
'

1

1 + log dm/ bm/Dce / log bm/Dc
=

log bm/Dc
log bm/Dc+ log dm/ bm/Dce

=

log bm/Dc
log(bm/Dc · dm/ bm/Dce)

;

and, if k̄ def
= log bm/Dc / log dm/ bm/Dce ∈ IIN then with

finite length n̄ = k̄ + 1,

R(WA)
sys (m,D; n̄) =

k̄

k̄ + 1
=

log bm/Dc
log(bm/Dc · dm/ bm/Dce)

.

Furthermore, from (41) and (37), if D|m then d = D
and the proposed systematic (l−, l+)-AEC codes are optimal
systematic and non-systematic (l−, l+)-AEC codes (i. e., they
achieve the zero error capacities). If instead D does not divide
m and d is close to D then the codes are close to optimal;
however, in general, there is some room for improvement,
especially when m/D is low (see Example 4.9 and Example
4.10).
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IV. GENERAL SYSTEMATIC CODE DESIGN

For both wrap around and non-wrap around error model,
a very general systematic coding scheme can be designed. In
fact, this systematic code construction is so general that it
can be applied to do error correction for any channel model.
The idea is very simple and can be described as follows. For
example, assume wrap around model. Given m, s, d∈IIN, let

P = {C0, C1, . . . , Cd−1} (46)

be a partition (or, more generally, a covering set with d to be
as small as possible) of ZZsm into (l−, l+)-AEC codes where,
as before, l−, l+, D = l− + l+ + 1∈IIN. Let

ρ : ZZsm → ZZd

be the function which associates every X∈ZZsm with the index
of the code in the partition which contains X; formally,

ρ(X) = i
def⇐⇒ X∈Ci∈P. (47)

Example 4.1: If m = 17, D = 3 and s = 1 then a value of
d = 4 can be obtained with the following partition of ZZsm =
ZZ17 into minimum max Lee distance D = 3 codes.

P =


C0

def
= {0, 4, 8, 11, 14},

C1
def
= {1, 5, 9, 12, 15},

C2
def
= {2, 6, 10, 13, 16},

C3
def
= {3, 7}

 . (48)

In this way,

ρ(0) = ρ(4) = ρ(8) = ρ(11) = ρ(14) = 0,
ρ(1) = ρ(5) = ρ(9) = ρ(12) = ρ(15) = 1,
ρ(2) = ρ(6) = ρ(10) = ρ(13) = ρ(16) = 2,
ρ(3) = ρ(7) = 3.

For simplicity, let the number of information digits be K∈IIN
where K/s def

= k ∈ IIN so that K is a multiple of s. In this
way, the function ρ can be easily componentwise extended to
a vector function

ρ : (ZZsm)
k ≡ ZZKm → ZZkd (49)

defined as

ρ(X) = (ρ(Xk−1), ρ(Xk−2), . . . , ρ(X0)),

for all X = Xk−1Xk−1 . . . X0∈ZZKm.

Example 4.2 (Example 4.1 continued): Continuing the pre-
vious example with m = 17, D = 3, s = 1 and d = 4, for
K = k = 8 we have

X = 1 0 16 7 1 12 13 2 =⇒
ρ(X) = 1 0 2 3 1 1 2 2.

(50)

Now, let us assume X∈ZZKm is the sent information part of a
codeword and Y ∈ZZKm is its received version. Note that if the
receiver knows ρ(X) then it is capable of performing (l−, l+)-
All Error Correction because, for every received part Yi∈ZZsm,
i∈ [0, k − 1], the receiver knows that the corresponding Xi∈
Cρ(Xi), and so, it recover Xi by applying the (l−, l+)-AEC
procedure of Cρ(Xi) with input Yi.

Example 4.3 (Example 4.1 continued): Continuing the
example with m = 17, K = k = 8, D = 3. As-
sume we want to perform (l− = 1, l+ = 1)-AEC and
X = (1, 0, 16, 7, 1, 12, 13, 2) in (50) is the sent informa-
tion part. Suppose the received information vector is Y =
(1, 16, 0, 8, 2, 12, 12, 2). Since it is assumed that ρ(X) is
known to the receiver, it knows

Y = 1 16 0 8 2 12 12 2,
ρ(X) = 1 0 2 3 1 1 2 2.

Hence, since C0, C1, C2 and C3 are (1, 1)-AEC codes, the
receiver,
• knows that X7 ∈ C1 = {1, 5, 9, 12, 15} and Y7 = 1. So

it can apply the (1, 1)-AEC of C1 on input Y7 = 1 and
recover X7 = 1,

• knows that X6 ∈C0 = {0, 4, 8, 11, 14} and Y6 = 16. So
it can apply the (1, 1)-AEC of C0 on input Y6 = 16 and
recover X6 = 0,

• knows that X5 ∈C2 = {2, 6, 10, 13, 16} and Y5 = 0. So
it can apply the (1, 1)-AEC of C2 on input Y5 = 0 and
recover X5 = 16,

• knows that X4 ∈ C3 = {3, 7} and Y4 = 8. So it can
apply the (1, 1)-AEC of C3 on input Y4 = 8 and recover
X4 = 7,

• and so on.
At this point the code design idea for an m-ary systematic

(l−, l+)-AEC code C is very simple and is captured by the
following algorithm.

