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Abstract— The emergence of malicious apps poses a serious
threat to the Android platform. Most types of mobile malware
rely on network interface to coordinate operations, steal users’
private information, and launch attack activities. In this paper,
we propose an effective and automatic malware detection method
using the text semantics of network traffic. In particular,
we consider each HTTP flow generated by mobile apps as a
text document, which can be processed by natural language
processing to extract text-level features. Then, we use the text
semantic features of network traffic to develop an effective
malware detection model. In an evaluation using 31 706 benign
flows and 5258 malicious flows, our method outperforms the
existing approaches, and gets an accuracy of 99.15%. We also
conduct experiments to verify that the method is effective in
detecting newly discovered malware, and requires only a few
samples to achieve a good detection result. When the detection
model is applied to the real environment to detect unknown
applications in the wild, the experimental results show that our
method performs significantly better than other popular anti-
virus scanners with a detection rate of 54.81%. Our method also
reveals certain malware types that can avoid the detection of
anti-virus scanners. In addition, we design a detection system on
encrypted traffic for bring-your-own-device enterprise network,
home network, and 3G/4G mobile network. The detection model
is integrated into the system to discover suspicious network
behaviors.

Index Terms— Malware detection, HTTP flow analysis, text
semantics, machine learning.

I. INTRODUCTION

THE proliferation of mobile devices has opened the
mobile era and rapidly increased the popularity of mobile

apps. The explosive growth of mobile communication brings
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substantial burden to the mobile security management.
A recent report [1] shows that the number of apps in
the Google Play Store has risen from 16 thousand in
December 2009 to more than 2 million in February 2016.
Notably, the mobile traffic amount has reached 3.7 exabytes
per month [1] in 2015. However, the uprising of mobile
application is highly impaired by the prevalent malware.
Among different operating systems, Android becomes the
most popular platform due to its open architecture [2].
Unfortunately, smartphones running on Android system have
gradually become the main target of attackers and are infected
by malicious apps. This circumstance reveals the urgency of
enforcing mobile app security.

A recent survey [3] studies a wide variety of malware’s
malicious behaviors, and classifies the existing mobile mal-
ware detection methods into two categories, including static
analysis and dynamic analysis methods. Numerous previous
works employ static analysis to detect privacy leakage [4],
malware [5], and vulnerabilities [6] in Android apps. However,
static analysis is challenged by the code polymorphism and
code obfuscation of malware [7], which are used to generate
variants of malware to evade detections. Dynamic analysis
methods modify the device OS to track and access sensitive
information at runtime [8]. Dynamic analysis is promising [9]
but requires a sufficiently large set of executions to cover apps’
behaviors. Thus, performing dynamic analysis on resource-
constrained smart devices is challenging.

To better counteract mobile malware, researchers start
exploring new solutions for mobile malware detection based
on network traffic. Using network traffic to discover hidden
malware is promising, as malware usually launch malicious
behaviors through network connections. In this study, we focus
on comprehensively analyzing mobile network traffic to iden-
tity mobile malware. We examine the traffic flow header using
N-gram method from the natural language processing (NLP).
Then, we propose an automatic feature selection algorithm
based on chi-square test to identify meaningful features. These
automatically selected features are used to build an SVM
classifier for malware detection. We have verified the effective-
ness of this method with extensive experiments. In addition,
the detection model is effectively applied in our detection
system to discover malware at different types of network envi-
ronments. The main contributions of this study are summarized
as follows:

• We propose a novel solution to perform malware detec-
tion using NLP methods by treating mobile traffic as
documents. We apply an automatic feature selection
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algorithm based on N-gram sequence to obtain mean-
ingful features from the semantics of traffic flows.

• Extensive experimental results based on real world net-
work flows show that the proposed model outperforms
prior state of arts by achieving 99.15% malicious flow
detection rate. Applying the model in the wild app detec-
tion, the result shows that our model performs better
than other anti-virus scanners. It can also detect several
malware types that can evade the detection of anti-virus
scanners.

• We propose a detection framework that can cope with
encrypted HTTPS and non-encrypted HTTP traffic in
home networks, Bring-Your-Own-Device (BYOD) [10]
enterprise networks, and 3G/4G mobile networks.
Malware detection model is built and deployed
on servers, which makes it suitable for large-scale
deployment.

The rest of the paper is organized as follows. Section II
highlights the related works. Section III introduces the back-
ground and motivation of the proposed solution. Section IV
discusses the methodology in detail. Section V presents our
evaluation. The limitation and discussion of the proposed
solution are presented in Section VI. Finally, Section VII
elaborates the conclusion of the study.

II. RELATED WORK

The researchers have investigated the malware identification
and private information tracking extensively. Due to the pre-
viously mentioned limitations of static and dynamic analyses,
researchers begin to analyze and identify malicious apps
using network traffic. We divide these related methods into
three categories. They are network signature based methods,
statistical feature based methods and lexical feature based
methods respectively.

A. Network Signature

The signature-based detection methods evaluate the mal-
ware according to the predetermined malware signatures.
Griffin et al. [11] extracted 48 bytes code sequence as a
string signature of malware. In addition, automatic generation
of network signatures has been explored in various previous
works [12]–[14]. Most of these studies focused on worm
fingerprinting. Perdisci et al. [15] focused on generating net-
work signatures for mobile malware from their HTTP traffic.
They analyzed the structural similarities among malicious
HTTP traffic trace and then clustered the similar HTTP traffic.
As for each HTTP traffic cluster, they automatically generated
network signatures for each type of malware. In general,
signature-based methods lack adaptability. It can detect known
attacks, but has limited ability to handle novel attacks.

B. Packet/Flow Statistical Features

A combination of host-based statistics with SNORT rules
to detect botnets was introduced in [16]. The authors showed
that it is possible to detect malicious traffic using statistical
features computed from network traffic data, which motivated

further research in this field. Arora et al. [17] compared
malware’s traffic with benign network traffic and finally found
the deviation of the malware on the network behavior. The
statistical features they used contained average packet size,
average duration of flow, the radio of incoming to outgoing
bytes and other 13 features. In addition, a framework called
AppScanner [18] was implemented that can achieve auto-
matic fingerprinting and real-time identification of Android
apps using the statistical feature of encrypted network traffic.
Conti et al. [19] identified user actions by analyzing the
statistical features of Android encrypted traffic. The statistical
features-based methods only characterize traffic in a coarse
manner, so they may trigger a high misjudgment rate.

