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2Dipartimento SBAI, Università degli Studi di Roma La Sapienza, Via Antonio Scarpa 14, Rome, 00161, Italy
(Received 18 May 2010; published 29 November 2010)

Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major

source of microbunching instability in relativistic high brightness electron beams. The gain in micro-

bunching due to this effect is broadband, extending at least up to optical frequencies, where the induced

structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the

high-frequency regime, theoretical and computational analyses of microbunching formation require a full

three-dimensional treatment. In this paper we address the problem of space-charge induced optical

microbunching formation in the high-frequency limit when transverse thermal motion due to finite

emittance is included for the first time. We derive an analytical description of this process based on the

beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular

distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal

plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The

analytical results obtained are then compared to the predictions arising from high resolution three-

dimensional molecular dynamics simulations.
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I. INTRODUCTION

Density fluctuations due to shot noise in high brightness
electron beams can couple to several impedance effects
along accelerating systems, generating a broadband energy
modulation. Longitudinal dispersion in bending magnets
can transfer the modulation from energy to density, thus
amplifying the microbunching well above the shot-noise
level, an effect that is usually referred to as microbunching
instability.

Microbunching instability is a critically important para-
sitic effect in high brightness relativistic electron sources,
as it has the potential to seriously degrade the beam quality
[1–7], thus compromising applications such as high gain
free-electron lasers. Longitudinal space charge can be
a source of microbunching growth at moderate energy
(< 200 MeV) for wavelengths that are much shorter than
the electron bunch length [7–10]. Indeed, it has been
experimentally observed that space-charge induced micro-
bunching instability may occur at quite short wavelengths,
ranging down to the optical spectrum [11–13]. The high-
frequency longitudinal space-charge interaction has also
been proposed as a broadband amplifier to be used for
novel seeding schemes in free-electron lasers [14].

In the high-frequency regime, the transverse beam size
fulfills the condition �x � ��=2�, where �x is the root
mean square transverse size of the electron beam, � is the
wavelength of interest, and the Lorentz factor � is the
energy of the electron beam normalized to mc2. In this
limit, the Fourier components of the electric field generated

by an uncorrelated electron distribution have a transverse
correlation area which is much smaller than the electron
beam section [15]. Under these conditions, the collective
physics of the electron beam can be treated in analogy to an
unbounded uniform plasma. Furthermore, in the high-
frequency limit, the transverse dependence of the space-
charge fields strongly affects the electron dynamic [15] and
the problem needs to be addressed with a fully three-
dimensional treatment. For this reason, we will refer to
this limit as the three-dimensional limit. In this context, it
is useful to define the bunching factor with an angular
dependence [9]:

b ¼ 1

N

XN
n¼1

e�ik½znþsin�ðxn cos�þyn sin�Þ�; (1)

where N is the number of particles in the electron bunch, �
and � are, respectively, the polar and azimuthal angles
relative to the beam propagation axis z, zn is the longitu-
dinal position along the bunch of the nth particle, and xn
and yn are the transverse positions. With this definition, the
bunching factor is effectively the three-dimensional
Fourier transform of the electron density and accounts
for any transverse structure in the microbunched beam.
A detailed computation of the angular distribution of the

microbunching is of fundamental importance since the
angular spectra of the radiation processes used to experi-
mentally diagnose this effect, such as coherent optical
transition radiation, are extremely sensitive to the transverse
structure of the microbunched distribution [16,17]. With the
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assumption of transverse laminar motion, the microbunch-
ing geometry matches that of the longitudinal space-charge
fields, yielding an angular width for the microbunching gain
of �c ¼ 1=� [9]. Emittance effects in space-charge inter-
actions, however, significantly modify the transverse struc-
ture of the microbunching pattern, and a kinetic treatment of
the interaction between electrons and space-charge fields is
needed to fully understand the physics of longitudinal
space-charge-induced microbunching in this limit.

In this paper, we show that in the high-frequency limit,
with the assumption that longitudinal motion is quasilami-
nar, the problem of space-charge interactions leading to
microbunching growth becomes formally equivalent to
that of one-dimensional plasma oscillations in a warm
electron plasma. The theory of such electrostatic oscilla-
tions in thermal plasmas has been discussed in two seminal
papers by Landau [18] and Jackson [19]; our present work
represents a new application of these venerated techniques
of mathematical physics in a radically different context
than the one considered in the original papers. We show
that transverse emittance induces strong Landau damping
at high transverse spatial frequencies, significantly narrow-
ing the angular width of the microbunching gain with
respect to the characteristic angular width of the space-
charge fields. Finally, we compare the results of our
analysis and those of high resolution molecular dynamics
simulations, capable of investigating spatial features in the
fields below the mean interparticle distance.

II. LONGITUDINAL SPACE-CHARGE
INDUCED MICROBUNCHING IN THE

THREE-DIMENSIONAL LIMIT

In this section we derive the equations that describe the
formation of microbunching starting from shot noise
through the effect of collective longitudinal space-charge
forces. We base this analysis on the Vlasov equation, a
kinetic approach that is appropriate for a warm plasma in
which the number of beam electrons acting collectively to
produce the electric and magnetic fields is much larger than
unity. This is true when the condition n0�

2�3 � 1 applies,
where n0 is the electron density and � is the wavelength of
interest. This condition is equivalent to requiring that the
wavelength of interest, as seen in the beam’s rest frame ��,
is much bigger than the rest frame mean interparticle

distance ð�=n0Þ1=3. Obviously this approach precludes
the possibility of describing beam crystallization pro-
cesses, which require an analysis of particle to particle
correlations on the scale of the mean interparticle distance
in the beam’s reference frame. Such analysis is the subject
of current investigation and we will not discuss it here.