Algorithm 4.1 (General Encoding Algorithm):
Input: the information word X∈ZZKm, K = sk with s, k∈IIN.
Output: the codeword

E(X) = X A∈C ⊆ ZZnm

where n = K + r and A∈ZZrm is the check word.
Perform steps S1, S2, S3 and S4.
S1: Compute ρ(X)∈ZZkd according to (47) and (49).
S2: Encode ρ(X) into an m-ary (l−, l+)-AEC code C̃ with
the smallest possible length r∈ IIN. Let Ẽ(ρ(X))∈ C̃ be this
encoding of ρ(X), where

Ẽ : ZZkd → C̃ ⊆ ZZrm. (51)

S3: Append the check word A def
= Ẽ(ρ(X))∈ZZrm to X to get

the systematic encoding of X as

E(X) = X Ẽ(ρ(X)) = X A∈ZZnm.

S4: Output E(X)∈C and exit.
Example 4.4: If we need to design a systematic wrap around

m-ary (l−, l+)-AEC code, C, with k information digits with
the following parameters: m = 12, K = k = 5 (i. e., s =
1), l− = l+ = 1 then Algorithm 4.1 can be implemented as
follows. Since D = 3 divides m = 12, the partition in (46) can
be defined with the codes of length n = 1 in (35) by letting,

Cv
def
= C1(v) =

{x∈ZZ12 : x = v + b · 3 with b∈{0, 1, 2, 3}} =

(3ZZ + v) ∩ IIN, for all v∈ZZ3.



0018-9448 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2703171, IEEE
Transactions on Information Theory

BOSE et al.: ON CODES ACHIEVING ZERO ERROR CAPACITIES IN LIMITED MAGNITUDE ERROR CHANNELS 11

In this way, d = D = 3 and

P =


C0

def
= {0, 3, 6, 9},

C1
def
= {1, 4, 7, 10},

C2
def
= {2, 5, 8, 11}

 .

Suppose X = 6 2 8 1 11∈ZZ12 needs to be encoded. Then, in
Step S1 of Algorithm 4.1, the function ρ in (49) can be defined
as the remainder mod 3 vector

ρ(X) = X mod 3 = 0 2 2 1 2∈ZZ5
3.

In (51), we can let C̃ def
= Cr0 = {0, 3, 6, 9}r where the length

r of C̃ is the smallest possible natural such that there exists
an encoding function E : ZZ5

3 → C̃ ⊆ ZZr12; that is, such that
35 = |ZZ5

3| ≤ |C̃| = |C0|r = 4r. Then, in Step S2 of Algorithm
4.1, this least redundant encoding function Ẽ can be defined
as follows.

1) compute the natural number whose radix d = 3 expres-
sion is ρ(X)∈ZZ5

3 as

[ρ(X)]d = 0×34+2×33+2×32+1×31+2×30 = 77;

2) convert this number in radix b = |C̃| = dm/de = 12/3 =
4 form with smallest possible length

r =
⌈
logb |ZZkd|

⌉
=
⌈
log4 35

⌉
= d3.962e = 4.

That is,

([ρ(X)]d)
[r]
b = (77)

[4]
4 = 1 0 3 1∈ZZ4

4;

3) multiply each component of ([ρ(X)]d)
[r]
b by D = 3 to

obtain the vector

A = 3 · ([ρ(X)]d)
[r]
b = 3 0 9 3∈C̃4 ⊆ ZZ4

12.

Therefore, in Step S3 of Algorithm 4.1, the encoded word is

X A = 6 2 8 1 11 3 0 9 3∈C. (52)

Given the encoding Algorithm 4.1, the decoding of the
above m-ary systematic (l−, l+)-AEC code C can be per-
formed as follows.

Algorithm 4.2 (General Decoding Algorithm):
Input: the received word Y A′ ∈ ZZnm where n = K + r,
K = sk with s, k∈IIN, Y ∈ZZKm and A′∈ZZrm.
Output: the information word X∈ZZKm.
Perform steps S1, S2, S3 and S4.
S1: Apply the (l−, l+)-AEC procedure of C̃ with input A′ and
correct all the errors in the check part. In this way, the output
from this procedure is exactly A = Ẽ(ρ(X))∈C̃ ⊆ ZZrm.
S2: From A, compute ρ(X) = Ẽ−1(A) ∈ ZZkd according to
the definition of Ẽ in (47) and (49). At this point the receiver
knows the received information part Y and ρ(X).
S3: From Y and ρ(X), correct all the errors in the information
part Y to get X . Note that the error values must be in
[−l−, l+] ∩ ZZ.
S4: Output X∈ZZKm and exit.