C. Packet/Flow Textual Features

Some studies utilize text analysis for malware detection.
Asdroid [20] detected stealthy behavior in Android app by
identifying the disparity between UI textual semantics and
program behaviors. However, it only used a few keywords
to identify sensitive operations such as “send SMS” and
“call phone”. WHYPER [21] used NLP techniques to identify
sentences that described the need for a given permission in
the app description. Nan et al. [22] proposed a framework
called UIPicker for identifying personal user information on
a large scale, and this framework was based on a novel
combination of NLP, machine learning and program analysis
techniques. The N-gram model in NLP has been used in an
automatic network protocol identification system designed for
traffic analysis [23]. Recently, Recon et al. [24] is proposed to
reveal and control personal identifiable information (PII) leaks
in mobile network traffic, in which the key/value pairs are used
for identifying PII. However, none of the works mentioned in
this section aims at searching for the rich semantic features in
the HTTP request header.

Our method uses lexical features of HTTP header to dis-
cover malicious behaviors. On one hand, comparing with
signature-based methods, it can adapt swiftly to detect new
attacks. On the other hand, with specific fields of traffic, it has
a fine grained characterization on flows than statistical fea-
tures, which greatly improves malware detection performance.
Different from the existing approaches, the proposed one
detects Android malware by combing with N-Gram method
in NLP to search for the rich semantic features in the HTTP
request header, when the extracted semantic features attain
enhanced detection capability compared with coarse-grained
features used in the existing works. In addition, we propose a
detection system to cope with encrypted and non-encrypted
traffic in home networks, BYOD enterprise networks, and
3G/4G mobile networks, which can be easily deployed.

III. BACKGROUND AND MOTIVATION

The personal computer (PC) and mobile malware stud-
ies have many common characteristics. Yet, mobile devices
present unique features that make them distinct from their PC
counterparts [25], [26]. We elaborate the major differences as
follows:



1098 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 5, MAY 2018

1) Limited device resource. Compared with PC, mobile
devices have limited resources in terms of CPU, RAM,
memory, and battery. However, most PC malware detec-
tion methods consume a wealth of time and resources.
Therefore, these methods are not suitable for detecting
mobile malware on mobile devices. Network traffic
analysis has been proposed for mobile malware detec-
tion, which can be deployed in the gateway without
requiring excessive resource usages on mobile devices.

2) Privacy concerns. Mobile device is more personal com-
pared with PC. The attackers targeting mobile sys-
tems are generally more interested in the users’ private
information, such as the users’ daily routines, personal
contacts, and bank accounts [27]. Moreover, after the
private data acquisition, the attacker can launch effective
fraud attacks. Jiang and Zhou [28] have shown that more
than 90% of malware-infected mobile terminals are con-
trolled by botnets through network or SMS commands.
Therefore, mining malicious behaviors through network
traffic is a promising direction.

3) Communication protocols. Unlike the traditional PC
malware, mobile devices utilize a minimum set of
protocol types for network communications. The
HTTP/HTTPS protocols are the major protocols that are
used by mobile malware [15], [29]. Therefore, we need
to exploit HTTP/HTTPS traffic for designing effective
mobile malware detection methods.

Consequently in this paper, we focus on HTTP/HTTPS
traffic based malware detection. We filtered out the SSDP,
NBNS, LLMNR and DHCP traffic during the pre-processing
stage, because these traffic are unrelated to malicious behav-
iors. As the DNS traffic does not directly relate to mali-
cious behaviors, we also filtered out DNS traffic. In the
end, HTTP and HTTPS traffic collectively constitutes the
complete malicious traffic, and both HTTP and HTTPS
packets’ proportion in total malicious network data reaches
76.96% and 23.04%. Meanwhile, the proportion of malware
samples using un-encrypted protocol HTTP for communica-
tion is 83.67%, while the rest of them are using HTTPS
protocol. In particular, the focus is on the request header of
HTTP flow because of its rich text semantics.

HTTP headers are typically in plaintexts. The HTTP request
of a flow is comprised of three parts: request line, request
header, and request body. The request line and request header
are encoded by ASCII characters. An HTTP request header is
an ensemble of structured fields (shown in Table I). Encoding
type of the HTTP body is determined by the specific content
it carries. Thus, we do not introduce the body information
into each flow. In this paper, we regard the flow information
as the communication language between client and server, and
each flow as a text document. Word segmentation and N-gram
features in NLP can be applied here for traffic processing.
In fact, Yun et al. [23] have found great similarities between
mobile traffic and natural language.

We verify whether the benign and malicious network traffic
data contain useful semantic information about malware by
performing a preliminary study. First, we select a few benign
and malicious apps, and use our Android traffic collection

TABLE I

SEVERAL COMMON FIELDS OF HTTP REQUEST HEADER

platform (Fig. 2) to collect their network traffic data. For
the two types of traffic data (i.e., benign and malicious),
we use the word segmentation method in NLP to segment the
HTTP request header data. The baseline of word segmentation
includes special characters, such as “:”, “;” ,“ ” and “&”.
Then, we use simple filtering rules, such as filtering out
the stop words (e.g., “the”, “this” ,“a” and “an”), common
words (e.g.,“HTTP”, “html”, “content-type” and “host”) to
remove obviously meaningless words from the word sets.
Then, we calculate the weight of every word in the remaining
vocabulary.

We use the term frequency to compute the word weight in
the HTTP flow. The term frequency is widely used in NLP for
extracting keywords. Term frequency refers to the occurrence
number of a given word appearing in one document. This value
is normalized in order to prevent its tendency to favor long file,
as the same word’s word frequency in the long file may be
higher than that in the short file regardless of its importance.
For a word ti in a specific file f j , its term frequency t f value
can be expressed as follows:

t fi, j = ni, j
∑

k nk, j
, (1)

where ni, j is the number of word i appearing in the file j ,
and the denominator

∑
k nk, j is the number of all words

appearing in the corpus. In our context, ni, j refers to the sum
of occurrence number in traffic flows. Finally, the two word
sets are expressed in the form of word cloud (see Fig. 1) in
accordance with their respective weights.