The Vlasov equation also ignores binary collisions,
which is an excellent approximation for the time scales
involved, as the mean-free beam-line distance for Coulomb
scattering in a typical high brightness injector at moderate
energy is of the order 100 m [20].

The Vlasov equation has been extensively used in lit-
erature for the analysis of shot-noise seeded instabilities. A
notable example is the theory of self-amplified spontane-
ous emission in high gain free-electron lasers (see, for
example, [21,22]). It could be argued that the Vlasov
equation, being a deterministic evolution equation, is not
suited for the description of shot noise, which requires a
statistical treatment. However, while the Vlasov equation
does not account for random interactions, namely particle
to particle collisions, it can account for random perturba-
tions in the initial particle distribution which, for every
realization, evolve deterministically, which is the case for
shot noise when collisional effects can be neglected.
It could also be argued that, since the Vlasov equation

assumes a smooth distribution function, it cannot be used
to describe shot-noise microbunching, which is generated
by the intrinsic discreteness of the electron distribution.
However, when we observe wavelengths that fulfill the
condition n0�

2�3 � 1, the discrete distribution function
is integrated over many particles, generating random fluc-
tuations in the collective fields which are not collisional,
thus allowing the use of the Vlasov equation. Nevertheless,
for a matter of convenience and ease of analysis, we will
model the shot-noise spectrum as a discrete sum over the
random positions of the individual electrons [see, for ex-
ample, Eq. (16)]. The reader should not be confused by this
and should keep in mind that our analysis only applies to
the fraction of the spectrum that satisfies the condition
n0�

2�3 � 1.
To aid in analysis and to compare to previous theoretical

work, we assume a coasting (nonaccelerating) beam with
constant current. We also limit ourselves to the three-
dimensional limit of space-charge interactions (�x �
��=2�). In the three-dimensional limit, edge effects due
to the finite transverse size of the beam can be neglected
and the 0th order charge density can be considered constant
over the characteristic transverse scale of the problem.
Consistent with the current theoretical and experimental

understanding of the process, we model the formation of
microbunching as follows: the electron beam initially
undergoes an external-force-free drift and space charge
generates an energy modulation starting from shot noise.
After the drift the electrons go through a series of optical
elements which rearrange their longitudinal and transverse
phase space coordinates according to a given transfer
matrix Rij [23]. The electron beam particle distribution is

described by a six-dimensional distribution function

fð ~x?; z; ~�?; p; �Þ, where ~x? is the transverse position, z
is the longitudinal position in the beam coordinate system,
~�? is the transverse velocity normalized to the speed of
light, p ¼ ��=� is the relative energy deviation, and
� ¼ ct where c is the speed of light and t is the time,
measured from the beginning of the interaction. The dis-
tribution function is normalized to the total number of
particles N.
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We expand the distribution function to first order in
perturbation theory: f ¼ f0 þ f1, with jf1j � jf0j. In
the three-dimensional limit we can specify the following

form for the 0th order distribution function: f0 ¼
n0fvð ~�?; pÞ, where n0 is the local average particle density.
For simplicity we assume that fv is isotropic in transverse
velocity. Also, for simplicity, we will assume that n0 is
independent of time. This assumption is reasonable if the
interaction happens close to a waist and the maximum
distance from the waist is significantly shorter than the
minimum� function. If the waist is at the center of the drift
the following condition has to apply: Ld & �x;0=��;0,

where Ld is the length of the drift and �x;0 and ��;0 are,

respectively, the root-mean-square (rms) transverse size of
the beam and the transverse velocity spread (normalized to
c) at the waist. If this condition does not apply, a possible
solution is that of defining an equivalent drift length [9],
shorter than the actual drift length, over which the beam
density can be considered constant. In this paper we will
not be concerned with this problem and we will assume
that the condition Ld & �x;0=��;0 is verified, leaving a

detailed study of the effect of density variation for future
investigation.

The collective beam dynamics in the drift are described
by the Vlasov equation, coupled to the Maxwell equations.
In the coasting beam case, we may derive the fields from
the scalar potential computed in the beam rest frame. With
these underlying assumptions the linearized Vlasov equa-
tion for the electrons in the drift reads

@f1
@�

þ ~�? � r?f1 þ p

�2

@f1
@z

þ Fz

�mc2
n0

@fv
@p

þ ~F?
�mc2

� n0 @fv
@ ~�

¼ 0; (2)

where the approximation dz
d� � p=�2, valid for relativistic

electrons, has been used. Fz and ~F? are, respectively, the
longitudinal and transverse forces generated by the collec-
tive electric and magnetic fields of the electrons and can be
computed solving Poisson’s equation in the beam rest
frame, where self-magnetic fields are negligible:

�
r?