Example 4.5 (Example 4.4 continued): Let the encoded
word be the one in (52) and let the channel output, given
as input to Algorithm 4.2, be

Y A′ = 5 3 7 2 0 2 11 9 2∈ZZ9
12.

In Step S1 of Algorithm 4.2, by rounding the check symbols to
the nearest multiple of 3 and then taking the componentwise
modm = mod12 operation we correct the errors in the
check part and get

A = 3 0 9 3∈ZZ4
12.

In Step S2 of Algorithm 4.2, we compute ρ(X) = Ẽ−1(A) as
follows.

1) Divide each component of A by D = 3 to get the vector

A

3
= 1 0 3 1 = ([ρ(X)]d)

[r]
b ∈ZZ

4
4;

2) compute the number whose expression in radix b = 4 is
A/3, i. e.,[

A

3

]
4

= [1 0 3 1]4 =

1× 43 + 0× 42 + 3× 41 + 1× 40 =

77 = [ρ(X)]d;

3) convert [A/3]4 in radix d = 3 form of length k = 5, as([
A

3

]
4

)[5]

3

= (77)
[5]
3 = 0 2 2 1 2 = ρ(X) = X mod 3.

In Step S3 of Algorithm 4.2, componentwise compute the
integer error vector, E∈ [−1,+1]5, as

E = (Y −X) mod 3 =

〈5− 0〉3 〈3− 2〉3 〈7− 2〉3 〈2− 1〉3 〈0− 2〉3 =

〈2〉3 〈1〉3 〈2〉3 〈1〉3 〈1〉3 ≡
−1 +1−1 +1 +1 mod 3

and subtract it under mod 12 to the received information part
Y to obtain the correct sent information word X as

X = (Y − E) mod 12 =

〈5− (−1)〉12 〈3− (+1)〉12 〈7− (−1)〉12
〈2− (+1)〉12 〈0− (+1)〉12 =

〈6〉12 〈2〉12 〈8〉12 〈1〉12 〈−1〉12 =

6 2 8 1 11.

Now, let us focus on the number of redundant digits
required. In the proposed coding schemes, s = 1. Note that
the encoding is done as follows. The function

Ẽ : ZZkd → ZZrm

to encode ρ(X)∈ZZkd given in (51) is defined as follows. First,
express the number [ρ(X)]d in base

b
def
= max

v∈ZZd

|C1(v)| def= |C1(0)|,

and then encode each b-ary digit of ([ρ(X)]d)
[r]
b ∈ZZrm into the

code C1(0) as defined in (15) or (40) for the non-wrap around
case or the wrap around case, respectively. In both cases, the
encoding is defined as

Ẽ(ρ(X)) = D · ([ρ(X)]d)
[r]
b ∈ZZ

r
m;
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where “·” indicates a scalar times a vector product. Since
ρ(X)∈ZZkd can be any element, the redundancy of the coding
scheme can be

r =

⌈
logb

(
max
ρ∈ZZk

d

[ρ]d + 1

)⌉
=
⌈
logb d

k
⌉

= (53)

dk logb(d)e =

⌈
k log(d)

log(b)

⌉
.

In general s ≥ 1 and if

R(C̃) =
log |C̃|
r
' k log d

r

is the information rate of the (l−, l+)-AEC code C̃ then the
information rate of the code C is given by

R(C) =
K

n
=

K

K + r
' s

s+ log(d)/R(C̃)
. (54)

Note that, if a systematic code is needed with m = 9 in
the above Example 4.4 for the non-wrap around error model
then Algorithm 4.1 and Algorithm 4.2 can be implemented in
exactily the same way and they are exactly equal to the optimal
algorithms given in [16]. In fact, for the non-wrap around error
model, this holds true in general for the code design obtained
with the partitioning method given in Subsection IV-A.

A. Optimal partitioning method for s = 1

From (54), it is clear that to reduce the redundancy the
cardinality, d, of the partition in (46) should be as small as
possible. Given m,D, l−, l+∈ IIN, with D = l− + l+ + 1, in
this subsection, we describe an optimal partitioning of ZZm
into minimum max L1/Lee distance D codes.

In the non-wrap around case, b = |C1(0)| = dm/De and
the partition (46) can be defined as

Cv = C1(v) = [D · ZZ + v] ∩ ZZm, for all v∈ZZD.

Example 4.6: For example, when m = 14 and D = 3, the
partition is

P =


C0

def
= {0, 3, 6, 9, 12},

C1
def
= {1, 4, 7, 10, 13},

C2
def
= {2, 5, 8, 11}

 .

Hence, d = |P| = D. So, for the non-wrap around case, the
redundancy is the one given in (21) and the codes are optimal
systematic (l−, l+)-AEC codes because of Theorem 2.6.