Using this visualization process, the researchers can obtain
a better understanding on the information in the flow request
header. We discuss the meaning of visualizing flow request
header of malware by illustrating the network traces from
two exemplar apps. Fig. 1(a) shows the flow request headers
from a malicious app, whereas Fig. 1(b) shows those from a
benign app. We analyze the information conveyed by the two
pictures. First, the most prominent word in Fig. 1(a) is the red
word “imei” and the blue word “version”. “Imei” is the unique
identifier of the phone, and “version” can be used to identify
the version of the app. Other conspicuous words, such as “lon-
gitude”, “latitude”, “wifi” and “apikey” are also found. These
terms are closely related to device information and personal
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Fig. 1. Word clouds of malware and benign app’s flow request header.
(a) Request header of malware. (b) Request header of a benign app.

information of user. For example, actions associated with the
words “longitude” and “latitude” can disclose the geographic
location information of user. However, the benign network
traffic only contains some common words, such as “mobile”,
“application” and “web51net”. Thus, the maliciousness of an
app can be determined by visualizing the HTTP flow request
headers.

Similar to the analysis of text documents, semantic informa-
tion can be extracted from traffic flows. The N-gram sequence
of words in the flow is similar to that of natural language
and exhibits a highly skewed frequency-rank distribution.
Therefore, the N-gram sequences can be used as features to
identify malicious traffic. The N-gram model is based on the
assumption that the occurrence of the n-th word is only related
to the preceding n − 1 words, but is unaffected by other
words. The appearance probability of a sentence is the product
of the occurrence probability of each word in the sentence.
In 1-gram, the appearance of each word is independent of
each other. If the appearance of a word depends on only one
word in front of it, we call this case as 2-gram. Similarly,
different N values in N-gram can express the relationship
between different words in mobile traffic.

The nature of malware recognition is a pattern classification
problem. Machine learning technology is widely applied to
malicious network traffic detection. When identifying Android
malware using network traffic data, the network traffic data
are classified as benign or malicious. After malicious network
traffic is identified, the source app of the traffic can be
classified as malware.

IV. METHODOLOGY

We propose a solution for detecting malicious apps using
mobile traffic. The proposed method treats every HTTP flow
as a document, and then uses the word segmentation based
on N-gram generation to generate candidate features that
can effectively characterize a specific HTTP flow. Specif-
ically, a feature selection algorithm is developed to select
meaningful features automatically from a bag-of-words for
flow feature vectorization. Then, an SVM classifier is trained
to automatically determine whether the unknown traffic is
benign or malicious. The complete process is summarized as
follows:

a) Traffic Collection: We design an Android traffic
collection platform to collect the required network traffic
data (Section IV-A).

Fig. 2. The architecture of Android traffic collection platform.

b) Traffic Preprocessing: This module contains two parts:
flow extraction and segmentation. The flow extraction algo-
rithm extracts individual HTTP flow from mixed traffic and
outputs the request header of every flow into one document.
The content of each document is then divided into a set of
words in flow segmentation (Section IV-B).

c) N-gram Generation: This component processes the word
set using the N-gram method. The N-gram sequence of each
word is regarded as one candidate feature to characterize
HTTP flow (Section IV-C).

d) Feature Selection: The chi-square test algorithm is
applied to select the best features. Accordingly, the benign and
malicious mobile traffic can be distinguished (Section IV-D).

e) Model Training: The selected features from a bag-of-
words are used for vectorizing every traffic flow. By instanti-
ating these features, we derive a detection model based on a
linear SVM model (Section IV-E).

A. Traffic Collection

The traffic collection platform is used for collecting two
types of Android traffic data: malicious traffic generated by
malicious apps, and benign traffic generated by benign apps.
The traffic collection framework is deployed in the cyber
security and privacy lab of University of Jinan [30]. At the
gateway of the lab, a firewall and NAT server are present to
ensure the safety of the traffic collection framework. As shown
in Fig. 2, the platform comprises of the following three
components: Control Center, App & Traffic Storage server,
and Traffic Collection server. The Control Center connects to
the Traffic Collection server, as well as App & traffic Storage
server via a LAN switch. The Control Center is responsible for
scheduling tasks and assigning Android apps from the App &
traffic Storage server to a traffic collection machine in the
Traffic Collection component. Meanwhile, we use real devices
in the collection process to execute the malware samples
who can escape the emulator. The collected traffic data are
finally transferred to the App & traffic Storage server. All the
collected traffic is then used to train/re-train an effective
detection model.

Each traffic collection machine typically carries out two
tasks: the execution of app and collection of network traffic
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data generated by the app. We execute the apps on simulators,
which are driven by a page walk-through algorithm integrated
with an Android tool called Monkey [31]. The Monkey tool
can randomly send events to the Android device when the
app is running. The page walk-through algorithm explores
all the components on each activity, which can trigger the
malicious behaviors behind the activity pages. We execute a
single app at one time on a simulator device to ensure that the
network traffic data generated by each app is the ground truth.
Accordingly, no app runs in the background when collecting
app traffic. We then collect the network traffic packets of
app during execution. These traffic data are saved as PCAP
format files.

B. Traffic Preprocessing

We obtain numerous network traffic data through the traffic
collection platform. In the actual malicious traffic detection,
the network flow is a basic unit that the app interacts with the
network. However, several HTTP flows generated by apps are
mixed. Therefore, we must separate each complete flow from
the mixed traffic file and further segment the flow.

1) Flow Extraction: We design an algorithm that can extract
each flow and output the request header of each flow to a
document. The specific process is described in Algorithm 1.
The input of this algorithm is the collected traffic (i.e., initial
traffic files), and the output is the documents that contain
the request header of multiple HTTP flows. This algorithm
is implemented using a combination of Python script and
T-shark command [32], which can be used to obtain the request
header of each HTTP flow.

Algorithm 1 The Algorithm of Obtaining HTTP Flow’s
Request Header
Data: Network traffic data (a pcap file that contains multiple

HTTP flows) generated by one app.
Result: Text documents that hold HTTP flows’ header.
Initialize the index id of every HTTP flow to 0;

while true do
Use T-shark command to write the header of the HTTP
flow which is pointed by the current index id to a text
document;
Get the bytes number of this text documents;
if the bytes number of the text document is smaller than a
fixed number then

break;
else

Save this text document to the target folder;
Delete the text document at the current location;

end
Increase the index id of HTTP flow;

end

2) Flow Segmentation: The segmentation of the flow
request header is a challenging task, as no standard token
(e.g., whitespace or punctuation) is available to cut flows into
words. The left block in Fig. 3 displays an example of HTTP

Fig. 3. Word segmentation of one HTTP flow’s request header.

flow header. HTTP flow header contains considerable infor-
mation, such as requesting method, encoding type, requested
URL, and browser information which are arranged in a certain
order. Many special characters can be included in the HTTP
flow, such as “,”,“:”,“;”, “&” and other characters in the flow.
We can split such strings into separated words using these
special characters. Finally, the request header is separated into
a word set of “GET”, “dm”, “ad-maker.info”, “acc”, etc.

