
 

Policy gradient methods for free-electron laser and terahertz source
optimization and stabilization at the FERMI free-electron laser at Elettra

F. H. O’Shea,1,*,† N. Bruchon ,2 and G. Gaio1
1Elettra Sincrotrone Trieste, 34149 Trieste, Italy

2University of Trieste, 34127 Trieste, Italy

(Received 25 July 2020; accepted 3 December 2020; published 21 December 2020)

In this article we report on the application of a model-free reinforcement learning method to the
optimization of accelerator systems. We simplify a policy gradient algorithm to accelerator control from
sophisticated algorithms that have recently been demonstrated to solve complex dynamic problems. After
outlining a theoretical basis for the functioning of the algorithm, we explore the small hyperparameter
space to develop intuition about said parameters using a simple number-guess environment. Finally, we
demonstrate the algorithm optimizing both a free-electron laser and an accelerator-based terahertz source
in-situ. The algorithm is applied to different accelerator control systems and optimizes the desired signals
in a few hundred steps without any domain knowledge using up to five control parameters. In addition,
the algorithm shows modest tolerance to accelerator fault conditions without any special preparation for
such conditions.

DOI: 10.1103/PhysRevAccelBeams.23.122802

I. INTRODUCTION

In this work we demonstrate a simple model-free
reinforcement learning algorithm tuning and maintaining
accelerator systems. Herein, we simplify a policy gradient
algorithm related to those that have recently been demon-
strated solving the complex, dynamic problem of playing
human players in video games [1,2]. The algorithm is noise
tolerant, requires little training beforehand, has few hyper
parameters, and produces both a point estimate and an
uncertainty estimate for all of the controlled systems. In
addition, the algorithm natively adjusts the precision of
the systems settings; and has demonstrated a tolerance for
short system shut downs in some cases. In this article, we
describe the algorithm and how we arrived at it, show a
simple simulation method for selecting the hyper param-
eter, and show it operating several different accelerator
subsystems.
The success of accelerators is, in part, judged by the

science output and a key factor in output is the time
spent serving the users. Because of this, any tuning done
online places a premium on fast learning, whether by
human operators or computer systems. In this context, we

demonstrate a simplified policy gradient method [3], a type
of reinforcement learning algorithm, tuning and maintain-
ing a free-electron laser and a terahertz source. Algorithms
within this family have recently shown the ability to
perform complex tasks with extensive training [1,2]. Our
goal is to decrease the number of steps to convergence in
the somewhat simpler realm of accelerator control.
As computing power has proliferated in recent decades, a

variety of computer-based tools have been developed to
improve a machine setting or maintain performance [4–9].
Among the more recent of these tools are methods based
on machine learning (ML). In addition to machine tuning
and control, ML models can also be used to create new
diagnostics [10]. The majority of the applications of ML to
accelerators are based on supervised learning, where a
dataset with labeled outputs is used to fit a model to produce
outputs using novel data. A drawback to these methods is the
required labeled dataset. Without a dataset, the model cannot
be trained. Or, even so, the dataset may not cover the desired
operational range or be too noisy and the model may be
poorly fit in regions of operational interest.
An approach to mitigating this problem is to use the

information available to set the accelerator in approxi-
mately the correct fashion and then tune it from there.
Indeed, this is standard practice at all accelerator facilities,
even when humans tune the accelerator. Presumably the
initial setting was not random and a superior setting might
be found in the local parameter-space by either manual
tuning [11], automatic feedbacks [4], random search [6], or
some other optimization technique [5–8]. Similar to these
types of algorithms, reinforcement learning might be

*finn.h.oshea@gmail.com
†Present address: Nusano Inc., 28575 Livingston Ave, Valencia,

California 91355, USA.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 122802 (2020)

2469-9888=20=23(12)=122802(20) 122802-1 Published by the American Physical Society

https://orcid.org/0000-0002-0059-1176
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.23.122802&domain=pdf&date_stamp=2020-12-21
https://doi.org/10.1103/PhysRevAccelBeams.23.122802
https://doi.org/10.1103/PhysRevAccelBeams.23.122802
https://doi.org/10.1103/PhysRevAccelBeams.23.122802
https://doi.org/10.1103/PhysRevAccelBeams.23.122802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


used to explore the parameter space and find a better
solution [12].
Reinforcement learning (RL) is a machine learning

paradigm in which an agent is allowed to take action in
an environment in which it receives rewards for performing
desired behavior while it follows a policy. The goal of
reinforcement learning is to find an optimal policy to follow
and a distinguishing feature of reinforcement learning as
compared to supervised learning is that it requires the agent
to interact with the environment, rather than learn from a set
of labeled data. The optimal policy is typically defined as
the policy that produces the largest reward. In the context
of accelerator operations, the agent is a piece of control
software and the environment is the accelerator itself. The
definitions of the other elements depends on what exactly
the agent is doing. For example, the actions might be to
adjust the settings of steering magnets to improve the
energy output of a free-electron laser which is used to
compute a reward.
In Sec. II we describe why we decided to work with

reinforcement learning agents at FERMI. In Sec. III we
briefly review policy gradient methods; we also describe
the specific algorithm we use in the present work. The
software used in this work was written entirely by the
authors in python 3 [13], using available scientific libraries
[14]. In Sec. IV we describe the types of policies we
consider for deployment at the accelerator. In Sec. V we use
a fast numerical simulation to guide the selection of the
policy type and hyperparameter settings. In Sec. VI we
demonstrate the algorithm performing various tasks on an
FEL and THz source. We conclude with some remarks on
the performance of the algorithm.

II. WHY USE REINFORCEMENT LEARNING
AT FERMI?

The principal reason we have decided to use reinforce-
ment learning, instead of supervised learning, is that our
work with supervised learning showed that the learning
would have to be continuous.
The operational conditions at FERMI are such that the

FEL is typically reconfigured for a new user twice per
week. The changes include everything from the undulator
settings to the beam energy which can involve activating or
deactivating klystrons. For every new run the accelerator
physics team retunes the machine, frequently starting at the
electron gun and working all the way to the beam dump. It
is not unusual for the retuning process to alter the setting of
dozens of features: power supply settings, klystron phases,
and so on. Some configurations are used for less than a
week and are not reused for months or years.
This situation creates a sparsity of data for training

supervised learning models. Every time the accelerator is
retuned, the machine learning model is likely to need
retraining, with all previous information rendered poten-
tially useless. Every time the accelerator is tuned to a

configuration that the machine learning model has never
been exposed to, the model must certainly be retrained.
Taken a whole, these aspects of operations at FERMI mean
that the model would probably have to be retrained several
times a week, at least.
However, even this is a somewhat optimistic assessment

of the longevity of the value of asynchronous training at
FERMI. We would regularly find that the ability of a
trained model to predict other features of the accelerator
would decay in less than an hour. We show an example of
the reduction in the model performance as a function of
time in Fig. 1. To make the prediction model we use library
functions from scikit-learn [15] to build a neural network
with 2 hidden layers of size 100 and tanh activation
function. The task is for the agent to predict the FEL
intensity as measured by the intensity monitor [16]. This
data was taken while FEL1 was in HGHG operation [17].
The 162 features used in the model are taken from the

entire accelerator from the photocathode laser to the beam
dump. No features from the photon transport line were used

FIG. 1. Prediction performance of a neural network model at
FERMI. The model uses several hundred features along the linac
and FEL to predict the output intensity of the FERMI FEL. The
R2 score on the training set is shown as a circle, the score is 0.995.
The score on the cross validation set is shown as a square, the
score is 0.914. The x-marks show the R2 score for the model as a
function of time after the first training sample was taken. The
samples are accumulated in batches of approximately 1000 and
the score is computed for each batch. Before each batch is scored,
any sample with any feature value greater than 5 standard
deviations from the mean for that batch is removed. The shaded
region beginning at approximately 10 minutes shows a period of
time when Klystron #3 went in to fault and the accelerator was
not running.