2 þ 1

�2

@2

@z2

�
� ¼ e

�	0

Z
f1dpd

2 ~�: (3)

Longitudinal forces are Lorentz invariant while transverse
forces transform as F? ! F?=� going from the beam rest

frame to the laboratory frame, we then have Fz ¼ e
�

@�
@z and

~F? ¼ e
�r?�.

It is convenient to solve Eqs. (2) and (3) in the Laplace-
Fourier domain. We give the following definitions:

f̂ 1 ¼
Z

f1e
�iðkzzþ ~k?� ~xÞdzd2 ~x (4)

~̂f 1 ¼
Z 1

0
f̂1e

�s�d� (5)

and similarly for Fz and ~F?. Since the system is isotropic

in the transverse dimension we can set ~k? ¼ x̂kx without
loss of generality. We also work in the paraxial approxi-
mation and set kz ¼ k and kx ¼ �k. With the above defi-
nitions, the Laplace-Fourier transform of Eqs. (2) and (3)
yields

s~̂f1 � f̂1j�¼0 þ ik

�
��x þ p

�2

�
~̂f1

þ 1

�mc2
n0

�
~̂Fz

@fv
@p

þ ~̂Fx

@fv
@�x

�
¼ 0 (6)

~̂F z ¼ � i

k

e2

	0

1

1þ ð��Þ2
Z
~̂f1dpd

2 ~� (7)

~̂F x ¼ � ~̂Fz; (8)

where f̂1j�¼0 is the spatial Fourier transform of the initial
value of f1.

From Eqs. (6) and (8) we can express
~̂f1 in terms of ~̂Fz:

~̂f1 ¼ 1

sþ ikð��x þ p
�2Þ

�
�
f̂1j�¼0 � n0

�mc2
~̂Fz

�
@fv
@p

þ �
@fv
@�x

��
: (9)

Inserting Eq. (9) into (6), recalling that ~̂Fz does not

depend on p and ~�, we have

~̂F z ¼ � i

k

e2

	0	p

1

1þ ð��Þ2
Z f̂1j�¼0

sþ ikð��x þ p
�2Þ dpd

2 ~�;

(10)

where 	p is the beam’s plasma dielectric function

defined as

	p ¼ 1þ !2
p

c2½1þ ð��Þ2�
�2

ik

Z @fv
@p þ � @fv

@�x

sþ ikð��x þ p
�2Þ dpd

2 ~�

(11)

with !2
p ¼ ðe2n0Þ=ð	0m�3Þ being the relativistic beam

plasma frequency.
Inserting Eq. (10) back into Eq. (9), after some algebraic

manipulation, we obtain the following expression for the
first order distribution function:
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~̂f1 ¼ 1

sþ ikð��x þ p
�2Þ

�
�
f̂1j�¼0 � 1

	p

!2
p

c2½1þ ð��Þ2�
�
@fv
@p

þ �
@fv
@�x

�
�2

ik

�
Z f̂1j�¼0

sþ ikð��0
x þ p0

�2Þ
dp0d2 ~�0

�
: (12)

In what follows it will be understood that all the above
integrals are analytically continued in the complex variable
s to the half-plane <½s�< 0.

In performing the inverse Laplace transform we will
only consider the zeros of the plasma dielectric function
since these are the poles that describe the collective re-
sponse of the electrons. Also, for the moment, we will only
retain the R56 matrix element in the transport matrix de-
scribing the optical elements after the drift. A more general
treatment applicable to arbitrary linear phase space trans-
formations is included in the Appendix.

The bunching factor is defined as the Fourier transform
of the density perturbation normalized to the number of
particles, i.e.,

bðkz; ~k?Þ ¼ 1

N

Z
f1e

�iðkzzþ ~k?� ~xÞdzd2 ~xdpd2 ~�: (13)

In order to arrive at the final prediction for the bunching
factor, after the space-charge forces have modulated the
particle energy distribution, we must account for the effect
of longitudinal dispersion due to systems of bending ele-
ments (e.g. magnetic chicanes). The effect of the longitu-
dinal dispersion, modeled through the R56 matrix element,
is that of shifting each particle’s longitudinal position by an
amount proportional to its energy deviation, i.e. z ! zþ
pR56. The effect of this transformation on the spatial
Fourier components of the distribution function is that of
introducing a phase shift proportional to the spatial re-

arrangement: f̂1 ! f̂1e
�ikpR56 .

It follows that the bunching factor after the particles’
rearrangement following the drift, can be expressed as

b ¼ � 1

N

X
j

esjLd
1

@	p
@s js¼sj

!2
p

c2½1þ ð��Þ2�
�2

ik

�
Z e�ikpR56ð@fv@p þ � @fv

@�x
Þ

sj þ ikð��x þ p
�2Þ dpd2 ~�

�
Z f̂1j�¼0

sj þ ikð��x þ p
�2Þdpd

2 ~�; (14)

where Ld is the length of the drift and the sum is performed
over all the zeros sj of the plasma dielectric function.

