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Mechanical oscillators can be sensitive to very small forces. Low frequency effects are up-converted
to higher frequency by rotating the oscillator. We show that for 2-dimensional oscillators rotating at
frequency much higher than the signal the thermal noise force due to internal losses and competing
with it is abated as the square root of the rotation frequency. We also show that rotation at
frequency much higher than the natural one is possible if the oscillator has 2 degrees of freedom,
and describe how this property applies also to torsion balances. In addition, in the 2-D oscillator the
signal is up-converted above resonance without being attenuated as in the 1-D case, thus relaxing
requirements on the read out. This work indicates that proof masses weakly coupled in 2-D and
rapidly rotating can play a major role in very small force physics experiments.

Physics experiments for the measurement of small
forces are ultimately limited by thermal noise due to in-
ternal losses in the mechanical suspensions (see [1], Sec.
IV). Once all systematics are reduced below the signal –
and if read out noise is not a limitation– it sets the length
of the integration time required for the signal to emerge
above thermal noise. A factor 10 better sensitivity –i.e.
a 10 times smaller force to be detected– requires an inte-
gration time 100 times longer, which makes reduction of
thermal noise a must if extremely weak forces are to be
detected.
Consider a 2-D harmonic oscillator made of two point-

like test bodies of reduced mass µ coupled by a spring of
stiffness k in both directions of the plane. The general
solution is an elliptic orbit with the center in the common
center of mass of the bodies, which can be decomposed
into the sum of two simple harmonic motions with ωn =
√

k/µ the frequency of natural (or proper) oscillations of
the test masses relative to each other in each direction.
The oscillator is designed to be sensitive to very small

forces acting between the masses in their plane of mo-
tion. Therefore, it has a very low natural frequency ωn

(because the sensitivity improves as ω−2
n ) and employs

springs of very high mechanical quality (i.e. their losses
are very small). Moreover, it is operated in vacuum at
low residual pressure in order to reduce damping result-
ing from Brownian motion and with sufficient magnetic
shielding to reduce damping from eddy currents in mov-
ing conductors ([1], Sec. IV). Such a system is dominated
by internal damping.
According to Nyquist fluctuation-dissipation theorem,

in the frequency domain the Power Spectral Density
(PSD) of the thermal noise force is given (using the “hat”
symbol for the Fourier Transform) by:

< |F̂th(ω)|2 >= 4KBTγ(ω) (1)

with KB the Boltzmann constant, T the thermal equi-

librium temperature and γ(ω) the damping coefficient
which, for systems dominated by internal damping has
been found to be frequency dependent and given by [1]:

γ(ω) ≃ kφ(ω)

ω
(2)

where φ is known as loss angle (its modulus is the inverse
of the mechanical quality factorQ) which also depends on
the frequency ω, albeit mildly, and φ(ω) is an odd func-
tion of ω. (2) is verified experimentally (see e.g. [2], [3])
and the divergence at zero frequency is a known issue of
no relevance in real systems ([1], Sec. VII).
Let ωsignal be the frequency of the very small force

to be sensed by the oscillator, typically smaller than its
natural frequency (ωsignal < ωn). Once the experiment
is limited by thermal noise due to internal damping, be-
cause of the frequency dependence (2), from (1) the rel-

evant thermal noise random force (i.e. its component
acting on the test masses at the same frequency as the
signal) after an integration time tint is:

Fth(ωsignal)|tint
≃
√

4KBTuω2
nφ(ωsignal)

ωsignal

1√
tint

(3)

showing that the lower is the frequency of the signal, the
longer is the integration time required to bring thermal
noise below the signal.
The difficulties of detecting low frequency effects can

be mitigated by up-converting the signal to higher fre-
quency. This is achieved by rotating the mechanical os-
cillator at a frequency faster than that of the signal. Let
us therefore consider a 2-D harmonic oscillator, with test
bodies of equal mass m for simplicity, rotating around an
axis perpendicular to its a, b sensitive plane with angular
velocity ωspin with respect to the inertial frame whose
x, y plane coincides with the sensitive plane of the oscil-
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lator (Fig. 1). The signal is at frequency ωsignal in the
inertial frame and it is ωsignal ≪ ωspin.
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FIG. 1: Sketch of the 2-D rotating oscillator for which thermal
noise is evaluated. The proof masses are concentric and rotate
–together with the springs– at angular velocity ωspin. They
are assumed for the moment as perfectly centered on the rota-
tion axis. The springs are modeled as ideal springs of elastic
constant k; to each spring is associated a co-rotating thermal
noise force generator Fth and an ideal noiseless damper γ. x, y
is the inertial frame; a, b is the rotating one.