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-2



as they are very strongly correlated with the FEL intensity
and it seemed to us to defeat the purpose of the task if we
were to use photon beam measurements to predict photon
beam properties. The features include: BPM readings along
the whole accelerator, corrector magnet settings inside
FEL1, various properties of the photocathode, laser heater
and seed lasers (position, intensity, delay, etc.), the bunch
charge measured at the beam dump, the time of arrival of
the bunch at the bunch linearizer, and the pyro reading of
the bunch length.
The accelerator and FEL were left to run with the

feedbacks on for approximately 30 minutes, wherein we
took approximately 27000 data points. The data was taken
using a data collection system at FERMI that is asynchro-
nous and has to be operated by the user manually. Because of
these constraints, the data points are not spread out evenly
over the 30 minute interval. However, the data covers the
time period sufficiently well for our purposes here.
The training and model evaluation were performed

offline. The neural network is trained on the first 5000
data points (approximately 10 minutes worth of data), and
the next 1000 points are used as a cross-validation set for
hyperparameter scans and selection. After this time period,
the remaining points are grouped into sets of approximately
1000 and scored. The scoring system used is the so-called
coefficient of determination (R2) which is computed as

R2 ¼ 1 −
P

iðyi − fiÞ2P
iðyi − ȳÞ2 : ð1Þ

Where the yi are the measured values of the FEL intensity,
fi are the values of the FEL intensity predicted by the
neural network, and ȳ is the average intensity of the FEL.
The maximum possible value for R2 is 1, when the
measured and predicted values are identical, and the
minimum is −∞. The principal reason for using this
scoring system is that it is included in the scikit-learn
package. We show data from two of the data points from
Fig. 1 in Fig. 2 to illustrate the difference between a high
coefficient of determination (∼1) and a coefficient of
determination near to zero.
It is clear from Fig. 1 that a few minutes of data is not

enough to train a model to predict the FEL output
intensity. Rather than retraining the model every few days
as we might hope from the FEL tuning schedule we
previously discussed, we would have to continuously train
the model. It is possible that some more elaborate or
sophisticated combination of models and machine learn-
ing techniques could successfully maintain the model’s
prediction ability over hours or even days, however once
the accelerator is retuned, we would have to restart the
training process anyhow.
Since continuous training appears necessary given the

foregoing performance of supervised learning and the value
of data collection to produce training sets seems to be very

small after even half an hour, we decided that the task of
tuning or retuning FERMI should be approached differ-
ently. Hence, we decided to pursue reinforcement learning,
an online learning method that requires very little initial
data. Indeed, the method learns from interacting with the
system it is used to control, which suggests we do not need
to manually scan parameters to produce a training dataset.

III. MINIMUM POLICY GRADIENT LEARNING

All of the RL methods discussed in this article are
Markov decision processes with discrete time steps in
which the problem consists of a state space S, an action
space A, a reward function rðs; aÞ∶S ×A → R and a
conditional probability of transition between the states
Pðstþ1jst; atÞ that obeys the Markov property. The policy
is the collection of actions that can be taken from a given
state πθðajsÞ. Future rewards are discounted by a value
γ ∈ ½0; 1� [18].
In this article we focus on reinforcement learning in the

case of continuing tasks, i.e., tasks that have no defined end
states and may run, in principle, forever. This viewpoint
is in contrast to recent work wherein each step is treated
as a single-step episode [20]. In that case, the algorithm
we present here was shown to be quite similar to the
REINFORCE algorithm [21]. Herein, we start from the
view that the algorithm is a policy gradient algorithm.
Policy gradient methods are an alternative to value-

function based reinforcement learning methods [19].

FIG. 2. Comparison of two of the data points shown in Fig. 1.
The red dots compare the predicted and measured values for the
training set (R2 ¼ 0.995) while the blue dots show the same for
the point at approximately 16 minutes (R2 ¼ −0.054). The black
line shows a model with perfect prediction capacity.

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-3



Briefly, value-function based methods estimate the value of
the states partially by using the value of the subsequent
states, the desired behavior from the agent is then to visit
the high value states as often as possible, and, from the
algorithm designer’s perspective, achieve convergence as
quickly as possible. Perhaps the most well-known example
of a value-function based-RL method is deep Q-learning
with neural networks [22]. This RL algorithm uses function
approximation to adapt an off-policy tabular learning
method to problems where the number of state-action pairs
is large. The actions at each step are chosen from a finite list
of options that may be state-dependent via the epsilon-
greedy method [23]. A shortcoming of deep Q-learning is
that the policy improvement theorem, that Q-learning relies
on to guarantee convergence, no longer applies when
function approximation is used [19].
Alternatively, policy gradient methods parametrizes a

continuous policy for the actions. This has a number of
advantages over value-function based methods: (1) the
policy can be fundamentally stochastic and we do not need
to include off-policy techniques or variably greedy action
choices (such as epsilon-greedy) to allow or encourage
exploration of the action space; (2) the policy can, in
principle, become deterministic, if that is what the envi-
ronment rewards; (3) policies are usually what we are
interested in, i.e., when the accelerator is in a certain state
we want the agent to take certain actions, and by defining
the policy we have the ability to incorporate accelerator
domain knowledge in the definition of the policy; (4) con-
vergence to (at least) a local optimum is guaranteed [19].
Some examples of how accelerator domain knowledge

might be used to choose or constrain a policy for the agent
are as follows. If the designer knows that turning a certain
dipole down too low will cause unacceptable beam losses,
they can prohibit the policy that the agent controls that
dipole with from becoming too low. This way, the agent
does not have to learn from the negative feedback of beam
loss. Another example is if a particular beam line uses a
quadrupole doublet. It might be useful for the doublet
condition (equal and opposite gradients in the two quadru-
poles) to be relaxed, but not entirely. In this case the
designer could ensure the policies of the two magnets are
correlated. The strength of the correlation could itself be a
learned parameter.
Policy gradient methods rely on optimizing the average

expected discounted reward the agent receives over a horizon,
h, which is the number of steps into the “future” that are used
in estimating the expected discounted reward [24]

Jt ≐ E

�
1

h

Xh
u¼1

γu−1rtþu

�
¼ 1

h

Xh
u¼1

γu−1Ea∼πtþu
s∼ptþu

½rtþu�

¼ 1

h

Xh
u¼1

γu−1
Z
S

Z
A
rðs; aÞptþuðs; aÞdads; ð2Þ

where t is an arbitrary step number and the expression for the
average expected discounted reward at the next step is

Jtþ1 ¼
1

h

Xh
u¼1

γu−1
Z
S

Z
A
rðs; aÞptþuþ1ðs; aÞdads: ð3Þ

The interpretation of pnðs; aÞ is the joint probability that
the agent will visit the state s and take action a on step n and
we see that it can change at every step, as is indicated by the
subscript to p. Practically, the value for h is arbitrary and
the sum can be truncated when the hþ 1 discounted future
reward is small compared to the sum of the previous
rewards. Formally, h can be infinite so long as we do not
also have γ ¼ 1. If γ ¼ 1, then the system must reach a
terminal state for the reward to be finite, in which case h is
the number of steps until a terminal state. This would make
the solution a Monte Carlo policy gradient method [19,21].
However, we are here focusing on continuing tasks, and do
not pursue this further.
The policy is updated, in principle, using gradient ascent

such that

θtþ1 ¼ θt þ α∇θJtðθÞ; ð4Þ

where θ is the set of policy parameters that the agent
controls, and α is the learning rate. In order to compute
this, we need to obtain a relationship between Jt and the
agent’s policy.
If we change the agent’s behavior at step tþ 1, we

expect that J might change: Jtþ1 ¼ Jt þ ΔJ. Combining
Eqs. (2) and (3) we find a way to compute the quantity we
need as

ΔJ ¼ 1

h

Z
S
ds

Z
A
darðs; aÞ

�
ð1 − γÞ

Xh−1
u¼1

γu−1ptþuþ1ðs; aÞ

þ γh−1ptþhþ1ðs; aÞ − ptðs; aÞ
�
: ð5Þ

If we know how p changes as a function of step number,
we can compute the change in J, but we do not usually
know p. For the purposes of the present work we make the
assumption that agent changes its policy at step tþ 1 and
then follows it until it has taken at least h more steps in the
MDP. With this assumption, we find that

ΔJ ¼ 1

h

Z
S
ds

Z
A
darðs; aÞ

× ½πtþ1ðajsÞutþ1ðsÞ − πtðajsÞutðsÞ�: ð6Þ

Where we have used the identity ptðs; aÞ ¼ πtðajsÞutðsÞ,
where πtðajsÞ is the policy at step t (the probability of
taking action a from state s) and utðsÞ is the probability
distribution of states, s, at step t. We note that the discount

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-4



factor has disappeared and that h is now an arbitrary
constant [25]. This equation is still difficult to use unless
we know the probability of visiting the states. To further
simplify the computation we might assume that utþ1ðsÞ ¼
utðsÞ, as is assumed for policy gradient methods [19].
In that case, since the policy is parametrized by θ we can
write the update rule for the parameters as