Given that not all divided words can be used in the detection
of malware, we remove meaningless words in the traffic flow
in accordance with prior knowledge. This procedure saves the
operating costs of the method. We establish several filtering
rules to remove meaningless words. The principles of filtering
rules are described as follows:

a) Meaningless Low-Frequency Words Removal: The col-
lected words contain a number of file names, such as
picture names, JavaScript names and css file names.
These file names have no regularity and are generally
unrelated to malware’s behaviors, so we remove these
“low-frequency but meaningless words” based on the
suffix “.jpg”, “.png”, “.gif”, “.js”, “.css”.

b) Common High-Frequency Words Removal: Some fields
in the HTTP flows, such as “content-length”, “en-us”
and “expires”, appear in nearly every HTTP flow, which
does not contribute to the traffic classification, thus are
removed.

c) Stop Words Removal: Stop words include common
words, such as “the”, “is” and “were”. We remove
such words since they do not provide any contributions
toward characterizing the HTTP flow header.

C. N-Gram Generation

N-gram is a sequence comprising several consecutive words.
In the field of NLP, the N-gram is a sub-sequence comprising
N elements that are included in a particular sequence of at
least N elements.

The N-gram generation module is designed to provide
semantic information for HTTP flow header. To achieve this
goal, the N-gram generation module translates each incoming
word set (derived from a flow segmentation) into an N-gram
sequence. Fig. 4 presents examples of turning a word set of
flows into N-gram sequences. The leftmost part is the initial
word set, wherein each row represents a flow. These words
form 1-gram sequence. The middle and rightmost portions are
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Fig. 4. Example of translating word sets of ?ows to N-gram sequences.

N-gram sequences generated by the corresponding word set
in each flow. The middle part represents the 2-gram sequence
when N is equal to 2, and the rightmost part represents the
3-gram sequence when N is 3. For example, the header of
flow 1 yields a collection of “apikey airpush appid 60563
longitude 0”, and its 1-gram sequence is identical to the
initial collection, while its 2-gram sequence is “(apikey
airpush)(airpush appid)(appid 60563)...” and its 3-gram
sequence is “(apikey airpush appid)(airpush appid 60563)...”.

The N-gram provides contextual information for extract-
ing meaningful word sets. For example, from the 1-gram
sequences “apikey” or “airpush” of flow 1, not only can we
obtain the meaning of a single word as provided, but we
also determine that no obvious dependency exists between the
words. From the 2-gram sequences “(apikey airpush)” of flow
1, we can see that the appearance of word “airpush” is affected
by the word “apikey”.

The selection of N value is of utmost importance, as it
reflects the rule of word appearance in HTTP flow header.
Here, we perform experiments with different values of N , and
the detail of which is described in Section V-B.

D. Feature Selection

The selection of features is critical, because they can directly
affect the performance of the model. In the previous step,
we use N-gram sequence as flow features. However, we need
to reduce the number of features owing to the following
reasons:

1) Complexity reduction. Many data mining algorithms
need much more time and resources when the number
of features increases. Therefore, reducing the number of
features is important for saving time and resources.

2) Noise reduction. Additional features do not always trans-
late to the improvement of the algorithm performance.
On the contrary, they may bring serious model over-
fitting issue. As a result, selecting a set of appropriate
features can reduce the chance of model over-fitting.

Not all N-gram sequences in our feature set are useful to
the malware detection model. These unessential sequences
can negatively affect the normal operation of the algorithm.
Therefore, we filter out the features using chi-square test [33],
which is a univariate feature selection algorithm.

Chi-square test is a statistical test that is widely used to
determine whether the expected distributions of categorical

variables significantly differ from those observed. This test
utilizes a measurement method to assign the feature a certain
weight, called chi-squared test value, to characterize the
correlation between categories. Chi-square test can set a fixed
threshold or select top K chi-squared test values for feature
selection. High test result means high importance of the feature
to the characterized category.

We test whether a specific feature in the N-gram sequence
set is significant or not depending on its term frequency
(see Eq. 1) in two opposite data sets (i.e., N-gram sequence
sets from malicious and benign flows). Specifically, we deter-
mine whether a feature t (an N-gram sequence) and a cate-
gory c (malicious) are independent of each other. If yes, then
we regard feature t as insignificant to classify class c. In other
words, we cannot determine whether a flow belongs to class c
using feature t . The formula for calculating the chi-squared
test value of a feature t and class c is defined follows:

χ2(t, c) = (Nt,c − Et,c)
2

Et,c
,

where Nt,c refers to the term frequency of feature t in class c,
and Et,c is the expected term frequency of feature t in class c
when they are independent of each other.

E. Model Training

The model training mainly consists of two steps: one is
converting text type word set into numeric vectors and the
other is feeding the computed numeric vectors into SVM
algorithm to train the malware detection model.

1) Word Vectorization: After the HTTP header segmen-
tation operation, each flow is transformed into a word set.
Their N-gram sequences are then generated and regarded
as features. After the feature selection, we obtain a bag-
of-words. Using the bag-of-words, binary values for each
flow can be produced. We ignore the frequency of a given
N-gram sequence appearing in one flow and focus only on
whether each N-gram sequence appears in the bag-of-words.
If the given N-gram sequence exists in the bag-of-words, then
the corresponding value with the N-gram sequence is “1”.
Otherwise, the value is “0”. This encoding type is also known
as one-hot encoding [34]. Through this encoding method, each
HTTP flow can be transformed into a numeric vector with a
dimension that is equal to the length of the bag-of-words.
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Fig. 5. The schematic diagram of SVM algorithm.

2) Model Building: We identify malicious traffic and dis-
cover malware by searching for the source app of malicious
traffic. We use an SVM [35] model to learn the features of
two classes of elements. SVM is a supervised algorithm that
learns a hyperplane with a maximum margin for classification
(i.e., classifying unknown traffic data as benign or malicious).
Given two class vectors as training data, a linear SVM
determines the hyperplane that separates two classes with a
maximal margin. The schematic of the SVM algorithm is
depicted in Figure 5. One class is associated with malicious
traffic, while the other is associated with benign network traf-
fic. SVM considers a hyperplane that satisfies the classification
requirement, and ensures the points in the training set are as
far as possible from the classification surface. In particular,
the method searches for a classification surface to maximize
the margin on both sides of the classification.