For the oscillator of Fig. 1 we study the effect on the
relative motion of the test masses of the force due to
thermal noise when the system is in thermal equilibrium
at temperature T , with the purpose of assessing its rele-
vance at the frequency of the signal.
We express the motion of the system, subject to the

mechanical thermal noise force of the rotating springs, in
the inertial x, y reference frame in the frequency domain
and in matrix form as follows:

D(ω)~̂r = F(R(ωspint)~Fth(t))(ω) (4)

where D(ω) is the dynamical matrix of the equations of
motion of the system, F is the Fourier transform oper-

ator, ~Fth(t) is the thermal noise force due to losses in
the rotating springs, and R(ωspint) is the 2 by 2 rotation
matrix of angle ωspint:

R(ωspint) =

(

cos(ωspint) − sin(ωspint)
sin(ωspint) cos(ωspint)

)

=

=
1

2
eiωspint

(

1 i
−i 1

)

+
1

2
e−iωspint

(

1 −i
i 1

) (5)

By defining:

A =
1

2

(

1 i
−i 1

)

(6)

we can write:

D(ω)~̂r = F(R(ωspint)~Fth(t)) =

= A ~̂Fth(ω + ωspin) +A
∗ ~̂Fth(ω − ωspin)

(7)

where superscript ∗ denotes the complex conjugate. We
can see that the effect produced on the dynamical sys-
tem D (in the inertial x, y frame) by the rotating thermal

noise force ~Fth is a linear combination of ~̂Fth(ω + ωspin)

and ~̂Fth(ω − ωspin). The most straightforward way to
evaluate the components of the thermal noise force in the
inertial frame is to write the time average of the Cross
Spectral Density (CSD) matrix. Then —in the reason-
able assumption of statistical independence of the differ-
ent vectorial and frequency components of the thermal
noise force— we get:

< ~̂Fth(ω) ~̂Fth(ω)
† >=

1

2

4KBTkφ(ω + ωspin)

(ω + ωspin)
mathbfA+

+
1

2

4KBTkφ(ω − ωspin)

(ω − ωspin)
A

∗

(8)

where ~̂Fth(ω)
† denotes the transpose conjugate of ~̂Fth(ω).

Let us now consider the signal force of interest
~Fsignal(t) acting on the test masses relative to each other
at a very low frequency ωsignal ≪ ωspin in the inertial
frame:

~Fsignal(t) = Fsignal(cos(ωsignalt), sin(ωsignalt)). (9)

In the frequency domain (using Dirac δ symbol) it reads:

~̂Fsignal(ω) =
1

2
Fsignal

·
(

δ(ω − ωsignal) + δ(ω + ωsignal)
−iδ(ω − ωsignal) + iδ(ω + ωsignal)

) (10)

The CSD matrix of the signal is then:

< ~̂Fsignal(ω) ~̂Fsignal(ω)
† >=

1

2
F 2
signal

·
[

δ(ω − ωsignal)A+ δ(ω + ωsignal)A
∗
]

(11)

By comparing (11) with (8) we can see that only the
components of noise at the frequency of the signal, i.e.
those with ω = ωsignal and ω = −ωsignal do compete
with it. By evaluating the diagonal matrix elements of
(8) at the signal frequencies we obtain the PSD of the
x, y components of the noise competing with the corre-
sponding components of the signal (11). That is, we must
compare:

1

2

[4KBTkφ(±ωsignal + ωspin)

(± , ωsignal + ωspin)

+
4KBTkφ(±ωsignal − ωspin)

(±ωsignal − ωspin)

]

with
1

2
F 2
signal

(12)

Since we are in the condition ωsignal ≪ ωspin, it is ap-
parent that in (12) the dependence on ωsignal disappears
and only that on ωspin remains; moreover, the off di-
agonal elements of the CSD (8) are very small. In these
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conditions the x, y components of the thermal noise force
are almost uncorrelated and by averaging the x with the
y component of the signal we gain a factor

√
2 in the

signal-to-noise ratio. Thus, the spectral density of the
thermal noise force competing with the signal is:

< |F̂th| >≃
√

4KBTkφ(ωspin)

ωspin
(13)

and the actual thermal force after an integration tint is:

F′
th(ωsignal ≪ ωspin)|tint

≃
√

4KBTµω2
nφ(ωspin)

ωspin

1√
tint
(14)

the major advantage with respect to (3) being that the
frequency of the signal is now replaced by the much
higher rotation frequency of the oscillator; in addition,
losses at higher frequency are found to be smaller than
at lower frequency.
Though we have taken great care in a rigorous deriva-

tion of this result there is nothing mysterious about it:
the energy of thermal noise is the same as at zero spin
–simply, its component at the frequency of the signal is
much smaller than at zero spin due to the frequency de-
pendence (2) of internal damping.