On the other hand, in the wrap around case, b = |C1(0)| =
bm/Dc is the maximum possible because of Theorem 3.4 with
n = 1; and so, since P is a covering of ZZm,

d ≥
⌈
|ZZm|
|C1(0)|

⌉
=

⌈
m

bm/Dc

⌉
.

Indeed, as Example 4.1 shows, it is not difficult to design a
partition (46) whose cardinality d reaches the above lower-
bound. It can be done as follows. Let b def

= bm/Dc, recall
(42) and let

d
def
=

⌈
m

bm/Dc

⌉
=
⌈m
b

⌉
≥ D. (55)

Without restriction, D∈IIN can be assumed to be the greatest
natural such that b = bm/Dc; otherwise, the partition can be
designed for a natural D′ > D (for example, assume m = 89
and D = 15. Then, b = b89/15c = b89/16c = b89/17c = 5
and b89/18c = 4. Thus, we can design a code with a minimum
distance up to D′ = 17 > 15 = D). In this way, we can
assume b = bm/Dc > bm/(D + 1)c. Hence, since

m =
⌊m
D

⌋
D + 〈m〉D = bD + 〈m〉D, (56)

it follows

b =
⌊m
D

⌋
>

⌊
m

D + 1

⌋
=⇒ b >

m

D + 1
=⇒

m

b
< D + 1 =⇒ bD + 〈m〉D = m < bD + b;

and so,
〈m〉D < b. (57)

Also, from (55), (56) and (57),

d =
⌈m
b

⌉
=

{
D if 〈m〉D = 0,
D + 1 if 〈m〉D 6= 0.

(58)

Now, with regard to the partition, consider the following codes,

A0
def
= {0, (D + 1), 2(D + 1), . . . , (〈m〉D − 1) (D + 1)} =

(D + 1) · ZZ〈m〉D ,

B0
def
= {〈m〉D(D + 1), 〈m〉D(D + 1) +D,

〈m〉D(D + 1) + 2D, . . . ,

〈m〉D(D + 1) + (b− 〈m〉D − 1)D} =

(D + 1)〈m〉D +D · ZZb−〈m〉D ,

C0
def
=A0 ∪ B0.

Note that the above codes are well defined because of (57).
Example 4.7: For example, let m = 29 and D = 5. Then

b = b29/5c = 5, d = d29/5e = 6, 〈29〉5 = 4 and

A0
def
= {0, 6, 12, 18} ,

B0
def
= {24} ,

C0
def
= {0, 6, 12, 18, 24} .

Note that |C0| = b = bm/Dc. Furthermore, DLee
max(C0) ≥

D because DLee
max(A0) ≥ D, DLee

max(B0) ≥ D and the Lee
distance between the last word in B0 ⊆ C0 and 0∈A0 ⊆ C0
is

m− [〈m〉D(D + 1) + (b− 〈m〉D − 1)D] = D.

This last relation follows from (56). At this point, by an integer
translation, we let

Cv
def
= C0 + v = (A0 + v) ∪ (B0 + v), for all integer v∈ZZD;

and

CD
def
= ZZm−

⋃
v∈ZZD

Cv = AD = A0 +D = {D,D+(D+1),

D+2(D+1), . . . , D+(〈m〉D−1) (D+1)} ,

where 〈m〉D = 0 if, and only if, CD = ∅. From the
construction, the above codes are well defined and, as above
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for C0, from (56) and (57), it follows that DLee
max(Cv) ≥ D, for

all v∈ZZD+1.
Example 4.8 (Example 4.7 continued): For the given exam-

ple with m = 29 and D = 5 the partition elements are

C0
def
= {0, 6, 12, 18, 24} ,

C1
def
= {1, 7, 13, 19, 25} ,

C2
def
= {2, 8, 14, 20, 26} ,

C3
def
= {3, 9, 15, 21, 27} ,

C4
def
= {4, 10, 16, 22, 28} ,

C5
def
= {5, 11, 17, 23} .

In this way, the sought partition (46) of cardinality d into
minimum max Lee distance D codes is well defined. The
partition given in (48) is also obtained with the method just
described.

Hence, in the wrap around case, the redundancy is the one
given in (44).

B. Improved codes based on partitioning ZZsm for s > 1

As mentioned earlier, in general, there may be some room
for improvement in the case of systematic code design for
the wrap around error model, especially when m/D is low.
In fact, a little higher information rate may be achieved for
s = 2 (or, even more for s > 2) as the following examples
show.

Example 4.9: If m = 8, D = 3 and s = 2 then a
value of d = 15 can be obtained with the following partition
P = {C0, C1, . . . , C14} of ZZsm = ZZ2

8 into minimum max Lee
distance D = l− + l+ + 1 = 3 (i. e., (l−, l+)-AEC) codes.