Integrating the first integral on the right-hand side of
Eq. (14) by parts in p, and retaining only the term propor-
tional to R56, that accounts for the microbunching enhance-
ment due to the longitudinal rearrangement, we obtain

bR56
¼ � 1

N

X
j

esjLd
1

@	p
@s js¼sj

!2
pR56�

2

c2½1þ ð��Þ2�

�
Z e�ikpR56fv

sj þ ikð��x þ p
�2Þdpd

2 ~�

�
Z f̂1j�¼0

sj þ ikð��x þ p
�2Þdpd

2 ~�: (15)

Finally, if the initial value of the perturbation f1 results
from shot noise, representing the individual particle posi-
tions in terms of 
 functions, we may write the final
integral in Eq. (15) as

Z f̂1j�¼0

sþ ikð��x þ p
�2Þdpd

2 ~�

¼ XN
n¼1

e�iðkznþk�xnÞ

sþ ikð��x;n þ pn

�2Þ
���������¼0

; (16)

where the particle positions are assumed random.

III. THE LAMINAR AND QUASILAMINAR
BEAM CASES

Before proceeding to discuss the general case of interest
in this paper, that of a transversely warm beam, we first
examine analytically the limiting cases in which transverse
thermal effects play a small role. To that end, in this section
we derive a closed form expression for the microbunching
in two simplified cases: the laminar and quasilaminar
beam.
In the laminar beam approximation, where to lowest

order particles are fixed in beam-frame position with re-

spect to each other, we may write fv ¼ 
ðpÞ
2ð ~�Þ. In this
case the plasma dielectric function can be easily computed
analytically:

	p ¼ 1þ!2
p

c2
1

s2
: (17)

The zeros of 	p are s� ¼ �i!p=c. Inserting s� in Eq. (15)

we get

bR56
¼ �b0�

2R56

!p

cð1þ ½���2Þ sin
�
!p

c
Ld

�

� �b0

��
�!p

c

�
2 1

1þ ð��Þ2 R56Ld

�
; (18)

where b0 ¼ 1
N

P
N
n¼1 e

�iðkznþk�xnÞj�¼0, with zn and xn being

randomly distributed, is the shot-noise bunching factor and
we have made the approximation !pLd=c � 1.

To describe the quasilaminar beam approximation, we

assume the following form of velocity distribution: fv ¼
1

ð2�Þ3=2�2
��p

e�ðp2=2�2
pÞ�ð ~�2=2�2

�
Þ with k�p=�

2 � !p=c and

k��� � !p=c. These assumptions mean that the electron
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displacement due to thermal motion in a plasma period
(�p ¼ 2�=!p) is much smaller than the wavelength � ¼
2�=k longitudinally and �=� transversely. Since the
plasma oscillation period sets the time scale for space-
charge effects, thermal effects become negligible when
the thermal displacement in a plasma period is smaller
than the length scale of the problem.

With this assumption, the plasma dielectric function is
approximately equal to that found in the cold beam case
and the bunching factor is given by

bR56
� �b0

��
�!p

c

�
2 1

1þ ð��Þ2 R56Ld

�
e�½ðk�pR56Þ2=2�:

(19)

Finally, the microbunching gain is defined as the ratio of
the statistical averages of the absolute values squared of the
final to original bunching factor g ¼ hjbR56

j2i=hjb0j2i ¼
NhjbR56

j2i and it is equal to

g ¼
��

�!p

c

�
2 1

1þ ð��Þ2 R56Ld

�
2
e�ðk�pR56Þ2 : (20)

In both the laminar and quasilaminar beam approxima-
tions, the electron thermal motion can be considered frozen
on the scale of a plasma period. Thus, the microbunched
distribution is transversely correlated on the same scale as
the longitudinal Fourier components of the electric field
generated by shot noise: ��=2� (with � ¼ 2�=k equal to
the wavelength of interest). This results in a cutoff angle of
�c ¼ 1=� in the microbunching gain.

Note that the same result (up to a geometric factor due to
the assumptions on the 0th order charge density) has been
obtained previously in [9].

IV. THE TRANSVERSELY WARM BEAM CASE

In this section we treat the case that is most often found
in experimental scenarios of interest: that of a beam that is
transversely warm but longitudinally quasilaminar, i.e., we
keep the assumption k�p=�

2 � !p=c but we make no

assumptions on ��. Since space-charge forces naturally

yield an angular cutoff of 1=�, transverse temperature

effects will be important only if k�� * �!p=c, which is

applicable for many relevant experimental situations.
By performing a double integration by parts (in p and in

�x) in the term proportional to @fv
@p in (11), and performing

the integration in dp and d�y, the plasma dielectric func-

tion can be expressed as

	p ¼ 1þ!2
p

c2
1

ik�

Z
~c

@fv
@�x

sþ ikð��xÞd�x: (21)

In the case of a warm beam, the analyticity of 	p as a

function of the complex variable s has to be enforced by
deforming the integration path in (21) so that it runs in the
complex plane below the singularity at �x ¼ �s=ik� as
shown in Fig. 1 (the resulting integration path is usually
referred to as Landau contour [18] and we will denote it ~c).
The zeros of the plasma dielectric function, in this case,

cannot be expressed in closed form. It is then useful to
express Eq. (21) in dimensionless form. We give the fol-
lowing definitions: kD ¼ !p=c�� is the Debye wave num-

ber, which we employ to normalize the transverse wave
number as K ¼ k�=kD; the Laplace variable s is normal-
ized to the plasma frequency as � ¼ �cs=i!p; finally,

we normalize the transverse velocity to the thermal veloc-

ity spread: B ¼ �x=��, F ¼ 1
ð2�Þ1=2 e

�ðB2=2Þ. Note that the

Debye wavelength �D ¼ 2�=kD is the transverse thermal
displacement in a plasma period and is the fundamental
parameter that describes thermal effects in warm plasmas.
The resulting scaled beam plasma dielectric function is
then

	p ¼ 1� 1

K2

Z
~c

@F
@B

B� �
K

dB: (22)

FIG. 1. Landau contour in the complex �x plane. The defor-
mation of the integration path makes the plasma dielectric
function analytical as a function of s.