An example of thermal noise reduction by rotation
comes from torsion balances used to test the Equivalence
Principle by detecting the twist angle produced by tiny
differential forces acting in the horizontal plane. Quite
remarkably, they have been able to reach the level of
thermal noise ([4], Fig. 20), finding that thermal noise
competing with the signal obeys (13) at the rotation fre-
quency of the balance (which is about 2/3 of its natural
torsion frequency, and is the frequency at which the sig-
nal is shifted to) and that it has the same 1/

√
ω depen-

dence at lower frequencies, at which thermal noise dom-
inates (at higher frequencies read out noise dominates
instead). Their ([4], eq. 57) computed at the rotation
frequency of the balance is the same as our (13); obvi-
ously, they measure a thermal noise torque, not force,
and k is a torsion constant. By rotating the balance with
a period of about 20 minutes they have improved by a
factor 70 as compared to relying on the 24-hr rotation of
the Earth, reducing the integration time by the same fac-
tor. Traditional attempts at reducing thermal noise from
internal losses have involved cooling down the apparatus
in order to reduce the thermal equilibrium temperature
T . However, cryogenics can reduce the integration time
by a factor 100 at most, while rotation can do much bet-
ter than that, and rotating torsion balances have already
achieved almost that much.

So far we have referred to a 2-D rotating oscillator in
which the proof masses are perfectly centered on the ro-
tation axis. In reality perfect centering is impossible; we
represent such manufacturing imperfections by an offset
vector ~ǫ of the reduced mass µ from the rotation axis
(~ǫ is fixed in the rotating frame). At equilibrium the

position vector reads:

~req =
1

1− (ωspin/ωn)2
~ǫ (15)

which for rotation at frequency much higher than the
natural one becomes:

~req ≃ −~ǫ
(

ωn

ωspin

)2

(16)

showing that the center of mass of the rotating body
reaches equilibrium much closer to the rotation axis than
it was by construction, by the factor (ωn/ωspin)

2 ≪ 1.
This auto-centering property is what makes fast rotation
more advantageous than the slow one. However, the mi-
nus sign indicates that for the equilibrium position to be
reached the center of mass of the body must be allowed
to move in the rotating plane till it sets itself antiparallel
to ~ǫ, as required by (16): if constrained along a single di-
rection it will not auto-center and be strongly unstable,
as it has been known since a long time ([5], Ch. 6).
Let us now write and solve the equations of motion of

the 2-D rotating oscillator around the equilibrium posi-
tion in the presence of a force, like the signal, of very low
frequency. In the inertial frame they read:

µ~̈r + γωspin
(~̇r − ~ωspin × ~r) + k~r = ~F (17)

where γωspin
is the small internal damping (2) of the os-

cillator rotating at ωspin; ~F is the signal force whose
frequency is so small compared to both ωspin and ωn

that we assume a constant force for simplicity. In the
2-body oscillator of Fig. 1, if the bodies have equal mass
m the reduced mass is m/2, the natural frequency is

ωn =
√

k/(m/2) with the external force acting between
them. In the assumptions made (ωspin ≫ ωn and very
small internal losses) the solution of the homogeneous
part of (17) is:

~rw(t) ≃ A0e
φωspin

ωnt/2

(

cos(ωnt+ ϕA)
sin(ωnt+ ϕA)

)

+

+B0e
−φωspin

ωnt/2

(

cos(−ωnt+ ϕB)
sin(−ωnt+ ϕB)

) (18)

(with amplitudes and phases determined by initial con-
ditions), showing that in the inertial reference frame the
oscillator performs a combination of a forward and a
backward orbital motion –known as whirl motion– at the
(slow) natural frequency ωn, and the radii of such orbits
are exponentially decaying in the case of the backward
whirl and exponentially growing in the case of the for-
ward one. We have written the exponential behavior in
terms of the small loss angle:

φωspin
≃ γωspin

ωspin

µνega2n
=

γωspin
ωspin

k
(19)

The forward whirl is then a very weak instability. Ev-
ery natural/whirl period the radius of the forward whirl
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grows by the fraction πφωspin
, hence the tangential force

which produces the growth is –in modulus– φωspin
kr,

which is a very small fraction of the elastic force, re-
quiring a correspondingly small force to stabilize it. Its
frequency is the natural one and does not interfere with
the signal (see [6], [7]).