C0
def
= {00, 13, 36, 41, 64} (this is the code in Example 3.3),

C1
def
= C0 + 01,

C2
def
= C0 + 02,

C3
def
= C0 + 10,

C4
def
= C0 + 11,

C5
def
= C0 + 12,

C6
def
= C0 + 20,

C7
def
= C0 + 21,

C8
def
= C0 + 22,

C9
def
= C0 + 70,

C10
def
= {17, 32, 45, 60, 73},

C11
def
= {16, 44, 67, 72},

C12
def
= {27, 77},

C13
def
= {07, 55},

C14
def
= {71}.

Assume that the code C̃ in (51) is obtained by concatenation
of the above code C0. Then, from (54), s = 2, d = 15 and

R(C̃) = (1/2) log(5), the information rate of this systematic
code is

R(C) =
s

s+ log(d)/R(C̃)
= (59)

1

1 + log(15)/ log(5)
=

1

1 + log5(15)
' 0.3728.

On the other hand, if s = 1 then d = 4 and R(C̃) = log(2),
and so, the code design gives an information rate of

R(C) =
s

s+ log(d)/R(C̃)
=

1

1 + log(4)/ log(2)
=

1

1 + log2(4)
=

1

3
' 0.3334 < 0.3728.

In any case, from (37), the maximum possible information rate
of a systematic 8-ary code with minimum max distance of 3
is

Ropt ≤
log(m/D)

log(m)
= log8(8/3) ' 0.4717.

The systematic information rate gap may be filled by consid-
ering a smaller partition for s = 2 (if there exists one) or
other small partitions for s > 2.

Example 4.10: If m = 16, D = 3 and s = 2 then a
value of d = 12 can be obtained with the following partition
P = {C0, C1, . . . , C13} of ZZsm = ZZ2

16 into minimum max Lee
distance D = l−+ l+ + 1 = 3 (i. e., (l−, l+)-AEC) codes. Let

C = {0 0, 0 4, 1 7, 1 10, 2 13,

3 0, 3 3, 4 6, 4 9, 5 12,

6 2, 6 15, 7 5, 7 8, 8 11,

9 1, 9 14, 10 4, 10 7, 11 10,

12 13, 13 0, 13 3, 13 6, 14 9,

15 13} ⊆ ZZ2
16

be the code of length 2, cardinality 26 and minimum max
Lee distance of D = 3 considered in Example 3.4. Then, the
elements of the partition P are

C0
def
= C (this is the code in Example 3.4),

C1
def
= C0 + 01,

C2
def
= C0 + 02,

C3
def
= C0 + 10,

C4
def
= C0 + 11,

C5
def
= C0 + 12,

C6
def
= C0 + 20,

C7
def
= C0 + 21,

C8
def
= C0 + 22,

C9
def
= {0 3, 0 7, 3 6, 4 12, 5 15,

6 5, 7 11, 8 14, 9 4, 10 10,

11 13, 12 0, 12 3, 13 9, 14 12},

C10
def
= {0 8, 0 12, 1 3, 12 1},
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C11
def
= {2 3, 12 2, 15 12}.

Assume that the code C̃ in (51) is obtained by concatenation
of the above code C0. So, from (54), s = 2, d = 12 and
R(C̃) = (1/2) log(26), the information rate of this systematic
code is

R(C) =
s

s+ log(d)/R(C̃)
= (60)

1

1 + log(12)/ log(26)
=

1

1 + log26(12)
' 0.5673.

On the other hand, if s = 1 then d = 4 and R(C̃) = log(5),
and so, the code design gives an information rate of

R(C) =
s

s+ log(d)/R(C̃)
=

1

1 + log(4)/ log(5)
=

1

1 + log5(4)
' 0.5372 < 0.5673.

In any case, from (37), the maximum possible information rate
of a systematic 16-ary code with minimum max distance of 3
is

Ropt ≤
log(m/D)

log(m)
= log16(16/3) ' 0.6038.

This systematic information rate gap may be filled by consid-
ering a smaller partition for s = 2 (if there exists one) or
other small partitions for s > 2.

V. CONCLUDING REMARKS

In this paper, we have described some non-systematic and
systematic (l−, l+)-AEC, l-ASEC and l-AAEC codes which
all achieve or are close to achieving Shannon’s zero error
capacities with any finite length. Codes for both wrap around
and non-wrap around limited magnitude m-ary (l−, l+)-error
channels are described and it is shown that the error correcting
code parameters depend on l− and l+ only through D = l−+
l+ +1. In particular, given m, l−, l+, D = l−+ l+ +1, n∈IIN,
let

C0
def
= C0(m,D) = sup

n∈IIN
C0(m,D;n)

be the zero error capacity where C0(n)
def
= C0(m,D;n)

is the maximum information rate achievable for zero error
transmission with n independent uses of the m-ary (l−, l+)-
channel. For the non wrap-around error model C0(n) does not
depend on n and

C
(NW )
0 = log

⌈m
D

⌉
≥ (61)

C
(NW )
0,sys =

log dm/De
log (D · dm/De)

≥ log
(m
D

)
.