The detection model of linear SVM simply maps the feature
vector V of an HTTP flow x to the direction of the hyper-
plane. The corresponding detection function F is given as
follows:

F(x) =< W, V >,

where W denotes the weight vector, which should be continu-
ously adjusted during the training process. F(x) > 0 (or a given
value) indicates malicious activity while F(x) < 0 corresponds
to benign traffic flows. Moreover, F(x) = 0 represents the
separating hyperplane. An unknown HTTP flow x is classified
by calculating its Fx value to determine which side of the
hyperplane it falls onto, which in turn determines whether the
HTTP flow is benign or malicious.

The trained SVM model can also be loaded and utilized.
Unknown traffic files (mixed flows) can be processed using
the method described in Section IV-B (i.e., flow extraction and
segmentation) and Section IV-C (i.e., N-gram generation). For
the features with built-in bag of words, every HTTP flow is
transformed into a numerical vector after vectorization. The
numeric vector is then used as input to the detection model.
After that, the detection model determines whether a specific
HTTP flow in the traffic file is benign or malicious, and
whether the source APK of the same traffic file is a benign
app or a certain type of malware. When the new malware is
added to the training samples, we will re-train and update the
classifier for detecting such new type of malware.

V. EVALUATION

We implement the proposed method using Python with
Scikit-Learn, a popular machine learning library. In this
section, we first introduce all the training data sets used in
the experiment. The data sets contain the app data set and a
mobile traffic data set generated by the apps (Section V-A).
Subsequently, we analyze the influence of parameter N and
feature number K on the detection model, after which the best
detection is selected based on the detection performance of dif-
ferent parameters (Section V-B). We also analyze the number
of training samples for the detection model to achieve good
detection results (Section V-C). We compared Our method
with other machine learning methods, static detection meth-
ods, and traffic flow-based detection methods (Section V-D).
The effectiveness of our model on newly collected malware
samples is well evaluated (Section V-E). Finally, the detection
model is applied to a real-world environment (Section V-F).
In addition, we consider the identification of encrypted mali-
cious traffic (Section V-G).

A. Data Sets

Our initial malicious app set is obtained from
VirusShare [36], a repository of malware samples made
accessible to security researchers. This malware set contains
8203 samples, which have been shared by the website from
2014 to 2016. More than 9000 apps are obtained from Baidu
mobile assistant [37], a popular third party market. These
apps are collected from 2014 to 2016. Not all apps from
the Android market are benign. To ensure the accuracy
of the training set, we upload each downloaded app to
VirusTotal [38], and then identify the benign apps based on
the detection results from VirusTotal. Only those apps that
VirusTotal determined as benign are included to our benign
app set. Ultimately, our app sets contain 8203 malicious
apps and 8168 benign apps. Using our own designed traffic
collection platform (Fig. 2), the malware and benign apps
generate 14.2 GB and 12.9 GB of network traffic data,
respectively. We extract 113,735 and 166,973 HTTP flows
respectively from these traffic data.

Notably, not all network traffic data generated by malicious
apps correspond to malicious traffic. Many malware take the
form of repackaged benign apps; thus, malware can also
contain the basic functions of a benign app. Subsequently,
the network traffic they generate can be characterized by mixed
benign and malicious network traffic (i.e., most of the traffic
are benign traffic while only a small portion is malicious
network traffic). To further ensure the label accuracy for the
training set, we perform a verification on the network traffic
generated by the identified malicious apps. We extract the
host or target IP field of each flow and upload it to VirusTotal.
If the host or target IP is malicious, then it is considered as a
malicious flow. This malicious network traffic flow is added to
our malicious traffic data set as the training set sample. Finally,
we obtain 5,258 malicious flows labeled as malicious traffic.
We also clean the benign flows by removing incomplete flows.
After the cleanup, we obtain 31,706 benign flows. The final
data statistics are shown in the Table II.
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TABLE II

DATASET STATISTICS

Fig. 6. Parameter setting according to F-Measure values at different N and
feature number K .

B. Parameter Setting

A good detection model should identify as many mal-
ware apps as possible and minimize the False Positive
Rate (FPR). Compared with several other model evalua-
tion metrics, F-Measure value is a relatively fair metric to
understand and compare the performance of malware detec-
tion [39], because that malware or malicious traffic recognition
is actually an imbalanced classification problem, and our
data (i.e., 5258 malicious samples and 31706 benign samples)
proves this derivation. In imbalanced problems, the detection
rate or FPR cannot determine whether a model is good or poor.
On the contrary, F-Measure comprehensively considers the
detection rate and error rate of identifying malicious samples,
and thus is suitable for model evaluation. We therefore utilize
the F-Measure value as the metric of evaluating parameter N
and feature number K .

We use the 10-fold cross validation method to verify the
performance of the detection model. The training set is split
into 10 subsets and the model is trained using 9 subsets
as training data, while the generated model is validated on
the remaining data (i.e., the remaining subset is used as a
test set to compute the performance measure). The complete
training and testing process is repeated for 10 times, and we
use the average metric value as the performance indicator.
Fig. 6 shows the F-Measure values for different N values and
feature number K . In the figure, the horizontal axis represents
the number of features ranging from 50 to 700, while the
interval is set to 50. The vertical axis represents the values of
F-Measure. Lines with different colors and markings represent
the different N values, which vary from 1 to 3. The blue line
represents F-Measure values when N equals 1 and feature
number K ranges from 50 to 700.

TABLE III

DIFFERENT METRICS OF THE DETECTION MODEL AT N = 1 AND K = 600

Fig. 7. The F-Measure, FPR, precision and recall values using different sizes
of training set.

As shown in Fig. 6, N = 1 achieves better F-measure per-
formance than that of N = 2 and N = 3. Consequently, we set
the value of N as 1. This result also suggests that the frequency
of each word in HTTP flows is nearly unaffected by previous
words (i.e., different words are independent from one another).
In addition, as the feature number K increases, F-Measure
value also increases. However, the increasing trend gradually
slows down. When the number of features reaches 600,
the value of F-Measure keeps stable. Thus, the feature number
should be set as 600. Based on the experimental results,
the optimal values of the detection model are N = 1 and the
feature number K = 600 for our experiment. At this point,
the identification rate for traffic flows reaches 99.15% whereas
the misjudgment rate for benign traffic is only 0.45%.