θtþ1 ≈ θt þ αEa∼πθ
s∼u

½rðs; aÞ∇θ ln ðπθðajsÞÞ�; ð7Þ

where h has been absorbed in to the learning rate. This is a
restatement of the policy gradient theorem [3].
The validity of the last assumption is dubious because

the goal of learning is to find a policy that takes the agent to
higher-value states and thusly produces higher average
return. On the other hand, the equality is approximately
true if the change in policy is small. This is generally useful
but might limit how quickly the agent can learn and update
its policy.
An unrelated difficulty with this method is that it must

calculate an expectation value in Eq. (7). We can reduce the
computational complexity by approximating Eq. (7) using
stochastic gradient ascent

θtþ1 ≈ θt þ αrðs; aÞ∇θ ln ðπθðajsÞÞ: ð8Þ

The convergence properties of Eq. (8) can be improved if
the gradient is performed with respect to the Fisher metric
rather than directly in parameter space, in which case
we take ∇θ → IðθÞ−1∇θ in the preceding equations, where
IðθÞ−1 is the inverse of the Fisher matrix [26]. This is the
update formula we use in this work.
Previously we had assumed that the changes to the

distribution of states with policy changes was negligible
and used that to develop an update rule for the policy
parameters. But there is one case in which the distribution
of states is always steady, regardless of the size of policy
changes: if there is only one state. Not only does the
assumption of a single state allow us this improvement to
the theoretical basis of policy improvement, but it has other
benefits as well. It also obviates the need for a definition of
states of the accelerator and increases the density of
rewards because they all accrue to that single state. Both
of these features should decrease the number of steps
required to learn the optimal policy. The cost is that the
agent does not store any information about actions that are
not available in the current policy. If the agent is sufficiently
fast at learning, this drawback may be worth the cost.
Because we are working with a single state, we note that the
transition probability mentioned earlier, Pðstþ1jst; atÞ ¼ 1,
is deterministic.
The algorithm we used is based on the continuing actor-

critic method with eligibility traces of Sutton and Barto
[19]. We chose a continuing algorithm because there was
no clear way to define an end state for the accelerator

environment. In addition, as there is only one state, we did
not use the critic. The motivation for making this change is
straightforward, if naïve: we did not want to spend valuable
training time learning the value of the state. This change
would not be possible with state-based methods, but policy
gradient methods require only a parametrized policy and do
not require states. We call the algorithm minimum policy
gradient learning and it is shown in Algorithm 1.
The algorithm proceeds as follows. The user chooses a

policy distribution to use and then computes the associated
gradient and Fisher Information Matrix (examples of these
elements are given in Sec. IV). The users also selects values
for the learning rate for the parameters (α), the learning
rate for the base line (αR), and the strength of the eligibility
trace (λθ). All other parameters are initialized to arbitrary
values [27]. On line 7 of Algorithm 1, the policy is sampled
to return a specific action. Next, that action is taken by the
agent who receives a reward (details on rewards we used
can be found in Secs. Vand VI) and that reward is adjusted
for the baseline (line 9). On line 10 the baseline is updated
using gradient ascent. Next, the eligibility trace vector is
updated on line 11. Finally, the parameters are updated
using gradient ascent.
In fact, because there is only one state, the base line, R̄ in

Algorithm 1, can serve as a kind of critic. However, we
found that the baseline slowed learning because it rewarded
the agent too generously for simply taking actions with
better-than-baseline reward. Because of this, we have used
αR ¼ 0 in all of the simulations and accelerator control tests
presented in this work.
Whether the trade-off between density of reward and the

more detailed information about the accelerator stored by a
larger number of states is worthwhile is beyond the scope of
the present work. However, we make a few observations
here. First, if the accelerator parameter space is large, and it
usually is, and the accelerator is unlikely to revisit a state
often, then the agent is unlikely to make use of the
information anyway. Second, large parameter spaces
require careful generalization techniques to ensure that
the information is not “spread so far” that the agent is

Algorithm 1. Minimum Policy Gradient Learning.

1 Input: Policy distribution, Fisher matrix and gradient
2 Algorithm parameters: α, αR, λθ
3 Initialize the model parameters, θ ← 0
4 Initialize the eligibility trace vector, z ← 0
5 Initialize the base line, R̄ ¼ 0
6 While True:
7 A ∼ πð·jθÞ
8 Take action A, observe reward R
9 δ ← R − R̄
10 R̄ ← R̄þ αRδ
11 z ← λθzþ IðθÞ−1∇ ln πðAjθÞ
12 θ ← θ þ αδz

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-5



treating different states of the accelerator as the same state.
Third, it is not clear that the list of features currently
measured and recorded at, for example, FERMI, is suffi-
cient to distinguish between different accelerator states. For
example, the best diagnostic for the strength of the micro-
bunching instability [28] at FERMI is the FEL itself, and so
a fundamental feature to the performance of the FEL is only
known to the agent through the rewards it receives. That
information is stored in the policy that the agent learns and
not in the state, and it is not clear how to define a state such
that it encodes that information. Presumably that informa-
tion might be emergent; the agent might learn to control the
microbunching instability through some complex combi-
nation of control parameters that are as-yet too contrived
for a human operator.
Finally, we note a potential cost to the single-state

assumption of our model. With only a single state, it seems
likely that model will not respond well to sufficiently fast
and large changes to the accelerator. There is some
evidence that this is the case in our present work as
demonstrated in the mixed results with respect to recovery
from faults or user perturbation of the system being
controlled, e.g., in Figs. 9 and 11. But it is also not yet
clear what changes to the model would improve the agent’s
performance and how many resources those changes would
require to be successful.
As a heuristic for selecting which systems this algorithm

might successfully control, we asked ourselves a question:
will changes in the accelerator state, as modeled by the
input to any arbitrary control algorithm, require that the
algorithm take very different actions faster than it can
learn? If yes, then a reinforcement algorithm will likely
need to use state representations as a way to differentiate
between the different control situations it encounters. If no,
then a single-state might suffice. Examples of subsystems
that might be controlled well by our single state algorithm
are beam trajectory control, temperature stabilization
(cryogenic or otherwise), maintaining rf system parameters
against drift, fine tuning of undulator gaps in a chain of
undulators, or optimizing the laser spot profile on a photo-
cathode. During normal operation of these systems, the
agent should make modest changes to the parameters being
controlled, i.e., the parameters being controlled should be
adjusted by a small amount to explore for better potential
settings nearby in parameter space, but should not be taking
more drastic actions, such as shutting down a magnet in a
single step. We can view tune-up of an accelerator as a
subset of this problem, with the principal difference being
the mode and variance of the policy (larger variance leading
to more exploration), which have to be supplied by the user,
even if arbitrary. Exploration of how to improve the
behavior of the algorithm to more sophisticated control
situations is the subject of future work.
In contrast to the focus of some recent machine learning

applications both outside [1,2] and inside the field of

accelerator physics [29], we do not use a neural network,
even though neural networks are compatible with policy
gradient methods. The reason is once again that we want to
minimize the number of steps the agent takes to learn. One
of the reasons that deep neural networks have become such
a powerful machine learning tool is that they can learn a
representation of the data, but that must clearly take more
data than simply adapting an assumed representation to the
data. As such, we focus on the simplest representation of a
control setting that we can conceive of that is sufficiently
complex to capture the required features for setting a
control system parameter. In the case of this work, that
is a unimodal distribution of finite support. In addition to
the amount of data needed to train, it is often difficult to
explain why a neural network acts as it does. With para-
metrized policies, it is very easy to observe the evolution of
the agent’s policies for running the machine.
The agents used in this work consist of independent

univariate policy distributions for each system controlled,
i.e., we assume no correlation between the systems being
controlled. In addition, as all accelerator control systems
have a finite range of allowed input that is often set by
physical limits, e.g., the current limits on a power supply,
we focused on three policy distributions with finite support:
the von Mises distribution, the beta distribution and an
alternative parametrization of the beta distribution using
mode and concentration. The range of support for the
various distributions is easily scaled to fit the range of the
system being controlled.
A recent comparison between the normal policy distri-

bution and the beta policy distribution in the context
of policy gradient methods found that, while the beta-
distribution learned faster on some benchmark tasks with
controls of finite range, the agents based on the normal
distribution policy successfully completed the tasks [30].
In contrast, we found that the normal distribution was quite
unstable in the context of the fast learning that we desire
here and we did not pursue it further. As the other authors
note, this is likely because of the bias caused by the
mismatch between the regions of support of the normal
distribution and the control system.