FIG. 2. Real part (red line) and imaginary part (blue line) of
the roots of the plasma dielectric function for a transversely
warm beam, as a function of the scaled wave number K [19].
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Note that the plasma dielectric function, as a function of
�, depends only on one external dimensionless parameter
K. Since longitudinal thermal effects have been neglected
and the system is azimuthally symmetric, this three-
dimensional problem reduces formally to that of one-
dimensional plasma oscillations discussed in [19].

The zeros�j of (22) can be found numerically [19] and

are, in general, complex. The imaginary part of the scaled
frequency �j is always negative, resulting in an exponen-

tial decay of the microbunching as a function of the drift
length (this collisionless damping process due to thermal
motion is usually denoted Landau damping). Also, if�R �
i�I is a solution (with�R,�I positive real numbers), then
��R � i�I is also a solution [19]. We will thus denote as
�� the two dominant roots of the dielectric function (i.e.
the roots with the smallest damping constant).

To develop an intuition on the physical processes in-
volved, we examine Fig. 2 which shows the real and
imaginary parts of the dominant root �þ (see also [19]).
The imaginary part of ��þ is a growing function of K.
For small values of K the damping constant �=f�þg is
small and can be neglected for drifts that are significantly
shorter than a plasma wavelength, as is usual in most
experimental situations. However, for K > 1 the damping
term is significantly bigger than 1, resulting in a strong
suppression of the microbunching gain at angles bigger
than kD=k. Equivalently, one could state that a transversely
warm electron beam is unable to develop transverse struc-
tures on a scale that is smaller than �D ¼ 2�c��=!p

under the effect of longitudinal space-charge forces.
To find the actual angular dependence of the micro-

bunching gain we must compute the square of the absolute
value of (15) and perform a statistical average. It can be
shown that Eq. (15), with the above approximations, can be
simplified to

bR56
¼ �i

!p

c½1þ ð��Þ2��
2R56e

�½ðk�pR56Þ2=2� 1
N

�X
j

e�i�jð!p=cÞLd
K

1� �2
j

1þK2

XN
n¼1

e�iðkznþk�xnÞ

Bn � �j

K

: (23)

Taking the statistical average of the absolute value squared

of (23), recalling that he�ikðzn�zmÞ�ik�ðxn�xmÞi ¼ 
n;m

(where 
n;m is the Kronecker delta), from the definition

of microbunching gain we obtain

g ¼
�

!p

c½1þ ð��Þ2��
2R56

�
2
e�ðk�pR56Þ2

Z
dBFðBÞ

�
�X

j

e�i�jð!p=cÞLd
K

1� �2
j

1þK2

1

B� �j

K

�

�
�X

j0
e�i�j0 ð!p=cÞLd

K

1� �2

j0
1þK2

1

B� �j0
K

�	
: (24)

In the dominant pole approximation, we keep only the
two dominant roots in the summation in (24). In this case,
expression (24) can be simplified to

g ¼ 2

�
!p

c½1þ ð��Þ2��
2R56

�
2
e�ðk�pR56Þ2

���������
Ke�i�þð!p=cÞLd

1� �2
þ

1þK2

�
��������

2
���������

K2ð1þ K2Þ
�2þ

���������
ffiffiffiffiffiffiffi
2�

p
K
<fe�ð�2

þ=2K
2Þg

=f�þg
�

�<
��
Ke�i�þð!p=cÞLd

1� �2
þ

1þK2

�
2
�
K2ð1þ K2Þ

�2þ

� ffiffiffiffiffiffiffi
2�

p
K
e�ð�2

þ=2K
2Þ

�þ

���
: (25)

Note that the quasilaminar beam case corresponds to

jKj � 1. It can be shown that in this limit �þ �
1þ 3

2K
2 � i

ffiffiffi
�
8

p
e�ð1þ3K2=2K2Þ=K3 [18,19]. With this asymp-

totic expression, Eq. (25) reduces to (20).

V. NUMERICAL EXAMPLES

As an example, we display a numerical evaluation of the
angular dependence of the gain for the following beam
parameters, corresponding to a typical electron beam pro-
duced by an rf photoinjector. We assume a uniform beam
with a current of I ¼ 40 A and an rms envelope size of
�x ¼ 85 �m and an energy of 135 MeV (� ¼ 270). The
length of the drift is Ld ¼ 4 m.
Figure 3 shows the angular dependence of the micro-

bunching gain for several values of �� for a wavelength of

� ¼ 0:5 �m. We can see that for reasonable values of the
emittance, transverse Landau damping can have an impor-
tant role in the formation of microbunching, significantly

FIG. 3. Angular dependence of microbunching gain for differ-
ent values of �� corresponding to a normalized emittance

of 	 ¼ 0 (gray line), 	 ¼ 0:1 mmmrad (red line),
	 ¼ 0:5 mmmrad (blue line), and 	 ¼ 1 mmmrad (black line).
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reducing the angular width of the gain with respect to the
laminar beam case. Note that, for the 1 mmmrad case we
have Ld � 2�x;0=��;0 and the results of the theory, in this

case, are not accurate and should be interpreted with care.

