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Abstract

The energy cascade in solar wind magnetic turbulence is investigated using MESSENGER data

in the inner heliosphere. Decomposition of magnetic field time series in intrinsic functions, each

characterized by a typical timescale, reveals phase re-organization. This allows for the identification

of structures of all sizes generated by the nonlinear turbulent cascade, covering both the inertial

and the dispersive ranges of the turbulent magnetic power spectrum. We find that the correlation

(or anticorrelation) of phases occurs between pairs of neighboring timescales, whenever localized

peaks of magnetic energy are present at both scales, consistent with the local character of the

energy transfer process.

PACS numbers: 94.05.-a; 52.35.Ra; 94.05.Lk
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The mechanism of turbulent energy cascade in fluids [1] and in magnetized fluid flows [2] is

still poorly understood. This process involves many coupled degrees of freedom and exhibit

universal and nontrivial scaling behavior [1, 3]. According to Richardson’s phenomenol-

ogy [4], the turbulent energy cascades from eddies at a scale ℓ to eddies at smaller (but

comparable) scales ℓ′ < ℓ [5]. Experiments suggest that the energy transfer is not steady

but intermittent, exhibiting strong bursts of activity in between relatively quiescent periods

[1, 6]. Non-homogeneity of the energy transfer is described, for example, by the multifractal

model [7], which takes into account the concentration of energy in “active eddies” [1] while

cascading towards smaller scales. According to the multifractal model, the energy cascade

spontaneously generates isolated bursts of fluctuations on all spatial scales [8, 9].

In order to identify turbulent structures in experimental data, intermittent bursts of tur-

bulent activity have often been related to the presence of convected coherent structures such

as ribbons, tubes or sheets of vorticity, as well as localized current sheets in magnetized fluids

[2, 9, 10]. Such structures of a given scale are generally considered as isolated features em-

bedded in a random Gaussian background [11]. Arbitrary threshold methods are commonly

used to detect isolated structures, which should be characterized by phase correlations in the

field [2]. In the solar wind, those isolated structures can develop in the process of turbulent

energy cascade down to smaller scales, although the existence of structures of solar origin,

generated at relatively large scale and not arising from a cascade process, cannot be ruled

out. On the other hand, the presence of the energy cascade is associated with the scaling

of the third-order structure function (Yaglom’s law) [1, 12], which has no intermittent cor-

rections. Yaglom’s law suggests that fluctuations are generated on all scales by the cascade

process, and that fluctuations on different scales should be somehow connected, for example

through phase synchronization.

The solar wind represents the largest laboratory for direct investigation of plasma tur-

bulence [2]. The degree of complexity is enhanced by the existence of many characteristic

scales, related to different physical processes. This means that the mechanism of energy

transfer among scales depends on the scale itself. Indeed, within the Magnetohydrodynamic

(MHD) range, solar wind turbulence exhibits a Kolmogorov-like power law energy spectrum

in the wave vector k space, ∼ k−5/3 [2], while in the dissipative (or dispersive) range, the

spectrum steepens beyond the proton scales (∼ k−α, with α ∈ [2, 4]) [13, 14]. In this letter

we show the first evidence of phase synchronization between structures on different scales
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in solar wind, generated by the turbulent cascade of magnetic energy.

Our analysis of solar wind data is based on the combined use of the Empirical Mode De-

composition (EMD) [15] and of wavelet analysis [16]. The former provides a decomposition

of solar wind turbulent fields in a limited number of modes (including information on the

phase), while the latter enables the detection of intermittent structures and energy trans-

fer in the flow. EMD has been originally developed to process nonstationary and nonlinear

data [15], such as experimental turbulence records [17]. However, it further has been applied

succesfully to a variety of physical systems [18–21]. A turbulent field B(t) is decomposed

into a finite number n of intrinsic mode functions (IMFs), as

B(t) =
n∑

j=1

IMFj(t) + rn(t) . (1)

IMFs can be written as IMFj(t) = Aj(t) cosΦj(t), where Aj(t) and Φj(t) represent the am-

plitude and the phase of the j-th mode, respectively; thus they are zero-mean oscillating

functions, experiencing both amplitude and frequency modulations. Each IMF is charac-

terized by a time dependent ωj(t), and a typical time scale can be obtained by averaging

over the whole time interval. Therefore, at variance with the classical Fourier decomposi-

tion, the characteristic timescale τj for IMFs is an average timescale. The residue rn(t) in

Equation (1) describes the mean trend. EMD is local, complete and orthogonal. It therefore

allows the reconstruction of the signal through partial sums in Equation (1). When applied

to real data, the dynamic behavior of the system is represented by a limited number of

modes n.