We also evaluate the time efficiency of the solution in
relation to traffic flow. The experiments are conducted using
Windows 7 with Intel (R) Core(TM) i5-4460 with 3.20 GHZ
CPU and 16.0 GB memory. It takes around 5 hours and
42 minutes to train and validate the detection model using
31,706 benign and 5,258 malicious flows. Table III shows the
common evaluation metrics using the best model (i.e., N = 1
and K = 600).

C. Evaluation of Sample Size Requirements

We design an experiment to answer the question: “how
many training samples are needed for the detection model to
reliably detect malware?” The number of labeled instances is
changed from 100 to 3700 in measuring the effect of sample
size on the final performance of our method. Fig. 7 illustrates
the final result.

The horizontal axis in Fig. 7 refers to the different sizes
of the training samples which range from 100 to 3700. The
vertical axis corresponds to the indicators of F-Measure, FPR,
precision and recall for different training set sizes. Three of the
metrics present an increasing trend as the size of the training
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Fig. 8. The comparison of SVM and other machine learning algorithms.

set increases, however, the increasing trend plateaus eventually.
Specifically, when the training set contains only 100 samples,
the detection rate of the model on malicious flow is 55.24%.
When the size of the training set increases to 500, the detection
effect of the model is greatly improved, and the recognition
rate has reached 85.86% on malicious network traffic.

In addition, the FPR is very low, and is even lower as the
size of training set increases. When the training set contains
only 100 samples, the misjudgment rate on benign malware
samples is extremely low at 1.78%. When the training set
contains 3700 samples, the recognition rate on malicious sam-
ples reaches 93.27%. When all training samples (31706 benign
samples and 5258 malicious samples) are used, this model can
get a detection rate of 99.15% on malicious flows and obtains
an FPR of only 0.45%. The experimental results indicate that
only a small amount of data samples are needed to train an
accurate and reliable detection model.

D. Comparison With Existing Approaches

The detection model performs well on known data
sets (Section V-A). However, the proposed solution should
be compared with other methods for verification. For this
purpose, we select other machine learning algorithms, static
detection method and mobile traffic-based detection methods
for comparison.

1) Comparison With Other Machine Learning Algorithms:
Here, we compare the classification performance of SVM with
other popular machine learning algorithms. We have selected
several popular classification algorithms, such as Decision
Tree, Bayesian Network, AdaBoost and Neural Network. For
all algorithms, we attempt to use multiple sets of parameters
to maximize the performance of each algorithm. As seen
from Fig. 8, the trained models using different algorithms
have different performance metrics. Specifically, the FPR rate
of SVM is lower than decision tree, Bayesian Network, and
Adaboost. Although the FPR value of Neural Network is lower
than SVM, SVM algorithm has a higher recall, precision,
F-Measure, and Area Under a Curve (AUC) performance.
Overall, the experimental results show that SVM outperforms
other methods.

2) Comparison With the Static Analysis Method: We first
compare the performance of our method with a well-known
static detection method called Drebin [40]. The Drebin method
is selected because most obtained malicious apps in this study

are from the Drebin project. We use our traffic collection
platform to collect the network traffic generated by these
malware samples. Then, we use the method described in
Section IV to process traffic information, and ultimately create
a malicious network traffic detection model. An app may
produce considerable network traffic. To ensure a reasonable
comparison with the Drebin method, we determine the source
app of each network traffic. In particular, once an app gen-
erates malicious network traffic, the app is predicted as a
certain type of malware. Finally, our detection model obtains a
detection rate of 92.22% on malicious apps and a misjudgment
rate of only 1.33% on regarding benign apps as malware ones.
Drebin can detect approximately 94% of malware samples
at an FPR of nearly 1%. Therefore, our approach is slightly
inferior to the Drebin method. The result may be caused by our
lack of malware samples. We are able to collect the network
traffic from a vast majority of malicious apps but fail to do so
on a portion of them.

In addition, the Drebin project presents a list of unde-
tected malware. We extract 85 malware samples from the list,
indicating that these 85 malware samples are not correctly
classified by the method of Drebin. We attempt to use our
trained model to classify the traffic data generated by these
85 malware samples. Finally, we correctly identify 12 malware
samples from the network traffic of the malware samples
above. We further analyze these 12 detected malware and
find that they come from different malware families, namely,
Gappusin, SpyPhone, Glodream, Plankton, DroidSheep and
Sdisp. The malware samples from Gappusin family account
for 6 of the 12 samples. We further analyze the result for
other possible causes. Gappusin is a popular malware family
and its main functionality is to induce malicious charges [29].
Gappusin malware samples can interact with networks several
times, which makes our method suitable for identifying them.
Meanwhile, we select two popular anti-virus scanners to
detect the malware types–AegisLab (foreign produced) and
360 (domestic produced). The detection results of AegisLab
and 360 are shown in Table IV, which also prove that our
method can be used as a supplement to boost the performance
of the static analysis methods.

3) Comparison With the Network-Level Statistical Method:
We previously mentioned several related works on malware
detection based statistical features of network traffic. Most
of the malware detection works are based on the statistical
characteristics of network traffic. The study in [17] observes
and analyzes multiple network traffic data, and summarizes
16 statistical features that can effectively distinguish between
benign and malicious network traffic data. In addition, they
identify seven particularly important features (Table V) from
16 statistical features. Their experimental results show that the
seven features are sufficient to effectively distinguish between
benign and malicious flows.

We use our data set (described in the section V-A) to extract
the aforementioned seven statistical features of 31,706 benign
traffic flows and 5,258 malicious traffic flows. We still use
the linear SVM algorithm without changing any of its related
parameters. The final training model attains a detection rate
of 86.35% on malicious traffic, and an FPR of 3.65%.
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TABLE IV

COMPARISON BETWEEN OUR METHOD AND OTHER TOOLS ON PARTIAL UNDETECTED MALWARE WITH DREBIN (× = undetected, � = detected )

TABLE V

NETWORK-LEVEL STATISTICAL FEATURES THAT CAN

DISTINGUISH BETWEEN BENIGN AND

MALICIOUS TRAFFIC

Fig. 9. The ROC curve comparison of our method, network-level statistical
method and TrafficAV.

The experiment result is shown in Fig. 9 as a ROC curve, while
the detection rate (TPR) is plotted against the FPR for the
different thresholds of the detection methods. As shown by the
ROC curve, our method represented by green line outperforms
the network-level statistical method represented by blue line.