Optimal non-systematic non wrap-around (l−, l+)-AEC codes
are given in (15) with information rate

R(NW )
nsy (n)

def
= R(NW )

nsy (m,D;n) = C
(NW )
0 = log

⌈m
D

⌉

of any length n ∈ IIN. Also, optimal systematic zero error
capacity achieving non wrap-around (l−, l+)-AEC codes of
length n(k)∈IIN are given with information rate as in (22),

R(NW )
sys (k)

def
= R(NW )

sys (m,D;n(k)) =

k

k + dk logD/ log dm/Dee
;

where k∈IIN is the number of information digits. These codes
are systematic zero error capacity achieving codes; that is,

R(NW )
sys (∞)

def
= lim

k→∞
R(NW )
sys (k) = C

(NW )
0,sys .

It is also shown that even for small values of k their infor-
mation rate R(NW )

sys (k) is very close to C(NW )
0,sys . Also, for the

values of m,D∈IIN such that k̄ = logD dm/De∈IIN holds, it
is shown that R(NW )

sys (k) = C
(NW )
0,sys ; that is, the codes achieve

the systematic zero error capacity with finite length. If D|m
then all the quantities in (61) are equal to log(m/D), and
so, the codes achieve the (non-systematic) zero error capacity
and, if k̄ = logD(m/D) ∈ IIN (that is, m is a power of D)
then they achieve the zero error capacity with finite length
n(k̄) = n(logD(m/D)).

For the wrap-around error model C0(n) may depend on n,
unless D|m. Also, for the non-systematic case,

log
(m
D

)
≥ C(WA)

0 ≥C(WA)
0 (2) ≥ (62)

C
(WA)
0 (1) = log

⌊m
D

⌋
.

Whereas, for the systematic case,

log
(m
D

)
≥C(WA)

0 ≥ (63)

C
(WA)
0,sys ≥

log bm/Dc
log [bm/Dc · dm/ bm/Dce]

.

Suboptimal non-systematic wrap-around (l−, l+)-AEC codes
are given in (40) with information rate

R(WA)
nsy (n)

def
= R(WA)

nsy (m,D;n) = C
(WA)
0 (1) = log bm/Dc

of any length n ∈ IIN, and two new examples (Example 3.3
and Example 3.4) where R

(WA)
nsy (n) > C

(WA)
0 (1) are given.

Close to optimal systematic wrap-around (l−, l+)-AEC codes
of length n(k) ∈ IIN are derived with information rate as in
(45),

R(WA)
sys (k)

def
= R(WA)

sys (m,D;n(k)) =

k

k + dk log dm/ bm/Dce / log bm/Dce
;

where k ∈ IIN is the number of information digits. For these
codes,

R(WA)
sys (∞)

def
= lim

k→∞
R(WA)
sys (k) = (64)

log bm/Dc
log [bm/Dc · dm/ bm/Dce]

.

If D|m then all the quantities in (61), (62) and (63) are equal
to log(m/D), and so, either

lim
k→∞

R(WA)
sys (k) = C

(WA)
0,sys = C

(WA)
0 = C

(NW )
0,sys = C

(NW )
0
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or

R(WA)
sys (k̄) = C

(WA)
0,sys = C

(WA)
0 = C

(NW )
0,sys = C

(NW )
0

for some finite k̄ def
= logD(m/D)∈IIN. Also, only if D|m, the

optimal systematic and non-systematic code designs and the
decoding algorithms for the non-wrap around error model are
exactly the same as the algorithms for the wrap around error
model. Improved codes are discussed by giving two non-trivial
examples (Example 4.9 and Example 4.10).

For some values of m and D, Table I gives the information
rates of the optimal systematic and non-systematic codes and
these rates are respectively equal to or asymptotically equal to
the systematic and non-systematic zero error capacities of the
m-ary NW-(l−, l+)-channel. Analogously, Table II compares
the information rates of the optimal/close to optimal non-
systematic and systematic code designs with the bounds given
in (62) and (63) on the zero error capacities of the m-ary
WA-(l−, l+)-channel.

The regular capacity achieving codes such as turbo codes
[6], [12], LDPC codes [10] and polar codes [2] require
long lengths to achieve the capacity of the error channels,
whereas the proposed zero error capacity achieving codes
can be designed for any finite length n = 1, 2, . . .. These
codes have simple encoding and decoding algorithms and can
be systematic. The implication of these zero error capacity
achieving codes is that, when the data words are sent through
these limited magnitude error channels, using the proposed
(l−, l+)-AEC, l-AAEC and l-ASEC codes, it is possible to
recover the original data words with 100% error free.

ACKNOWLEGEMENT

The authors would like to thank Professors Khaled Abdel-
Ghaffar, Tom Fuja and the anonymous referees for their helpful
inputs on this paper.