VI. MOLECULAR DYNAMICS SIMULATIONS

Numerical modeling of space-charge induced optical
microbunching at optical and suboptical wavelengths is a
challenging task since it requires high resolution and a
great number of macroparticles. Ideally, to correctly repro-
duce shot-noise statistics in the electron distribution, each
particle in the simulation should correspond to a particle in
the beam. Also, resolution well below the optical spectrum
is required to correctly compute the collective fields gen-
erated by the electrons.

Recently, the use of large computer clusters with parallel
codes has allowed simulations with unprecedented resolu-
tion in the computation of self-fields, reaching down to the
few �m level [24]. However, the resolution needed for
optical and suboptical microbunching represents a serious
challenge even for highly parallelized codes.

To model high-frequency space-charge phenomena with
a low computational cost, we have created a code which
computes the electron dynamics with periodic boundary
conditions in all three dimensions. Periodicity allows one
to limit the simulation window to a small fraction of the
beam (few �m in the longitudinal dimension and several
tens to few hundreds of �m transversely depending on the
energy), thus reaching the resolution required (few nm to
few tens of nm longitudinally). Also, due to the periodic
boundary conditions, the code works in the three-
dimensional limit (see Fig. 4) since edge effects due to

the finite size of the beam cannot be included. This limits
the use of the code to very high-frequency phenomena.
The code has the capability of including external fields

(accelerating and focusing) and internal fields. The high-
frequency components of the collective fields are com-
puted solving Poisson’s equation in the beam rest frame
with discrete Fourier transform methods.
We have performed simulations for the model assumed

in Sec. II with no acceleration but only a free drift with
subsequent rearrangement through longitudinal dispersion.
The beam parameters are those described in Sec. V.
Figure 5 shows the x-z trace space after longitudinal

dispersion for two simulations with and without the effect
of emittance. Note that in the zero emittance simulation,
the position and size of the microbunches varies randomly

FIG. 4. Longitudinal Fourier transform of the electric field (in
arbitrary units) generated by an uncorrelated electron distribu-
tion for � ¼ 270 and � ¼ 0:5 �m, illustrating the features of the
three-dimensional limit of space-charge fields.

FIG. 5. x-z trace space after a drift and longitudinal dispersion
without emittance (upper plot) and with 1 mmmrad emittance
(lower plot) showing the effect of Landau damping on the
transverse structure of microbunching.
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with the transverse position, resulting in a broad angular
width of the microbunching pattern.

Figure 6 shows a comparison between the results of the
theoretical model and the numerical simulations. The two
are in good agreement, validating the theoretical analysis
described earlier.

VII. CONCLUSIONS

In this paper we discussed a kinetic analytical descrip-
tion of space-charge induced optical microbunching based
on the beam plasma dielectric function.

The theory developed is fully three dimensional and
accounts for the angular dependence of the microbunching
in the three-dimensional limit. The kinetic approach allows
for the inclusion of transverse thermal motion due to finite
transverse emittance.

With the approximation that longitudinal motion is qua-
silaminar, which holds for typical high brightness electron
beam parameters, the problem can be treated with the same
mathematical methods used to describe one-dimensional
plasma oscillations in thermal plasmas, as discussed in the
work from Landau and Jackson [18,19]. In particular, the
effect of Landau damping of transverse modes due to finite
emittance has been discussed and found to be of great
importance when typical values of emittance and beam
plasma frequency are considered, significantly reducing
the angular width of the microbunching gain with respect
to the natural width �c ¼ 1=� of longitudinal space-charge
fields.

With the further assumption of transverse quasilaminar
motion, the results of our theory agree with those derived in
previous papers on the same subject [9].

Finally, the results of our analysis have been compared
to those generated by high resolution molecular dynamics
simulations with periodic boundary conditions. The ana-
lytical and numerical results are found to be in good
agreement, validating the theoretical analysis derived in
this paper.
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APPENDIX A: DERIVATION OF THE
CLOSED FORM EXPRESSION FOR

THE MICROBUNCHING GAIN

With the assumption of longitudinal quasilaminar mo-
tion, Eq. (15) can be simplified taking advantage of the
analytical properties of the plasma dispersion function,

defined as Zð�Þ ¼ 1ffiffiffi
�

p R
~c dB

e�B2

B�� . The plasma dispersion

function is analytical in � in the whole complex plane and
can be shown to have the following properties [19]:

Zð�Þ ¼ e��2erfcð�i�Þ (A1)

Z0ð�Þ ¼ �2� 2�Zð�Þ; (A2)

where Z0 is the complex derivative of Z and erfcð�Þ is the
complex valued complementary error function.
Integrating by part the plasma dielectric function, we

obtain

	p ¼ 1� 1

2K2
Z0
�

�ffiffiffi
2

p
K

�
: (A3)

Using Eqs. (A2) and (A3) we can express the plasma
dielectric function and all its derivatives at the zeros of
the plasma dielectric function. In particular we have