We further analyze the advantages of our approach by com-
paring it with the network-level statistical method. In terms
of detection rate, the present model is significantly better
than the statistical feature-based method regardless of the
Accuracy or FPR. One reason can be that the statistical feature
selection is very difficult, as it requires researchers to not only
observe and analyze multiple network traffic data, but also
to obtain a certain degree of understanding on the network
behavior of malicious apps. For example, some malicious

applications can continuously interact with the remote server,
and constantly receive instructions to download malicious
codes; hence, the downloaded traffic is far greater than the
uploaded traffic.

To identify the distinctive features of benign and malicious
traffic, researchers must understand the malware’s interactive
modes to a certain extent. However, as anti-detection capabil-
ities of malware continue to increase, malware is increasingly
difficult to detect. Consequently, benign and malicious apps
have become more difficult to distinguish. Thus, simply using
statistical feature to distinguish between malicious behavior
and benign behavior is increasingly challenging.

4) Comparison With Other HTTP Header Analysis
Methods: Given that our method focuses on analyzing HTTP
flows, we select two methods corresponding to specific HTTP
fields for malware detection. TrafficAV [29] shows some
useful features obtained from HTTP requests that can be used
to detect malware, and utilizes several specific fields in HTTP
request headers. Accordingly, the features of HTTP request
headers are identified based on the findings from TrafficAV,
after which the features are trained for the detection model
using SVM algorithm. The identified features include “host”,
“request-method”, “request-url” and “user-agent” and their
descriptions are listed in Table I. Our original app data
and traffic data are also used to extract the above four
features, after which 24,098 malicious HTTP requests and
94,898 benign HTTP requests are obtained. The detection
model is tested using the linear SVM algorithm and the
10-fold cross validation. The model attains a detection rate
of 91.01% on malicious traffic. The ROC curve comparison
of TrafficAV and our method is shown in Fig. 9. The findings
suggest that TrafficAV performs better compared to the
statistical feature method; however, our method is even better
than TrafficAV.

We also compare our method with another malware detec-
tion method based on HTTP specific field called DroidClassi-
fier [41]. DroidClassifier focuses on HTTP header fields and
extracts five features from HTTP request: “host”, “referrer”,
“request-URL”, “user-agent”, and “content-type”. This method
is a score-based classification method according to these HTTP
header fields. The final detection rate of DroidClassifier is
94.33% which is lower than that of our method.
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Fig. 10. The detection rate of our method in detecting new malware
discovered in 2017.

E. Evaluation Using New Malware Samples

To bypass the anti-virus scanners, the attackers may attempt
to generate new malware variants to poison and cheat the
detection mode. In order to evaluate the effectiveness of our
model using new malware samples, we use our collected data
set (dated from 2014-2016) to train a detection model and test
on new malware samples collected from VirusShare in 2017.

We downloaded 2812 newly discovered malware in the first
half year of 2017 from VirusShare website and divided the
test samples by months. Malware numbers in each month are
275, 485, 285, 602, 731 and 434 respectively. In total, 6.22GB
network traffic from malware samples are collected. We extract
3532, 13787,13527, 16280, 25750 and 10861 HTTP flows
from the traffic data. The trained model is applied to detect
these HTTP flows and the detection rates on malware in
different months are shown in Fig. 10. Our model achieves the
best detection performance (83.27%) on malware of Jan. 2017,
whereas it discovers 67.03% malware samples of Mar. 2017.
The result shows that the freshness of malware indeed affects
the model’s detection performance, but our model can effec-
tively detect most of new malware. The experimental results
prove that the model trained by the malware samples from
2014-2016 can be effective in detecting new malware discov-
ered in 2017.

F. Evaluation Using Apps in the Wild

We verify the accuracy of our detection model using apps
downloaded from Android application markets. These apps
differ from those apps from which the traffic data are obtained
in the training process. The traffic data generated by these wild
apps are obtained from the traffic generation and collection
platform. These traffic data are processed (i.e., flow extraction,
flow segmentation, and N-gram generation), and transformed
to word vectors. Using the trained detection model, each flow’s
label (i.e., malicious or benign) is determined. The app is
marked as malware, when it contains malicious flows.

In the wild app set of 1407 apps, 655 malicious apps
are confirmed by the detection report of VirusTotal. The
655 malicious apps are filtered by 56 anti-virus scanners
in VirusTotal; however, each scanner in VirusTotal can only
detect part of these malware samples. By contrast, our detec-
tion model can identify 359 out of 655 apps, thereby verifying
the capability of our model to scan wild apps.

We compare the performance of our model against nine
selected anti-virus scanners which are ANG, AegisLab, Cyren,
NANO-Antivirus, Sophos, Antiy-AVL, McAfee, F-Secure and
BitDefender respectively. The detection rate of each scanner
is sourced from the VirusTotal service. The detection rates
of common anti-virus scanners vary considerably. The best
scanner is AegisLab which can detect 46.39% of malware,
whereas the scanner BitDefender only discovers 13.64% of
the malware in the wild app set. Fig. 12 shows the detailed
statistics. For this wild app set, our method provides the
best performance with a detection rate of 54.51%, which
outperforms nine other anti-virus scanners.

Fig. 13 shows the Venn diagram of the detection effort
from our method and 56 other anti-virus scanners listed
by VirusTotal. In the figure, the A and B union represents
726 apps that our method labels as malware. The B and C
union represents 655 apps that anti-virus scanners determine as
malware. The shared B area represents 359 apps that both our
method and other anti-virus scanners in VirusTotal determine
as malware. The C area represents 296 apps that our model
determines as benign, but the other anti-virus scanners in
VirusTotal identify as malware.

Furthermore, the A area in Fig. 13 represents 367 apps that
our method determines as malware, but the other 56 anti-
virus scanners in VirusTotal list as benign. We then obtain
the URLs from the traffic data generated by 367 apps, and
then upload them to VirusTotal (i.e., the website also provides
the detection service of URL). From these URLs we detect
numerous malicious URLs, and ultimately based on these
URLs, we can determine 167 true malware, as shown by
the area filled by slash in area A. Therefore, our method
can effectively identify malware samples in the wild and
can identify the malware samples that are missed by other
anti-virus scanners.

G. Encrypted Traffic Analysis

With the increased awareness toward the security of per-
sonal information, more and more network traffic data is
encrypted by HTTPS protocol. Nowadays, more and more
families of malware prefer to interact with external networks
using encrypted traffic, for instance, in our collected traffic
generated by malware, about 23% of the packets are HTTPS
packets. Encrypted traffic is much harder to analyze, and the
proposed method cannot deal with encrypted traffic directly.
However, we can decrypt the encrypted traffic before it was
sent to the detection server, and then apply our malware
detection model.