A. Conceptual comparison of policy gradient methods
with other machine tuning techniques

We focused on policy gradient methods for a number of
technical reasons which were just covered, but also because
they show some appealing similarities and synergies with
previously studied techniques. A recent publication has
produced an overview of automatic accelerator tuning
mechanisms in the context of a model-free optimizer [8].
In this section we build on that overview by including
policy gradient methods and compare them to a few other
online tuning algorithms.
Fundamentally, all automatic tuning algorithms are an

attempt to balance exploration and exploitation. Exploitation

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-6



is the process of the agent moving toward an extrema
directly, i.e., it is exploiting its knowledge of the local
parameter space to quickly find a local extrema. Exploration
is the process of evaluating new regions of the parameter
space. Typically, it is straightforward to define an exploita-
tive change in parameters, but they lead to only a local
extrema. To find even larger extrema, the agent must explore
to some extent, but exploration is costly in terms of time and
potentially other resources. Most online tuning algorithms,
therefore, differ in how they explore the parameter space.
An example of a similarity with other tuning techniques

is the conceptual similarity between random walk optimi-
zation and policy gradient methods. In random walk
optimization the available range to search is set by the
random number generator (with perhaps some user
enforced limits). The algorithm samples the random num-
ber generator, applies the results to the machine, and keeps
the new setting if the target variable is better. Once the
exploration has found a better setting for the machine, the
random sampling continues as is clear from Fig. 2 in [6].
In policy gradient methods the policy itself provides the

variance allowed at each step, rather than being set by the
user beforehand. As the policy is updated during operation
the variance will grow for settings that are not critical to
the target variable or are badly miss-set, while the variance
will shrink for settings that are well set and whose setting
strongly affects the target variable. Once the policies are
converged and presumably the variances on the important
settings are small, the variation in the settings can become
quite small, reducing the noise in the target variable. As the
machine drifts and the current policies perform more
poorly, the variance in the policies will grow and adjust
to the new state of the machine.
As an example of a synergy with other ML techniques,

Bayesian methods for predicting the setting of a machine
will result in a point estimate of the setting and an
uncertainty in that setting, or more generally, a probability
distribution of available settings. Since the policies in
policy gradient methods are nondeterministic, one can in
principle start the policy-gradient-method-based tuning of
the machine with all the information available from the
Bayesian model by using the aforementioned probability
distribution as the initial policy. Or conversely, policy
gradient methods can be used to generate data for
Bayesian methods which might benefit from information
for developing the prior, rather than starting with an
arbitrary prior.
Finally, we compare policy gradient methods to the

previously mentioned model-free optimizer (MFO) [8]. In
that algorithm, the parameter space is explored by includ-
ing noise in the update of the parameter settings. This helps
prevent the agent from becoming trapped in a local
minimum, and it also allows the agent to be more tolerant
to noise in the target variable(s) or, equivalently, soft
precision in the parameter settings.

Policy gradient methods accomplish this feature by using
a stochastic policy; the finite variance of the policy allows the
agent to explore regions of parameter-space that do not
directly lead to higher reward. On the other hand, the policy
gradient method also takes care of the details about how to
set the gradient parameters because it is the policy itself that
is being updated, reducing the number of parameters that
have to be set by some other means. The MFO has three
parameters for each systems being controlled, and they have
to be recalculated after drifts in the machine. The policy
gradient method has, in our case, one parameter that is used
for each of the systems being controlled. In this work we end
up using one parameter for all the systems being controlled,
even when the systems are totally different.
Finally, we note that for minimum policy gradient

learning the policies themselves are simple to interpret
and can be very informative to users. For example, as the
agent converges on a solution, the variance of the policy
will decrease if the system being controlled has an effect on
the target variable. It is a clear indication that a control
system does not strongly affect the target variable if a
policy for that system shows high variance while the other
system’s polices are much lower in variance. This can
clearly be seen by comparing the policies for the horizontal
corrector (psch_mbd_fel02.02) and vertical corrector
(pscv_mbd_fel02.02) in Fig. 8.

IV. POLICY TYPES STUDIED IN THIS WORK

As we previously mentioned, we did not find that an
agent with policies that are normally distributed were very
successful. Such agents frequently produced polices in
which the mean value was outside the prescribed range of
support. We studied three other policy types: beta distri-
butions with α and β as parameters, beta distributions with
mode and concentration as parameters, and the von Mises
distribution. In the following each agent uses only a single
policy type and, as such, we name the agents after the
policy type it uses.

A. The beta agent

The beta distribution has a region of support of [0,1] and
the policy distribution is given by

πðxÞ ¼ Γðαþ βÞ
ΓðαÞΓðβÞ x

α−1ð1 − xÞβ−1; ð9Þ

where ΓðxÞ is the gamma function. The mode of this
distribution is given by

m ¼ α − 1

αþ β − 2
; ð10Þ

and the variance is given by

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-7



σ2 ¼ αβ

ðαþ βÞ2ðαþ β þ 1Þ : ð11Þ

To ensure the distribution is unimodal, we do not
allow either α or β to be less than 1 by parametrizing
the policy parameters using model parameters. For the beta
distribution the two types of parameters are given by
α ¼ 1þ lnð1þ eθαÞ and a similar equation for β. The
model parameters are fθα; θβg. The Fisher matrix for this
distribution is

Iðα;βÞ ¼
�
ψ ð1ÞðαÞ−ψ ð1Þðαþ βÞ −ψ ð1Þðαþ βÞ

−ψ ð1Þðαþ βÞ ψ ð1ÞðβÞ−ψ ð1Þðαþ βÞ

�
;

ð12Þ

where ψ ðmÞ is the polygamma function of order m.
For the beta policy distribution, as the agent adjusts the

values for the policy parameters using the update rule in
Eq. (8), it is not independently adjusting the mode (the most
likely value for the optimal setting) and the variance (the
confidence in that prediction). As wewill see later, this kind
of agent will learn much slower than the von Mises agent,
in which the mode and variance can be independently
updated. Because of this difference, we attribute this slower
learning to the fact that the mode and the variance cannot be
updated independently.

B. The mode and concentration agent

To test the importance of separate control of mode and
variance, we used an alternative parametrization of the
distribution, which we call “mode and concentration”
wherein we define a concentration κ ¼ αþ β and the
mode is defined in Eq. (10). Solving these two equations
we find α ¼ mðκ − 2Þ þ 1 and β ¼ ð1 −mÞðκ − 2Þ þ 1
and the policy distribution is given by

πðxÞ ¼ ΓðκÞxmðκ−2Þð1 − xÞð1−mÞðκ−2Þ

Γðmðκ − 2Þ þ 1ÞΓ½ð1 −mÞðκ − 2Þ þ 1� : ð13Þ

The policy parameters are defined in terms of the model
parameters in the following way: m ¼ 1=ð1þ e−θmÞ (the
sigmoid function) and κ ¼ 2þ eθκ . This does not allow the
concentration to go below 2 to retain a unimodal policy.
The Fisher matrix for this distribution is

Iðm; κÞ ¼
�
I11 I12

I12 I22

�
; ð14Þ

with

I11 ¼ ðκ − 2Þ2½ψ ð1ÞðαÞ − ψ ð1ÞðβÞ�;
I12 ¼ ðα − 1Þψ ð1ÞðαÞ − ðβ − 1Þψ ð1ÞðβÞ; and

I22 ¼ −ψ ð1ÞðκÞ þm2ψ ð1ÞðαÞ þ ð1 −mÞ2ψ ð1ÞðβÞ;

where we have used α and β in most places for simplicity of
the functional representation.