REFERENCES

[1] R. Ahlswede, H. Aydinian, L. H. Khachatrian, and L. M. G. M.
Tolhuizen, “On q-ary codes correcting all unidirectional errors of a
limited magnitude”, Proceedings of Ninth International Workshop on
Algebraic and Combinatorial Coding Theory, Kranevo, Bulgaria, Jun.
19-25, 2004, pp. 20-26.

[2] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for binary-input memoryless channels”, IEEE Transac-
tions on Information Theory, pp. 3051-3073, July 2009.

[3] L. D. Baumert, R. J. McEliece, E. Rodemich, H. C. Rumsey, R.
Stanley and H. Taylor, “A combinatorial packing problem”, Computers
in Algebra and Number Theory (proc. SIAM-AMS Sympos. Appl. Math.),
Providence RI, American Mathematical Society, pp. 97-108, 1971.

[4] R. E. Blahut, The Theory and Practice of Error Control Codes, Addison-
Wesley Reading, Mass., 1984.

[5] E. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill,
1968. Revised ed., Aegean Park Press, 1984.

[6] C. Berron, A. Glavieux, and P. Thitimajshima, “Near Shannon error
correcting coding and decoding: Turbo Codes”, Proceedings of 1993
International Confeence on Communications, pp. 1064-1070, 1993.

[7] T. Bohman, “A limit theorem for the Shannon capacities of odd cycles.
II”, Proceedings of the American Mathematical Society, vol. 133, no. 2,
pp. 537-543, 2005.

[8] Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, “Codes for
asymmetric limited-magnitude errors with application to multilevel flash
memories”, IEEE Trans. Inform. Theory, Vol IT-56, pp. 1582 - 1595,
No. 4, March 2010.

[9] T. Cover and J. Thomas, Elements of Information Theory, 2nd Edition.
New York: Wiley-Interscience, 2006

[10] R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge,
1963.

[11] L. Gargano, J. Körner and U. Vaccaro, “Capacities: from information
theory to extremal set theory", Journal of Combinatorial Theory, Series
A, Vol. 68, No. 2, pp. 296-316. 1994.

[12] C. Heegard and S. Wicker, Turbo Coding, Kluwer Academic Publishers,
1999.

[13] J. Körner and A. Orlitsky, “Zero-error Information Theory", IEEE Trans.
Inform. Theory, Vol. 44, No. 6, pp. 2207-2229. October 1998.

[14] L. Lovász, “On the Shannon capacity of a graph", IEEE Trans. Inform.
Theory, Vol. 25, No. 1, pp. 1-7. Jan. 1979.

[15] S. Lin and D. J. Costello: Error Control Coding (2nd Edition), Prentice
Hall, June 2004.

[16] N. Elarief and B. Bose, “Optimal, systematic, q-ary codes correcting all
asymmetric and symmetric errors of limited magnitude”, IEEE Trans.
Inform. Theory, Vol 56, No. 3, pp. 979-983, March 2010.

[17] F. J. R. Ruiz and F. Pérez-Cruz, “Zero-error codes for the noisy-
typewriter channel”, 2011 IEEE Information Theory Workshop, Paraty,
pp. 495-497. Oct. 2011.

[18] C. E. Shannon, “The zero error capacity of a noisy channel", IRE
Transactions on Information Theory, Vol. 2, pp. 8-19, May 1956.

[19] L. G. Tallini, N. Elarief and B. Bose, “On efficient repetition error
correcting codes", 2010 IEEE ISIT, pp. 1012-1016, June 2010.

Bella Bose (S’78–M’80–SM’94–F’95) received the B. E. degree in electrical
engineering from Madras university, India in 1973; the M. E. degree in
electrical engineering from the Indian Institute of Science, Bangalore, in 1975;
and the M. S. and Ph. D. degrees in computer science and engineering from
Southern Methodist University, Dallas, Texas, in 1979 and 1980, respectively.
Since 1980, he has been with Oregon State University where he is a Professor
and the Senior Associate Head of the School of Electrical Engineering and
Computer Science. His current research interests include error control codes,
fault-tolerant computing, parallel processing, and computer networks. He is a
fellow of both the ACM and the IEEE.

Noha Elarief received the BS degree in Computer Science from Ain Shams
University, Cairo, Egypt, in 2004, and the MS and PhD degrees in Computer
Science from Oregon State University, Corvallis, in 2008 and 2010, respec-
tively. She is currently an R&D Software Engineer at Hewlett Packard. Prior to
joining HP, she has been a postdoctoral fellow at the School of EECS, Oregon
State University from March, 2010 to March, 2011. Her research interests
include Error Control Codes, Information Theory and Software Engineering.

Luca G. Tallini was born in Frascati (Rome), Italy. He received the Laurea in
Mathematics magna cum laude from the University of Rome “La Sapienza"
in 1991, the M. S. and Ph. D. degrees in Computer Science from Oregon State
University, Corvallis OR, in 1994 and 1996 respectively. From June 1997 to
June 1998 he had been with the Dipartimento di Informatica ed Applicazioni,
University of Salerno, Italy. From June 1998 to December 2002, he had been
Assistant Professor at Politecnico di Milano, Italy. Since 2003 he has been
with the University of Teramo, Italy, where he is a Professor at the Faculty
of Communication Science. His research interests include coding theory,
information theory, combinatorics, combinatorial algorithms, combinatorial
geometry, fault-tolerant computing, parallel computing, neural networks, and
VLSI.