We propose a detection system for encrypted traffic fol-
lowing the design of Haystack system [42]. In particular,
the system leverages the VPN API on mobile devices to
provide full access to the network traffic of the device. User
needs to install a lightweight app on his device, which is used
for authorization and to receive messages from the detection
server. A forwarder in gateway performs two major functions:
one is to transparently bridge packets on the VPN interface and
payload data on the regular socket interface, and the other is to
forward traffic to the detection server for analysis. The traffic
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Fig. 11. Prototype system for deployment in different network scenarios with encrypted traffic analysis capability. (a) Home Network. (b) Enterprise
Network (BYOD). (c) Mobile Network (3G/4G).

Fig. 12. Detection rate comparison on malware in the wild of our method
and other anti-virus scanners.

Fig. 13. The detection results on malware in the wild of our detection model
and the anti-virus scanners.

analysis method is integrated into the detection server. For
the decrypted network traffic, the detection model is trained
to find suspicious network behaviors. Moreover, the detection
model on the detection server will be regularly updated to
improve the detection capability on new malware samples.
The system explores the VPN interface to gain visibility
into the underlying HTTPS traffic by forwarding the original
packets before they are encrypted. Fig. 14 shows a flow request
header of an HTTPS session in “Mi Store” app installed
on an Android device. The lexical structure of this header
has no difference from those of HTTP packet (i.e., Fig. 14).
Therefore, the proposed method can be extended seamlessly
to the HTTPS traffic generated by mobile apps.

Fig. 11 shows the architecture of our detection system
for home networks, BYOD enterprise networks, and 3G/4G
mobile networks. In home networks, once the detection system
has been authorized by the user, encrypted HTTPS or non-
encrypted HTTP traffic will be forwarded from the private
home gateway to the detection server. The detection server

Fig. 14. The comparison of encrypted traffic and corresponding decrypted
traffic.

uses our trained model to detect malicious behaviors from
traffic data and push the notifications to user once a malicious
action is identified. The malware detection model is built
and deployed on servers, which makes it suitable for large-
scale deployment. Simultaneously, it supports the malware
detection for multiple devices, and is agnostic to operating
system types. In order to attribute the detected malicious
network flows to a user and an app, we extract the process
ID (PID) of the process that generates the flow from the
system’s proc directory, and then map the PID to an app name
using Android’s Package Manager API [24], [42]. Mobile user
can control to open or shut off the traffic detection service
through user interface.

Fig. 11(b) shows the application of detection system for
BYOD [10] enterprise network. A key challenge in BYOD
enterprise network administration is the maintenance of a
holistic view of devices and their application behaviors on
the network. Nonetheless, observing basic device connection
activities using traditional network monitoring tools is pos-
sible. But in-depth information, such as device context and
detailed application connection information, is invisible to
the traditional tools. These factors bring additional security
risks to the BYOD enterprise networks, while our detection
system can provide more visibility into these networks. The
only difference of our detection system between BYOD enter-
prise networks and home networks is that in the enterprise
networks, turning on or off detection service is controlled by
the system manager. Similarly, Fig. 11(c) shows the detection
system in 3G/4G mobile networks. In 3G/4G mobile network,
the traffic detection service is customized for user by mobile
service provider. When the network traffic passes through the
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provider’s router, only traffic data whose producer (user) has
customized the service will be sent through our detection
system.

VI. LIMITATIONS AND DISCUSSIONS

The previous evaluation demonstrates the efficacy of our
method in detecting recent malware using their network traffic.
In this section, we discuss the limitations of the proposed
method.

1) Not All Malicious Behaviors Can be Triggered: During
the traffic collection, we restart every app because the statisti-
cal result [28] shows that 83.3% of malware can be activated
by restarting. We use the Monkey tool to randomly send events
for traffic collection. Moreover, we have redesigned a page
walk-through algorithm integrated with Monkey to explore all
the components on each activity, which can help trigger the
malicious behaviors as much as possible. Meanwhile, we add
real devices in the collection components to execute some
malware samples who can escape the emulator. However,
inevitably, some of the malicious activities may not be fully
triggered without effective user inputs. We plan to design an
input generator to better emulate the user input behavior in
future, so that the collected traffic will resemble real world
network traffic.

2) The Dependence on Selected Features: Our method can
automatically select N-gram features to establish a malware
detection model. We use machine learning techniques to
generate detection model. While learning techniques provide
a powerful tool for determining unknown data category, they
require a representative benchmark data for training. That is,
the quality of the detection model is critically determined by
the quality and quantity of malicious and benign network
traffic. As mentioned in Section V-B, the size of selected
features and the coverage of the features can significantly
affect the detection performance. The proposed method can
only detect unknown samples that present some common char-
acteristics (i.e., N-gram features) with the malware samples
in the training data set. If the mobile traffic of a new type
of malware does not contain any features in the selected
word, then the method have difficulty in identifying this type
of malware. Thus, multiple training data, especially mali-
cious traffic data are needed to improve our model detection
performance in the wild. To address this issue, we plan to
collect additional malware samples from various channels to
further expand the coverage of selected features in the future.
At present, our malware samples are mainly collected from
VirusShare [36]. We will collect more latest malware samples
over the time. Obtaining new malicious samples based on the
detection reports of VirusTotal is also feasible. Furthermore,
once the new malware is added to the training samples, we will
re-train and update the classifier to detect new malware.

VII. CONCLUSION

Android malware is a new yet fast growing threat.
At present, many research methods and anti-virus scan-
ners fail to adapt to the growing amount and diversity of
mobile malware. As a remedy, we introduce a solution for
mobile malware detection using network traffic flows, which

treats every HTTP flow as a document and analyzes the HTTP
flow requests using NLP string analysis. The N-gram sequence
generation, feature selection algorithm, and SVM algorithm
are used to build an effective malware detection model. Our
evaluation demonstrates the potential of this solution, and our
trained model outperforms the existing approaches and identi-
fies malicious flows with few false alarms. The detection rate
for malicious flows reaches 99.15% whereas the misjudgment
rate for benign traffic is only 0.45%. The effectiveness of the
proposed method is further validated using newly discovered
malware. When applied in a real environment, the model can
detect 54.81% of the malicious apps, which is better than
other popular anti-virus scanners. The experimental results
also demonstrate that our model can detect malware samples
that evade the detection of other anti-virus scanners. Moreover,
we propose a detection system to deal with encrypted traffic in
BYOD enterprise networks, home network, and 3G/4G mobile
network.
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