In the presence of an external constant force ~F , the
equations of motion (17) show that (in the inertial frame)
the body is displaced to the position:

~rF (t) =
1

1 +
γ2
ωspin

ω2

spin

k2

·
(

~F

k
− γωspin

k2
~ωspin × ~F

)

≃
~F

k
− φωspin

~ωspin

ωspin
×

~F

k

(20)

As we can see, the applied force ~F gives rise to a dis-

placement ~F/k (i.e. the displacement is inversely pro-
portional to the natural frequency squared) and unaf-
fected by rotation, with an additional effect in the or-
thogonal direction due to rotation which is negligible
because of the very small loss angle φωspin

. In the ro-
tating frame of the oscillator this constant displacement
observed in the inertial one appears at the rotation fre-
quency ωspin ≫ ωn, yet it is apparent that no attenua-
tion occurs. Instead, it is well known that for an oscillator
with 1 degree of freedom, the displacement due to a force
at frequency ωspin ≫ ωn drops off as (ωn/ωspin)

2. Note
that the signal-to-thermal noise ratio is the same in the
two cases, since the displacement due to the signal and
that due to the thermal noise force are either both un-
changed (by the 2-D oscillator) or both attenuated (by
the 1-D oscillator). When dealing with extremely weak
effects a signal whose strength is not attenuated by rota-
tion has the advantage to loosen the requirements on the
performance of the read out, as long as rapid rotation
takes care of reducing thermal noise.
The general solution of the 2-D rotating oscillator

in the inertial frame –including the auto-centered posi-
tion (16) fixed on the rotating oscillator itself– is:

~r(t) ≃ −~ǫ(ωspint)

(

ωn

ωspin

)2

+
~F

k
− φωspin

~ωspin

ωspin
×

~F

k
+

+A0e
φωspin

ωnt/2

(

cos(ωnt+ ϕA)
sin(ωnt+ ϕA)

)

+

+B0e
−φωsωnt/2

(

cos(−ωnt+ ϕB)
sin(−ωnt+ ϕB)

)

(21)

which is helpful to comment as follows. Assume zero

losses and no external force: only the first term is not
zero and the solution is the auto-centered position ro-

tating at frequency ωspin; if the force signal ~F is added

–still with zero losses– the term ~F/k is not zero and the
oscillator is displaced by this vector with auto-centering
holding as before; finally, if small losses occur –after the
backward whirl has died out, and neglecting the small ef-
fect ∝ φωspin

– the forward whirl slowly grows around the
displaced position at frequency ωn. By controlling this
weak instability, rotation (and signal modulation) at a
frequency much higher than the natural one are achieved
with no signal attenuation and thermal noise reduction
according to (13).

These findings indicate that mechanical oscillators
with concentric proof masses weakly coupled in 2-D and
rapidly rotating can play a major role in physics exper-
iments for the measurement of extremely weak forces.
There is no question that having 2 degrees of freedom
–as sketched in Fig. 1– instead of being constrained in 1
direction (while rotating perpendicular to it), is the key
dynamical feature of the oscillator which makes fast ro-
tation physically possible, thus ensuring up-conversion of
the signal to much higher frequency where the competing
thermal noise due to internal losses is much smaller.

In this 2-D vs 1-D analysis, torsion balances are a spe-
cial case. As a torque sensor the balance has 1 degree of
freedom, hence any torque applied above its (low) torsion
resonance frequency is attenuated. However, as a pendu-
lum it has 2 degrees of freedom, with an oscillation period
of few seconds. By spinning the pendulum above its os-
cillation frequency –being allowed to move in the plane–
it will self center on the rotation axis minimizing distur-
bances due to centrifugal forces; this equilibrium position
will be stable, save for the weak whirl instability which
can be controlled. Torques due to imperfections of the
balance in rotation must still be taken care of, but this is
an interesting physical property of the torsion balance –
in addition to its low torsion frequency and nearly perfect
rejection of common mode forces– which has gone unno-
ticed so far. Although the rotation frequency required
to achieve self centering is much higher than the current
one, by a few orders of magnitude, if a clever solution is
found to improve the read out enough to overcome signal
attenuation, this possibility is worth investigating as a
very effective alternative to cryogenics, considering the
reduction of signal-to-thermal noise ratio.
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