0018-9448 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2017.2703171, IEEE
Transactions on Information Theory

16 IEEE TRANSACTION ON INFORMATION THEORY, VOL. 63, NO. ?, ? 2017

TABLE I
COMPARISONS OF CODE PARAMETERS FOR THE NON WRAP AROUND

CHANNEL MODEL.

m D
R

(NW )
nsy (n=1) = C

(NW )
0 =

log
⌈
m
D

⌉ R
(NW )
sys (k=∞) = C

(NW )
0,sys

4 2 0.5 0.5
3 0.5 0.3869

8 2 0.6667 0.6667
3 0.5283 0.5
4 0.3333 0.3333
5 0.3333 0.301
6 0.3333 0.2789
7 0.3333 0.2626

16 2 0.75 0.75
3 0.6462 0.6199
4 0.5 0.5
5 0.5 0.4628
6 0.3962 0.3801
7 0.3962 0.3608
8 0.25 0.25
9 0.25 0.2398

32 2 0.8 0.8
3 0.6919 0.6858
4 0.6 0.6
5 0.5615 0.5473
6 0.517 0.5
7 0.4644 0.4527
8 0.4 0.4
9 0.4 0.3869

17 0.2 0.1966

64 2 0.8333 0.8333
3 0.7432 0.7378
4 0.6667 0.6667
5 0.6167 0.6144
6 0.5766 0.5723
7 0.5537 0.542
8 0.5 0.5
9 0.5 0.4862

17 0.3333 0.3285
33 0.1667 0.1655

256 2 0.875 0.875
3 0.8033 0.8022
4 0.75 0.75
5 0.7126 0.7106
6 0.6783 0.6773
7 0.6512 0.6498
8 0.625 0.625
9 0.6072 0.6051

17 0.5 0.4946
33 0.375 0.3729
65 0.25 0.2493
129 0.125 0.1248

The values in the third and fourth columns give the information rates of the
proposed non-systematic and systematic codes, respectively, and are computed
with (61).

TABLE II
COMPARISONS OF CODE PARAMETERS FOR THE WRAP AROUND CHANNEL

MODEL.

m D log
(
m
D

) R
(WA)
nsy (n=1) =

log
⌊
m
D

⌋ R
(WA)
sys (k=∞) for s = 1 (left),

R
(WA)
sys (k=∞) for s = 2 (right)

4 2 0.5 0.5 0.5

8 2 0.6667 0.6667 0.6667
3 0.4717 0.3333 0.3333 0.3728
4 0.3333 0.3333 0.3333

16 2 0.75 0.75 0.75
3 0.6038 0.5805 0.5372 0.5673
4 0.5 0.5 0.5
5 0.4195 0.3962 0.3801
6 0.3538 0.25 0.25
7 0.2982 0.25 0.25
8 0.25 0.25 0.25

32 2 0.8 0.8 0.8
3 0.683 0.6644 0.6242
4 0.6 0.6 0.6
5 0.5356 0.517 0.5
6 0.483 0.4644 0.4527
7 0.4385 0.4 0.4
8 0.4 0.4 0.4
9 0.366 0.317 0.3142
10 0.3356 0.317 0.3142
11 0.3081 0.2 0.2

64 2 0.8333 0.8333 0.8333
3 0.7358 0.7321 0.6871
4 0.6667 0.6667 0.6667
5 0.613 0.5975 0.581
6 0.5692 0.5537 0.542
7 0.5321 0.5283 0.5138
8 0.5 0.5 0.5
9 0.4717 0.4679 0.458
10 0.4463 0.4308 0.4277
11 0.4234 0.387 0.3856
17 0.3188 0.2642 0.2622

256 2 0.875 0.875 0.875
3 0.8019 0.8012 0.7622
4 0.75 0.75 0.75
5 0.7098 0.7091 0.687
6 0.6769 0.674 0.6576
7 0.6491 0.6462 0.6328
8 0.625 0.625 0.625
9 0.6038 0.6009 0.5914
10 0.5848 0.5805 0.5731
11 0.5676 0.5654 0.5579
17 0.4891 0.4884 0.4837
33 0.3695 0.3509 0.3502
65 0.2472 0.1981 0.1978

The value in the third and fourth column give respectively the upper and lower
bounds of the zero error capacity derived in (62). The value in the fourth
column is also equal to the information rate of the proposed non-systematic
codes. The value in the left side of the fifth column is the information rate
computed with (64) of the proposed systematic code designs with s = 1.
The right side of the fifth column gives the information rates, (59) and (60),
obtained for the given examples with s = 2.