C. The von Mises agent

The final distribution we use is the von Mises distribu-
tion given by

πðxÞ ¼ eκ cosðx−μÞ

2πI0ðκÞ
; ð15Þ

where IhðxÞ is the modified Bessel function of the first kind
of order h. The distribution has region of support ½−π; π�.
The policy parameters are defined as μ ¼ θμ and κ ¼ eθκ .
We chose to work with this distribution because it is
symmetric, its mode and concentration can be adjusted
independently, and because it can be generalized to any
number of dimensions in the form of the von Mises-Fisher
distribution. The Fisher matrix for this distribution is

Iðm; κÞ ¼

0
B@

κI1ðκÞ
I0ðκÞ 0

0 1 − I1ðκÞ
κI0ðκÞ −

�
I1ðκÞ
I0ðκÞ

�
2

1
CA: ð16Þ

Contrary to the previously mentioned features that we
view as recommending the von Mises distribution, the
region of support is periodic and, in particular to our use
here, when the policy distribution comes close to one of the
support boundaries the policy can “wrap around” to the
other side of the interval. This feature will bias the policy
distribution as the system being controlled is unlikely to
have a similar characteristic, a notable exception might be a
phase shifter in an FEL. In practice, we found that this was
rarely a problem.
We previously stated that the normal distribution did not

make a successful policy distribution in the present work
due to bias caused by the mismatch between the regions of
support of the distribution and the system being controlled
[30], whereas we will see that the von Mises distribution
performs well relative to the other distributions mentioned
here. We attribute this difference to the finite region of
support. Using a large learning rate to speed up training
means that the mean of the normal distribution can quite
easily leave the desired region of support. In fact, because
the region of support of the normal distribution is infinite,
there are many more values that the mean can take on that
are not valid for the system being controlled. In contrast,
the bias in the von Mises distribution is caused by the
periodic region of support. Thus, whatever value the mean
takes on, the policy is always contained within the region of

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-8



support. This does not rule out the use of a normal
distribution in the context of policy gradient methods,
but it does require more decisions about how to reconcile
the normal distribution to the finite interval. For this work,
and based on our early experience with the poor perfor-
mance of the normal distributions, we opted to stick to
policies with finite support, which seems a better fit for a
control system.

V. SIMULATIONS

Before deploying the agent on the accelerator we
performed a number of tasks in a simulated environment
to reduce the amount of time spent interacting with the
accelerator. This is useful because, in addition to the slow
reaction of the accelerator as compared to a computer
simulation, access to accelerator run time is itself a valuable
resource that is typically given to users. In addition,
simulations allow us to separate the characteristics of the
agents we use from the characteristics of the accelerator at
FERMI and the particular tasks we had the agent perform.
The goal of these simulations is to guide the tuning of

hyperparameters and differentiate between a number of
policy types. As the agents we deploy are model-free, they
can be tested just as well using what we call a number guess
environment as any accelerator simulation. This simple
environment is fast and flexible, allowing us to test a
number of the agent characteristics and tune the model
hyperparameters.
In this environment the task is for the agent to guess a

real number within a specified range in one dimension (in
this case the range is ½−5; 5�). The reward structure is given
by a normal distribution as

rðxÞ ¼ exp

�
−
ðx − tÞ2
2σ2r

�
− 1; ð17Þ

where t is the target number to guess and σr is the standard
deviation of the reward. The reward is negative, so the
agent will tend to move away from the areas of large
negative reward and toward areas of (relatively) higher
reward. This negative reward system is advantageous over a
positive reward system that always has rðxÞ ≥ 0, because
that system could have large areas of the region of support,
depending on the standard deviation of the reward function,
for which the reward is near zero and there is no update to
the policy [see Eq. (7)].
The first comparison of the three agents is shown in

Fig. 3, the task is to guess the number t ¼ −3.5. For this
task the policy starts at m0 ¼ −2.5, within 10% of the full
range of the number it should guess. The standard deviation
of the reward is σr ¼ 0.1, 1% of the full scale range, and the
initial standard deviation of the policy is set to σ0 ¼ 1.0,
10% of the full scale range. This simulation is meant to
represent a case in which the agent starts with some
low-confidence knowledge of the correct policy by the

relatively close proximity of m0 to the target and the large
policy variance.
The plots show the reward received as a function of step

number. We expect to see the rewards increase for a
successful agent whose policy is converging to a higher
reward region of the number guess environment. Agents
that fail to learn will show rewards near −1 for the
entire trial.
From Fig. 3 we see that, regardless of the parameter

settings, the beta agent does not learn a useful policy in the
allowed number of steps. The mode and concentration
agent appears to have lower variance than the von Mises
agent, i.e., each of the five trials for each pair of parameters
is more similar for the mode and concentration agent. On
the other hand, the von Mises agent finds a sufficiently
narrow policy such that the reward averages very close to
zero at the end of the trial, while the mode and concen-
tration agent converges to a value just below zero. This is an
artifact of a numerical library used to compute the gamma
function in the beta distribution, where the computation
fails if the argument becomes too large. To sidestep this
problem, the concentration is not allowed to become larger
than about 9900, which limits how deterministic the policy
can become. There is no such limit on the von Mises agent,
so its policy becomes more deterministic and, thus, more
successful at this task.
When the learning rate is large (α ¼ 0.01) the more

successful agents show very fast convergence to a suc-
cessful policy, although it can take time to search the range,
as evidenced by the up to five thousand steps of lethargy
that some of the trials exhibit. In addition, it is clear that the
middle of the range for the learning rate performs best
(α ¼ 0.005 to 0.01). It is also clear that the smaller value
(λθ ¼ 0.1) for the eligibility trace memory result in lower
variance between trials.
Because the goal of this work is to evaluate fast learning

agents, we discard the beta agent at this point.
Comparison of Figs. 3 and 4 illustrates that, in general,

narrower standard deviation of the reward and larger
difference between the target and the initial mode of the
policy leads to slower convergence (the latter will be
described shortly). On the other hand, wider regions of
improved reward, i.e., larger σr, improved the speed of
learning. This is an intuitive result as narrow rewards are
more difficult to find and larger differences between the
initial mode and target require more exploration.
For the next simulation, shown in Fig. 4, we move the

target to t ¼ −0.5 (20% full range), increase the standard
deviation of the reward to σr ¼ 1.0 (10% of full range), and
reduce the allowed number of steps per trial to 1000. In
addition we now allow λθ to take on the values of 0 and 0.1
and the values of α are now ten times larger than the
previous simulations. We see that, once again, the mid-
range for the learning rate, α, is a compromise between
faster learning speed and lower variance. Further, the

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-9



eligibility trace memory parameter is best set to zero
(“memoryless”). Finally, the plots with largest α and λθ
showed no convergence, and would prematurely end the
simulation via numerical errors and were labeled unstable.
Interestingly, we see that for this reward profile, both

agents converge to a similarly well performing policy. In
this task the reward region is large enough that the limited
concentration allowed of the mode and concentration
agent does not hinder policy convergence as much as
the previous task.
For the next simulation, we add a noise term to the target

variable by substituting t → t0 þ Δt in Eq. (17). Where t0
is the target set at the beginning of the simulation and Δt is
sampled from a uniform distribution, Δt ∼Uð−0.2; 0.2Þ
and the target is moved to t ¼ 0.5. In other words, noise
allows the target to vary by 4% of the full range. Otherwise,
the parameters for this simulation are the same as those for
the previous simulation. The results for these simulations
are shown in Fig. 5.
For this simulation, both agents perform better for the

lower values of α. However, the mode and concentration

agent is more sensitive to the eligibility trace memory
parameter than is the von Mises agent. For all but the
highest value of α, the convergence has been slowed down,
taking approximately 50% more steps. For the highest α,
both agents fail to learn a good policy often enough that
they are unlikely to be useful.
A summary of the simulations performed in the number

guess environment is given in Table I to allow comparison
of the parameters used in the simulations that are not
shown in the figures. What we see from these simulations
is that the eligibility trace parameter is harmful and
should be left at zero. This is because the trace allows
the agent to receive rewards from previously “better”
settings (i.e., settings for which the reward is nearer to
zero) while it is currently making “worse” decisions (i.e.,
settings for which the reward is nearer −1). We also see
that the learning rate can be set as high as 0.5 in some
cases, but the best compromise between performance
and learning speed appears to occur with a value of 0.1.
In addition, we have seen that an agent acting in a one-
dimensional control space can find a successful policy in

FIG. 3. Plot of the reward received by the agent versus step number. For this task the agent must “guess” the number −3.5. The
standard deviation of the reward is 0.1. The agent begins the task with mode −2.5 and standard deviation 1.0. For each of the three agent
types, we varied the eligibility trace memory parameter, λθ, and the learning rate, α, as shown in the figure. For each setting 5 trials
(represented by the colored lines) were performed and the task was ended after 25,000 steps. A 100-step rolling average was performed
to smooth the plots for ease of comparison. The black line is the average of all 5 trials in each plot.