Zj	p¼0 ¼ � 1þ K2

�
K

ffiffiffi
2

p
(A4)

Z0j	p¼0 ¼ 2K2 (A5)

Z00j	p¼0 ¼ 2
ffiffiffi
2

p
K

�
1þ K2

�
��

�
: (A6)

FIG. 6. Theoretical results (solid lines) versus numerical simu-
lations (dashed lines) for different values of �� corresponding to

a normalized emittance of 	 ¼ 0 (gray line), 	 ¼ 0:1 mmmrad
(red line), and 	 ¼ 1 mmmrad (black line). The results of the
simulations are averaged over 50 independent runs.
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Finally we express the integrals in Eq. (15) as a function
of Z and its derivatives, with the approximation of longi-
tudinal quasilaminarity:

Z e�ikpR56fv
sj þ ikð��x þ p

�2Þ dpd
2 ~� � ce�½ðk�pR56Þ2=2�

iK!p

ffiffiffi
2

p Z

�
�jffiffiffi
2

p
K

�

(A7)

@	p
@s

��������s¼sj

� c

i2
ffiffiffi
2

p
K3!p

Z00
�
�jffiffiffi
2

p
K

�
: (A8)

Equation (15) follows immediately substituting
Eqs. (A4) and (A6) into Eqs. (A7) and (A8).

The same method can be applied to derive Eq. (25). By
computing the partial fractions expansion of the integrand
in Eq. (24) we can reduce it to a sum of Z functions.
Equation (25) then follows easily using the symmetry
properties of Z:

Zð��Þ ¼ �Zð�Þ þ 2i
ffiffiffiffi
�

p
e��2 (A9)

Zð�	Þ ¼ Z	ð�Þ þ 2i
ffiffiffiffi
�

p
e��2 : (A10)

APPENDIX B: MICROBUNCHING GAIN WITH
TRANSVERSE MATRIX ELEMENTS

The model developed in the previous sections can be
easily generalized to included transverse transport matrix
elements. Note that the inclusion of Cartesian matrix
elements breaks the azimuthal symmetry of the problem
even if the transverse velocity distribution is isotropic.
It is then necessary to set up the problem in a more general

way. We adopt the following convention: ~k ¼ kẑþ
k� cosð�Þx̂þ k� sinð�Þŷ. We also define �k and �?
the parallel and perpendicular components of transverse

velocity with respect to ~k?. Finally we define
~kx ¼ k½� cosð�ÞR11 þ R51�, ~ky ¼ k½� sinð�ÞR33 þ R53�,
Rx ¼ � cosð�ÞR12 þ R52, and Ry ¼ � sinð�ÞR34 þ R54.

With these definitions, the derivation of the microbunching
gain is similar to that of the previous sections with a

few differences: k� is now replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2x þ ~k2y

q
and the

integral
Rfðe�ikpR56 @fv

@p Þ=½sj þ ikð��x þ p
�2Þ�gdpd2 ~� is re-

placed by
Rfðe�ikpR56�ikRx�x�ikRy�y @fv

@p Þ=½sj þ ið
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2x þ ~k2y

q
�

�k þ p
�2Þ�gdpd2 ~�. The final result is given by

g ¼ 2

�
~!p

cð1þ �2½~k2xþ~k2y
k2

�Þ
�2R56

�
2
e�ðk�pR56Þ2�k2ðR2

xþR2
yÞ�2

�

�
���������

KZð�þffiffi
2

p
K
þ ik½Rx cosð�ÞþRy sinð�Þ���ffiffi

2
p Þe�i�þð ~!p=cÞLd

ð1þK2Þ
�þ

��þ

��������
2

�
���������

K2ð1þ K2Þ
�2þ

���������
ffiffiffiffiffiffiffi
2�

p
K
<fe�ð�2=2K2Þg

=f�g
�

�<
��KZð�þffiffi

2
p

K
þ ik½Rx cosð�ÞþRy sinð�Þ���ffiffi

2
p Þe�i�þð ~!p=cÞLd

ð1þK2Þ
�þ

��þ

�
2

�
�
K2ð1þ K2Þ

�2þ
� ffiffiffiffiffiffiffi

2�
p

K
e�ð�2

þ=2K
2Þ

�þ

���
(B1)

with the following substitution: K ¼ c��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2x þ ~k2y

q
=!p. Z

is the plasma dispersion function defined in Appendix A.

[1] M. Borland, Y. C. Chae, P. Emma, J.W. Lewellen, V.
Bharadwaj, W.M. Fawley, P. Krejcik, C. Limborg, S. V.
Milton, H. D. Nuhn, R. Soliday, and M. Woodley, Nucl.
Instrum. Methods Phys. Res., Sect. A 483, 268 (2002).

[2] E. L. Saldin, E. A. Schneidmiller, and M.V. Yurkov, Nucl.
Instrum. Methods Phys. Res., Sect. A 490, 1 (2002).

[3] S. Heifets, G. Stupakov, and S. Krinsky, Phys. Rev. ST
Accel. Beams 5, 064401 (2002).

[4] Zhirong Huang and Kwang-Je Kim, Phys. Rev. ST Accel.
Beams 5, 074401 (2002).