Wavelet analysis, on the other hand, provides useful information on the frequency and in

time energy distribution of a time series. In order to identify intermittent bursts of energy

at different time scales, the Local Intermittency Measure (LIM) [16, 22] has been applied to

turbulent data. LIM is defined as

LIMτ,t =
|b̃τ,t|

2

〈|b̃τ,t|2〉t
, (2)

where b̃τ,t is the wavelet coefficient of a component of the magnetic field vector at time t and

timescale τ . Brackets 〈·〉 in equation (2) indicate time average. For each frequency 1/τ , the

condition LIM > 1 identifies portions of the sample whose power (estimated as the squared

wavelet coefficient) is above the average, within the time series. Therefore, such portions
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FIG. 1. Time evolution of the magnetic field components in the RTN reference frame and of the

magnetic field magnitude (left panel). The power spectrum of the BT component along with the

power law best fits both in the inertial (thick red line) and in the high frequency range (thick blue

line) (right panel). In the right panel the spectra of IMFs above and below the spectral break

frequency are also displayed (thin red, thin blue, green, magenta, thin black, and red dashed lines).

For example, the thin red curve has a peak around 0.4 Hz, which is the average frequency of the

highest frequency mode computed.

may represent intermittent structures, where magnetic energy accumulates [23] during the

nonlinear energy cascade.

In this work we proceed as follows: after applying EMD to each solar wind magnetic field

vector component we investigate the phase difference of IMFs at two neighboring timescales

(τi, τj). Then, we look for the simultaneous presence of intermittent structures at the same

pair of neighboring timescales, as detected by LIM, being an indication of energy transfer

between such scales.

For our study, we analyze solar wind magnetic field measurements in the inner Helio-

sphere, using 2 Hz sampled data from the MAG experiment onboard the MESSENGER

spacecraft [24]. The sample was taken at heliocentric distance of about 0.3 AU, far away from

planet Mercury. The magnetic field components in the Radial-Tangential-Normal (RTN) ref-

erence frame are shown in the left panel of Figure 1. In this frame R indicates the radial

anti-sunward direction, T is the tangential direction obtained from the cross product be-

tween the solar rotation axis and R, and N completes the frame. The time interval refers

to observation made on January 14th, 2010 from 00:00:00 to 01:06:00 UT, near the mini-
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FIG. 2. Top Panels: Local Intermittency Measure (LIM) as a function of time t at two different

timescales τ (see legend); middle panels: phases Φj of the IMFs at the τ indicated in the top

panels; bottom panels: absolute value of phase difference of the two IMFs. Notation: the subscript

j indicates the number of the mode, for example, Φ9(t) is the mode number 9 having a typical

timescale τ ∼ 23s.

mum of solar cycle 23. The magnetic field magnitude (black line) is rather steady, while

the tangential (blue line) and normal (green line) components fluctuate around zero. Notice

that the large scale mean magnetic field (the Parker spiral) is roughly radial near 0.3 AU.

Therefore, the magnetic field variance is larger in the plane perpendicular to the mean field,

indicating the presence of Alfvénic fluctuations [2]. The right panel of Figure 1 shows the

Power Spectral Density (PSD) of the tangential component of B. The best power law fits

are also indicated, both in the inertial range (thick red line) and in the high frequency range

(thick blue line), with a break at fbr ∼ 0.2 Hz [25, 26]. It is important to remark that the

spectrum in frequency corresponds to the spectrum in the k vector space assuming that

Taylor hypothesis applies [27]. High amplitude magnetic field fluctuations, described by a

Kolmogorov-like energy spectrum, confirm that the sample is turbulent.

EMD of the tangential magnetic field component BT gives n = 18 significant modes. In

order to estimate the typical timescales, for each IMF the PSD [15] was computed (i.e., right

panel of Figure 1). The modes display power either in the high frequency range (from ∼ 0.2

Hz to 0.45 Hz) or in the inertial range (from 0.01 Hz to 0.1 Hz). The position in frequency,
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fi, of the peak of the PSDs of the modes (see thin red, thin blue, green, magenta, thin black,

and red dashed lines in the right panel of Figure 1) gives an estimate of the characteristic

time scale of each mode, τi = 1/fi. Therefore, IMFs with fi above the spectral break of

BT “track” the small scale fluctuations of the field [15]. Going to lower frequencies, the

large scale fluctuations of the BT time series show up in the IMFs (not shown). Three pairs

of phases of IMFs (Φi,Φj) associated with neighboring time scales are plotted in Figure 2,

along with the absolute value of their phase difference ∆φ ≡ Φi −Φj . Left panels of Figure

2 refer to a pair of next-nearest timescales in the high frequency range of the magnetic field

spectrum, middle panels to a pair of adjacent timescales within the inertial range, and right

panels to one scale τi in the inertial range and the other scale τj in the high frequency range.