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-10



a few hundred steps under the conditions that produced
Figs. 4 and 5.
In the next section, we will use agents based on the von

Mises distribution. It will be useful to see the evolution of the
mean and standard deviation of this agent’s policy during
the number guess simulation, this is shown in Fig. 6 for the
values of α that we will use most often. The behavior of the
policy for the α ¼ 0.1 case shows the policy starting off at
the pre-defined value and, relative to higher values of α,
making slow and steady progress toward the target value,
with relatively small overshoots, i.e., the policy does not go
very far past the target value. In contrast, when α ¼ 0.5 the
agent’s policy can be seen moving to 1 standard deviation to
the other side of the target value in the cases that eventually
converge to the target value. Perhaps more interesting are
the two cases where the policy becomes unstable. What is
clear is that the concentration becomes very large (i.e., the
variance becomes very small), this leads to large changes in
the mode, which is what we refer to as “unstable.”
This unstable behavior is due to the update rule for

stochastic gradient ascent as given in Eq. (8). For this
distribution the derivatives in that equation are given by

1

π

∂π
∂m ¼ κ sinða −mÞ; and

1

π

∂π
∂κ ¼ cosða −mÞ − I1ðκÞ

I0ðκÞ
:

Here we use the variable a to mean the action taken for
that particular update. What is clear from these equations is
that if κ becomes very large the mode will change very
quickly, but the concentration will still change with the
right hand side of the update rule being of order unity. The
sudden changes in the mode of two of the examples shown
in Fig. 6 are because the agent has learned a poor solution
and become to “sure” of it. This is the principal trade-off in
determining where to set α. Too small and the agent learns
too slowly or, at the very least, could learn faster. Too large
and the agent might learn too much from its early choices.
Because there is no method for selecting α a priori, the user
must resort to scans and experience.

VI. EXAMPLES OF ACCELERATOR
OPTIMIZATION

In this section we present demonstrations of the algo-
rithm controlling the accelerator at FERMI@Elettra.

FIG. 5. This task has almost the same parameters as those given
in Fig. 4, the only change is that the target is now 0.5 instead of
−0.5. In addition to those parameters, the value of the target at
each step is changed to include uniformly sampled noise that is
updated at every step.

FIG. 4. Plot of the reward received by the agent versus step
number. For this task the agent must guess the number −0.5. The
standard deviation of the reward is 1.0. The agent begins the task
with mode −2.5 and standard deviation 1.0. For each of the three
agent types, we varied the eligibility trace memory parameter, λθ,
and the learning rate, α, as shown in the figure. For each setting 5
trials (represented by the colored lines) were performed and the
task was ended after 1000 steps. A 10-step rolling average was
performed to smooth the plots for ease of comparison. The black
line is the average of all 5 trials in each plot.

TABLE I. A summary table of all the simulations presented
from the number guess environment. All simulations were done
within a range of ½−5; 5�.
Simulation t σr m0 σ0 jΔtj Figure

1 −3.5 0.1 −2.5 1.0 0.0 3
2 −0.5 1.0 −2.5 1.0 0.0 4
3 0.5 1.0 −2.5 1.0 0.2 5

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-11



In these demonstrations, the environment is very different
and the agent is almost unchanged from the previous
section. For the agent, we introduce a new parameter
and force the learning rate to decay exponentially as a
function of step number using the formula

Δα
Δt

¼ −
α

τ
; ð18Þ

where τ is the decay rate parameter. This small modification
was done to keep the agent from reacting strongly to a fault

after convergence, so that the operator had time to shut
down the agent.
The environment is the accelerator and we no longer

have the ability to set the reward schedule. To prevent the
agent from becoming “satisfied” with only a mediocre
improvement over the initial performance, we structure the
reward in one of two methods. In both cases, when the
agent is started it reads the target variable (the one it will
optimize) for dozens of readings and takes the mean value
of the readings, and stores this value as the target value, I⋆.
At each step thereafter the reward is calculated as I=I⋆ − 1,
where I is the mean value of a new set of dozens of
readings. The difference in the two methods is in how I⋆ is
updated.
In the first method, which we call greedy, the target

variable is simply set to the highest value encountered by
the agent thus far during the run. We call the second method
measured. In this method, after the agent is updated, if the
new reward is greater than the target value, the target value
is moved toward the new value using the formula

I⋆ ← I⋆ þ 0.1ðI − I⋆Þ: ð19Þ

This slow approach to the new, higher value prevents
the target value from being increased to an anomalously
high value due to a chance fluctuation in the value of the
target. A further benefit to this slowing of reward changes is
that it stabilizes the reward for taking the same action on
consecutive steps, as might happen when the agent is
confident (low variance) in the control setting, but has not
yet discovered the optimal setting. Both reward systems
allow positive reward, in contrast to the number guess
simulations in Sec. V where the reward is never positive.

A. Optimization of TeraFERMI

As a first demonstration of the optimizer, we used it
to optimize the signal at the TeraFERMI beam line. The
function of the TeraFERMI beamline is described else-
where [31]. Briefly, the beam dump transport line after the
FEL contains a screen that produces THz radiation as the
electron beam passes through it on its way to the dump.
A layout of the beam line is given in Fig. 7. While the agent
is optimizing the signal, all other feedbacks in the
TeraFERMI region of the beam line are disabled. The
typical time for an operator to tune TeraFERMI is a few
hours as the operator tries various combinations of magnet
settings. Part of the reason for tuning taking this long is that
the signal at TeraFERMI is quite sensitive to the details of
FEL operation and the operator cannot adjust those systems
or even hold them constant during operation. Even when
the FEL users are not making intentional adjustments to the
machine, the feedback systems there are working to keep
the FEL pulse properties that the user requested stable,
which can lead to changes in the TeraFERMI signal.

FIG. 6. The mean (solid colored lines) and standard deviation
(shaded regions) for the vonMises agent during the number guess
trials with α ¼ 0.1 and 0.5, and λθ ¼ 0 shown in Fig. 5. The
colors in this figure correspond to those shown in Fig. 5. The
black dashed line shows the target value, t, and the associated
shading shows the standard deviation of the reward, σr.

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-12



The magnets used are psch_mbd_fel02.02, a horizontal
corrector, pscv_mbd_fel02.02, a vertical corrector, and
psq_mbd_fel02.03, psq_mbd_fel02.04 and psq_mbd.01,
which are quadrupoles.
In this task, an operator tunes the magnets in the

TeraFERMI beam line until a satisfactory signal is read
on a pyro detector. For this experiment the operator reached
140k with approximately 13% standard deviation as shown
in Fig. 8. The magnets to be controlled are then detuned by
−0.3 A. This typically resulted in the signal on the pyro
dropping by approximately 50%. The agent is then turned
on and allowed to optimize the signal on the pyro within a
range of �3 A of the detuned setting. This latter constraint
was used to reduce the likelihood of prolonged beam loss
as the agent searched the available control settings, which
would have interrupted simultaneous operations. Thusly,
the agent begins its optimization within 10% of the allowed
controls range of a known satisfactory solution. The target
variable is updated with the measured method.
In these demonstrations, each step takes approximately

3.5 seconds, with that time dominated by the time the
magnets take to settle at their new settings, which is
signaled by the control system (not our algorithm). All
of the runs for this test use the vonMises agent. For the sake
of brevity, we will discuss three runs of the optimizer. The
data for these runs is shown in Fig. 8.
In the first run we set α ¼ 0.1 and τ ¼ 10000. The

optimizer recovers the target signal in about 45 minutes,
while controlling the 5 magnets. The optimizer’s confi-
dence in the setting of all the magnets suggests that the
signal is more sensitive to the quadrupole settings than
the steering magnet settings. This result is consistent with
both the operator’s reported experience and the scaling of
coherent transition radiation power with the fourth power
of the beam spot size at the screen [32]. The agent finds

FIG. 7. Synoptic layout of the beam line after FEL02 showing
the magnetic elements used for the optimization (filled shapes)
and the magnetic elements left at their nominal values (empty
shapes). The two bends are shown as vertices in the line.

FIG. 8. Optimization runs for TeraFERMI. Each column
represents a different run with the parameters given at the top
of the column. The top row of plots shows the signal of the
TeraFERMI pyro, while the remaining rows show the setting of
the various magnets used for optimization. In the top row, the blue
dots are the readings at each step; the black solid line is a rolling
20 point average of the readings; the black dashed line is the
mean signal strength found by an operator with the surrounding
shaded region showing the standard deviation of that measure-
ment; and the red dash-dot line is the mean signal strength of the
initial setting of the magnets after detuning with the surrounding
shaded region showing the standard deviation of that measure-
ment. In the remaining plots, the red dots are the magnet setting
for each step; the blue line is the mean of the policy distribution;
the shaded blue region is the standard deviation of the policy; and
the black dashed line is the magnet setting found by the operator.
1000 steps takes approximately 1 hour.