[5] Z. Huang, M. Borland, P. Emma, J. Wu, C. Limborg, G.
Stupakov, and J. Welch, Phys. Rev. ST Accel. Beams 7,
074401 (2004).

[6] T. Shaftan and Z. Huang, Phys. Rev. ST Accel. Beams 7,
080702 (2004).

[7] Marco Venturini, Phys. Rev. STAccel. Beams 10, 104401
(2007).

[8] E. L. Saldin, E. A. Schneidmiller, and M.V. Yurkov, in
Proceedings of the 25th International Free Electron Laser
Conference, and the 10th FEL Users Workshop [Nucl.
Instrum. Methods Phys. Res., Sect. A 528, 355 (2004)].

[9] D. Ratner, A. Chao, and Z. Huang, in Proceedings of the
2008 Free-Electron Laser Conference (Jacow, Gyeongju,
Korea, 2008), p. 338.

[10] A. Gover and E. Dyunin, Phys. Rev. Lett. 102, 154801
(2009).

[11] A. H. Lumpkin, N. S. Sereno, W. J. Berg, M. Borland, Y.
Li, and S. J. Pasky, Phys. Rev. ST Accel. Beams 12,
080702 (2009).

[12] H. Loos et al., in Proceedings of the 2008 Free-Electron
Laser Conference (Ref. [9]), p. 619.

[13] S. Wesch et al., in Proceedings of the 2009 Free-Electron
Laser Conference (Jacow, Liverpool, UK, 2009), p. 485.

[14] E. A. Schneidmiller and M.V. Yurkov, arXiv:1003.5871.
[15] Marco Venturini, Phys. Rev. STAccel. Beams 11, 034401

(2008).
[16] J. Rosenzweig, G. Travish, and A. Tremaine, Nucl.

Instrum. Methods Phys. Res., Sect. A 365, 255 (1995).

MICROSCOPIC KINETIC ANALYSIS OF SPACE-CHARGE . . . Phys. Rev. ST Accel. Beams 13, 110703 (2010)

110703-9

http://dx.doi.org/10.1016/S0168-9002(02)00325-X
http://dx.doi.org/10.1016/S0168-9002(02)00325-X
http://dx.doi.org/10.1016/S0168-9002(02)00905-1
http://dx.doi.org/10.1016/S0168-9002(02)00905-1
http://dx.doi.org/10.1103/PhysRevSTAB.5.064401
http://dx.doi.org/10.1103/PhysRevSTAB.5.064401
http://dx.doi.org/10.1103/PhysRevSTAB.5.074401
http://dx.doi.org/10.1103/PhysRevSTAB.5.074401
http://dx.doi.org/10.1103/PhysRevSTAB.7.074401
http://dx.doi.org/10.1103/PhysRevSTAB.7.074401
http://dx.doi.org/10.1103/PhysRevSTAB.7.080702
http://dx.doi.org/10.1103/PhysRevSTAB.7.080702
http://dx.doi.org/10.1103/PhysRevSTAB.10.104401
http://dx.doi.org/10.1103/PhysRevSTAB.10.104401
http://dx.doi.org/10.1103/PhysRevLett.102.154801
http://dx.doi.org/10.1103/PhysRevLett.102.154801
http://dx.doi.org/10.1103/PhysRevSTAB.12.080702
http://dx.doi.org/10.1103/PhysRevSTAB.12.080702
http://arXiv.org/abs/1003.5871
http://dx.doi.org/10.1103/PhysRevSTAB.11.034401
http://dx.doi.org/10.1103/PhysRevSTAB.11.034401
http://dx.doi.org/10.1016/0168-9002(95)00484-X
http://dx.doi.org/10.1016/0168-9002(95)00484-X


[17] A. Tremaine, J. B. Rosenzweig, S. Anderson, P. Frigola,
M. Hogan, A. Murokh, C. Pellegrini, D. C. Nguyen, and
R. L. Sheffield, Phys. Rev. Lett. 81, 5816 (1998).

[18] L. Landau, J. Phys. USSR 10, 25 (1946) [JETP 16, 574
(1946)].

[19] J. D. Jackson, J. Nucl. Energy, Part C 1, 171 (1960).
[20] A. Piwinski, DESY, Report No. 98-179, 1998.

[21] Kwang-Je Kim, Phys. Rev. Lett. 57, 1871 (1986).
[22] Ming Xie, Nucl. Instrum. Methods Phys. Res., Sect. A

475, 51 (2001).
[23] K. Brown, SLAC Report No. 75, 1982.
[24] J. Qiang, R. D. Ryne, M. Venturini, A. A. Zholents, and

I. V. Pogorelov, Phys. Rev. ST Accel. Beams 12, 100702
(2009).

AGOSTINO MARINELLI AND JAMES B. ROSENZWEIG Phys. Rev. ST Accel. Beams 13, 110703 (2010)

110703-10

http://dx.doi.org/10.1103/PhysRevLett.81.5816
http://dx.doi.org/10.1088/0368-3281/1/4/301
http://dx.doi.org/10.1103/PhysRevLett.57.1871
http://dx.doi.org/10.1016/S0168-9002(01)01534-0
http://dx.doi.org/10.1016/S0168-9002(01)01534-0
http://dx.doi.org/10.1103/PhysRevSTAB.12.100702
http://dx.doi.org/10.1103/PhysRevSTAB.12.100702