Application of LIM to BT provides the location of the peaks of power in the time series.

We then locate the occurrence of simultaneous LIM peaks in the chosen pairs of timescales

(τi, τj), as shown in top panels of Figure 2, indicating an energy transfer between the two

scales.

In the left and middle columns of Figure 2, simultaneous LIM peaks (top row) are found

when the two modes phases overlap (middle row), the phase difference becoming negligible

(bottom row). This has been highlighted in Figure 2 through green frames. Thus, in

the locations where energy is being transferred between two scales, as evidenced through

simultaneous LIM peaks, phase synchronization between the modes of the field fluctuations

occurs. On the contrary, phase synchronization is not correlated to LIM peaks for pairs of

well separated time scales (right column of Figure 2), in agreement with a local nonlinear

energy cascade. It is important to point out that phase synchronization is observed regardless

of the LIM peaks amplitude (see the first frame in the left panels of Figure 2). In the

framework of the multifractal energy cascade, this suggests that small intensity structures,

showing phase synchronization, are also generated in the flow. Similar results hold for BR

and BN components (not shown).

To quantitatively confirm the observation of phase synchronization, we look for statistical

correlations between the phase difference of each pair of modes (IMFi, IMFj) and the LIM

covariance at the same time scales, defined as:

Covar(LIMi,LIMj) = LIMi(t) ∗ LIMj(t). (3)

In Figure 3 we plot, for the three examples given above, the rate of occurrence of binned
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FIG. 3. 2D histograms (|∆φ|, Covar(LIMi,LIMj)) for the three cases displayed in Figure 2. Colors

refer to the number of events stored in each bidimensional bin.

pairs (|∆φ|, Covar(LIMi,LIMj)). For the two cases with next-nearest modes, (IMF2, IMF3)

and (IMF8, IMF9) in the high frequency and in the inertial ranges respectively, the majority

of pairs have phase synchronization (small |∆φ|), with a secondary peak at ∼ π, indicating

phase anticorrelation. On the contrary, the histogram for the pair (IMF2, IMF5), referring

to separated time scales, is broad in |∆φ|, indicating absence of correlation between phase
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difference and LIM coupled peaks.

The analysis of solar wind magnetic turbulence in the inner heliosphere through coupled

EMD and wavelet analyses evidences that modes of the signal on neighboring time scales

have phase synchronization whenever localized peaks of magnetic energy transfer occur,

regardless of their amplitude. This allows the identification of magnetic eddies generated by

the turbulent cascade at different scales, and characterized by phase synchronization.

In order to test our results, the same EMD/LIM analyses has also been applied to two

synthetic data sets. The first data set is a Gaussian, self-similar Wiener process [28], with

no intermittent structures. The second set is an intermittent field generated through simple

superposition of a Gaussian background and coherent structures sharing the same statistical

properties of solar wind magnetic fluctations (see [29] for details). In this sample, intermit-

tency is not the result of a cascade, but is simply built to mimic the statistical features of an

intermittent field. Phase synchronization is not observed to be correlated to the LIM peaks

in neither of the data sets (see supplemental material, Fig.s 1s, 2s for the Gaussian back-

round+coherent structures model and Fig. 3s for the Wiener process). This confirms that

phase synchronization observed in solar wind data is entirely due to the nonlinear energy

turbulent cascade, which is not present in the synthetic data.

The detection and analysis of large amplitude structures in turbulent flows is usually

based upon arbitrary intensity threshold techniques [9, 22, 30], able to eliminate intermit-

tency and multifractality from the time series. These methods capture the extreme events,

contained in the tails of the Probability Distribution Functions (PDFs) of fluctuations, which

dominate higher order statistics. Our analysis shows that phase synchronization is observed

during the occurrence of bursts of magnetic energy of any amplitude, i.e. for the whole

PDF, giving information on the nonlinear energy transfer through the scales.

The results shown here indicate presence of significant phase synchronization only for

comparable time scales. This is consistent with the classical picture of the local turbulent

energy cascade, where nonlinear interactions mostly occur between next-nearest wave vectors

[1].

Finally, phase correlation between adjacent modes is found both in the MHD inertial

range and in the high frequency range of solar wind magnetic turbulence. This confirms

that a nonlinear turbulent cascade is active well beyond the high frequency break (i.e. at

proton scales) of the solar wind magnetic field power spectrum [14, 31], whose nature is still
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matter of debate.
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