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-13



slightly different settings for the magnets than the operator
did. It is not clear if this difference is caused by machine
drift while the optimizer was running or simply because it
found a different nearby local maximum, but the output
signal of TeraFERMI is similar in both cases.
In the next run, we set α ¼ 0.5 and τ ¼ 100, shown in the

second column of Fig. 8. For these settings we expect that
the initial changes to the policy will be quite large but in
about 1000 steps the policy changes will be relatively
modest. We see that the optimizer has almost converged
after about 15 minutes (roughly 250 steps) and in the
following 15 minutes the policy has found an approx-
imately equivalent solution to that of the operator.
In contrast to the previous two successful runs, we show

what an unsuccessful run looks like in the third column in
Fig. 8. Although the agent failed to replicate the operator’s
performance in 30 minutes, it is still outperforming the
detuned settings on average. It is possible that the agent
became stuck in a local maximum, but the large standard
deviation in the setting of quadrupole psq_mbd_fel02.02,
which was quite narrow in the other runs suggests that there
has been some underlying shift in the accelerator between
the second run and the third run. We speculate that this is
the case, because the agent has become less sure about the
setting (i.e., the variance increases after a change in the
mode that occurs at roughly step 300). This is in contrast to
the unstable runs shown in Fig. 6, where the variance of the
unstable agents becomes very small. The strength of the
TeraFERMI signal depends on factors beyond the agent’s
control in these tests, which we could not investigate
further due to user operations. We are reassured that,
whatever underlying shift in the accelerator environment,
the agent did not compound the problem in this case by
reducing the target signal below the starting point.

B. Optimization of seed laser and electron beam overlap

In the previous section, we found that policy gradient
methods can be used to optimize a particular signal when
the initial conditions are near a maximum in the target
variable. In this section, we demonstrate a related task, that
is we show that the target signal can be maintained after
the accelerator is perturbed. There is a wide variety of
perturbations that the accelerator may experience from
relatively slow changes in the environment, e.g., temper-
ature changes in the accelerator hall or drift in a critical
power supply, to fast changes, such as sudden failure of
instrumentation. For experimental expedience, we focus on
short time-scale perturbations here.
The task for the agent is to maintain (or recover) the

output energy of a seeded HGHG free-electron laser when
the overlap between the seed laser and the electron beam is
perturbed [33]. This experiment was performed in the first
HGHG stage of FEL2 at FERMI, a cascade HGHG free-
electron laser [17]; the second HGHG stage remained off
for this experiment. The FEL was operating at 36 nm with a

900 MeV electron beam and produced 400 μJ when tuned
by an operator.
Typical operation of the first stage of the cascade FEL is

to fix the position of the seed laser on two alignment
screens, one upstream and one downstream, of the undu-
lator where the seed laser and electron beam interact. Next,
the electron beam is steered to overlap with the laser spot on
the same two screens. After a little bit of optimization by an
operator, feedbacks are enabled to prevent the seed laser
and electron beam from wandering too far from each other
during user operations [4].
The seed laser alignment system is two consecutive

mirrors along the laser transport that has two control levels:
coarse and fine. Because the fine level has limited range,
the coarse alignment on the screens is performed by means
of stepper motors. The fine level is performed by the piezo
motors included in a feedback system.
For this demonstration we disable the feedback on the

overlap, allow the agent to control the fine motors and
perturb the FEL using the coarse motors. All other feedbacks
operating on the electron beam and seed laser remain on.
The target variable is the FEL energy as measured by an
ionization monitor [16]. Note that the alignment screens
cannot be inserted during FEL operation, so the agent and
the operators have no knowledge of the overlap between the
two beams on these screens. Unlike the example in the
previous section, where the measured update was used, here
the target variable is updated greedily. We made this decision
because we want the agent to learn as much as possible from
each step, because greedy updates are faster (i.e., take fewer
steps) to punish suboptimal machine settings.
In Fig. 9, we show the performance of the agents during

various operational difficulties, either human induced as
previously described, or due to a fault in the accelerator
system. For all of these runs we have taken τ ¼ 108 so that
α is effectively constant throughout each run. To limit the
control range, the fine adjustment level is allowed to
operate within a range of �5000 steps from the initial
value when the agent is started. Perturbations to the FEL
performance are made phenomenologically by adjusting
either the vertical or horizontal coarse motor on the
downstream mirror while monitoring the FEL energy. In
addition to some operator adjustment, the feedbacks were
enabled in between runs to approximately begin at the same
initial conditions in terms of FEL energy for each run.
The first run (labeled by (1) in Fig. 9) demonstrates a

problem with using a greedy target variable update. We can
see in Fig. 10 that it is the only run to begin with unusually
large (relative to the other runs) positive rewards in the first
two steps. Since the agent updated its target expectations
greedily the subsequent steps were relatively strongly
punished and the agent went searching for a different
maximum. The maximum it found was about 13%
(∼50 μJ) lower than where it started, but because it just
happened to get strongly rewarded at the very beginning of

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-14



its learning, due to statistical fluctuations in the FEL output,
it was not satisfied with where it started and found itself
in a different local maximum. We can clearly see that the
downstream motors moved several thousand steps to find

this new maximum and the agent is quite certain (low
variance) this is the best performance it can find. If the
policies had begun with a smaller variance, it might
have prevented the agent from straying so far from the

FIG. 9. Maintenance of a single stage HGHG FEL using policy gradient methods. The agent controls the pointing of the seed laser
through the modulator undulator where it interacts with the electron beam. The target variable to maximize is the FEL energy, as
measured by an ionization monitor. Each column represents a different run and the learning rate for each run is shown at the top of each
column. The first row is the FEL pulse energy. The remaining rows are the setting (in steps) of the four piezo motors that control the seed
laser pointing. The vertical lines represent changes made to the FEL during the run: green, dashed lines represent the seed laser being
moved horizontally by a human operator; purple, dash-dot lines represent the seed laser being moved vertically by a human operator;
and the magenta dotted lines represent a fault in the accelerator that resulted in the electron beam being shut off by turning off the
cathode laser. The black dashed horizontal lines show the allowed range of operation for each device and each run.

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-15



initial, operator-tuned optimum. After about 800 steps, the
seed laser pointing is slightly perturbed (the FEL energy
drop is within the statistical noise) and the agent makes
small corrections to the motors and recovers the previous
performance.
The second run, with much larger learning rate, does not

wander from the initial optimum. When it is strongly
perturbed (the FEL energy drops by about 50%) it very
quickly finds the same maximum that was found during the
first run. The third run is perturbed in a similar way, but it
manages to find its way back to the initial, more intense
optimium. We surmise, based on these similarities, that
there are two slightly different optimums nearby each other
and that which optimum the agent ends at depends on
which actions are taken when sampling the policy distri-
bution. The setting of the motors changes dramatically
between the first two runs, which suggests that simple
control systems that return to the last known “good”
position for these devices is not sufficient to restore
performance of the FEL. Indeed, this is a regular experience
of the FERMI operations team.
Runs 4 and 5 show similar behavior. The agent continues

to recover the FEL energy after a variety of perturbations of
the seed laser pointing.
Perhaps the most interesting feature shown in Fig. 9 is

the reaction of the agents to changes to the accelerator due
to faults in the RF power system. These faults are related to
the machine protection system wherein some monitored
parameter exceeds a safe operational range and the electron

beam is disabled at the cathode while automatic recovery
systems intervene to correct the problem. Three different
events occurred, one each during runs 2, 4, and 5 wherein α
was 0.50, 0.25, and 0.10, respectively. The faults last for
approximately the same amount of time (although that is
hard to see in the case of run 2) and only the agent with
α ¼ 0.10 was able to recover. This result is consistent with
the results for the simulations with a noisy target in Fig. 5.
While it is difficult to extrapolate from such a small dataset,
the consistency is reassuring.
We assume that the agents with larger α learn too much

while the accelerator is in the fault state. A simple way to
address this problem would be to disable learning during a
fault state. This can be accomplished within the framework
of the policy gradient method by allowing two states,
“normal” and “fault,” or it can be done at the control system
level where the agent is not allowed to learn during fault
conditions. Either way, this is the subject of future work.

C. Optimization of FEL energy with mixed controls

In the final example of policy gradient methods the goal
is to show the agent tuning a system using very different
tools. In the previous two examples the agent was changing
either magnets or piezo motors. In this example, the agent
will be adjusting the R56 of the HGHG FEL (through
the current in the dispersion-generating magnets) and the
relative time of arrival between the seed laser and the
electron beam (through a mechanical delay system).
The seed laser wavelength is 251 nm and the undulators
are tuned to lase at the 7th harmonic, approximately 36 nm.
The electron beam is ∼2 ps long, the seed laser is ∼100 fs
long and the jitter in the relative time of arrival is ∼50 fs.
For simplicity we assume that the slice energy spread and
mean energy are both constant along the bunch.
As usual, the FEL is tuned by a human operator and then

detuned to allow the agent to operate. For these tasks we
have used greedy target updates and reset the FEL to its
initial settings between each run. After the FEL was reset to
its initial settings, a feedback is allowed to optimize the
FEL output energy. This procedure allowed us to detune
from a local optimum for each run as the control systems
drifted in the intervening time. Because of the large
inductance of the dispersive magnet, each step takes
approximately 5 seconds. Once again we take τ ¼ 108.
The task for the agent is to maximize the FEL energy

when the seed laser energy is reduced from 20 μJ to 10 μJ,
i.e., it is reduced by half. The bunching factor in an HGHG
FEL is given by [33]

b ¼ Jh

�
ΔE
E0

hkrR56

�
exp

�
−
1

2

�
σE
E0

hkrR56

�
2
�
; ð20Þ

where JhðxÞ is the Bessel function of the first kind of
order h, ΔE is the strength of the energy modulation of the
electron beam induced by the seed laser, E0 is the energy of

FIG. 10. The reward received for the first 50 steps for all the
runs shown in Fig. 9. Of note is that run 1 is the only run to start
with an unusually large positive reward and the only one where
the agent immediately begins to look for a better optimum.

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-16



the electron beam (900 MeV), R56 is the longitudinal
dispersion applied after the energy modulation, kr ¼ 2π=λr
is the wave number of the energy modulation (λr ¼
251 nm), σE is the slice energy spread of the electron
beam (∼100 keV), and h is the harmonic number. The
dispersive element is a 4-pole chicane for which the
dispersive strength depends quadratically on the current:
R56 ∝ I2c.
Running in the exponential gain regime, but not satu-

rating, we expect that the FEL energy will be proportional
to b2 [34]. As such, even though the agent might be able to
find the first maximum in JhðxÞ, the larger R56 will reduce
the output energy of the FEL by

f ¼ exp ½−ðσhkrÞ2ðR2
56;2 − R2

56;1Þ�;

with R56;2 ¼
ffiffiffi
2

p
R56;1, R56;1 ¼ 36.6 μm (Ic ¼ 45 A), and

the FEL parameters as given above, we estimate that the
maximum possible signal that the FEL can produce after
reducing the seed laser energy is 60% of the original signal.
The FEL energy was about 375 μJ when initially tuned by
the operator (before the seed laser energy is reduced).
We show two tests of the agent’s performance at this task

in Fig. 11. In the previous examples of optimization, we
found that α ¼ 0.5 did well, but in this case the optimi-
zation was unstable. Our conjecture is that this is due to the
relatively large jitter in the seed delay as compared to the
other control systems used here. The seed delay jitter of
50 fs covers 2.5% of the total available tuning range (the
length of the electron beam), while the precision of the
current setting in the magnets is well sub-mA and the piezo
motors should only miss a few steps in the ten thousand
step range used in the previous experiment. Thus, we
expect the seed delay to act similarly to the noisy number
guess simulation presented in Sec. V.
From the number guess simulations we conclude that

the strategy to improve agent performance is to reduce the
learning rate. For the two presented simulations we start
the agent before turning down the seed laser energy. From
the first example, it is clear that α ¼ 0.05 is too slow
because the agent takes a very long time to learn, and only
recovers a small fraction of the FEL energy after more than
400 steps.
In the second run with α ¼ 0.10, the agent learns much

faster and after only 100 steps has recovered a bit less than
half of the FEL energy lost. Unfortunately, at this point the
accelerator went in to fault for a short period (14 steps,
about a minute). Afterward, the agent recovers its original
rate of improvement of the FEL energy, and improves the
signal until it appears to reach a limit. After the fault, there
is a 600 fs shift in the optimal setting of the seed delay. This
kind of shift is to be expected because faults cause some
part of the rf system to be altered as the fault is recovered

FIG. 11. Optimization of an HGHG free-electron laser using
the dispersive strength and seed laser delay. The two columns
show two different trials with the learning rate given at the top of
each column. The top row shows the FEL energy as measured by
an ionization monitor wherein the blue dots are the mean reading
after each step and the black line is a rolling 20-point average.
The remaining panels show the policy distribution of the different
control parameters. The blue dashed lines show the settings found
by a human operator, the red dash-dot lines show the settings
(if any) predicted by a simplified HGHG model and the black
dashed lines show the allowed range of operation of the control
parameters. The dotted magenta, vertical lines show the occur-
rence of a fault in the accelerator system, whereafter the beam is
temporarily disabled.

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-17



and when the system comes back online there are bound to
be changes in the timing. These small changes are some-
times recovered by the feedback system.
It is tempting to say that the variance in the parameter

settings might have been used to predict the fault before it
happened, as the variance in both parameters appears to
grow before the fault occurs. However, the large change in
the target variable during this time period means that the
agent should not have high confidence (low variance) in its
choice of seed delay setting regardless of the oncoming
fault state.

VII. CONCLUSIONS

As with most machine learning systems, it is difficult
to make observations about a model that generalize to
another application or accelerator, even when they are
similar. However, we make a few general remarks to
summarize our findings about policy-gradient methods
using minimum policy gradient learning.
Simulations are important to the success of the agents.

Magnets react slowly, accelerator systems are noisy and
hyperparameters are notoriously hard to select a priori in
machine learning models. By investigating agent perfor-
mance using simulations we were able to choose an agent
that appeared most likely to learn quickly as well as choose
a practically useful range for the learning rate.
In contrast to supervised learning, the reinforcement

learning model we use here does not require a great deal of
prior information about what constitutes a desirable setting
of the parameters under its control, i.e., we did not need a
labeled dataset. It is not only model-free, but also requires
very little information to get started. It was able to improve
or maintain the performance of the accelerator by tuning the
controlled parameters up to approximately 25% of the
allowed range away from the initial setting using simple
target update rules, arbitrary limits to the parameters, and
some prior estimate for a useful value for the learning rate.
This feature of the policy-gradient method means that an
agent might be deployed where information about a
desirable accelerator setting is sparse. Of course, like
any other machine learning model, it should be designed
not to drive the accelerator into an unsafe state if such
information is available, for example, magnet settings that
cause unacceptably large beam losses. If not available,
signals of unsafe operation can be included in the reward
function. In addition, the agent can be used to explore a
parameter space and its confidence in the setting of the
various control systems might be used to select important
control parameters and eliminate parameters which do not
appear useful to the task at hand.
We demonstrate agents performing two different accel-

erator-relevant tasks at the FERMI FEL: machine optimi-
zation and machine stabilization. These tasks are performed
using a variety of different accelerator-relevant control
systems: three kinds of magnet, piezo motors for laser

alignment and a mechanical delay stage for a seed laser.
Two different target variables are used: the output energy
of an HGHG FEL and the amount of Terahertz radiation
produced at the TeraFERMI beamline. The model-free
agent is not altered between these tasks, except to explore
the agent’s capabilities (as described herein) and allow it to
communicate properly with the different systems.
Reinforcement learning techniques such as the one

presented in this work complement other machine learning
and optimization methods currently being pursued in the
context of accelerator physics. For example, RL might be
used to complete the tuning of an accelerator that has been
arrived at via Gaussian processes (GP) and the data
generated during the exploration of the parameter space
can then be used to improve the GP model. Adroit
combination of different machine learning models can lead
to systems of models that build on each other’s strengths
[35]. Policy-gradient methods might thusly find expanding
use in accelerator physics.

ACKNOWLEDGMENTS

The authors thank the FERMI team for preparing the
FEL and linac for data acquisition and numerous sugges-
tions on which features to observe and parameters to
control.

[1] O. Vinyals, I. Babuschkin, W. Czarnecki, M. Mathieu, A.
Dudzik, J. Chung, D. Choi, R. Powell, T. Ewalds, P.
Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A.
Huang, L. Sifre, T. Cai, J. Agapiou, M. Jaderberg, and D.
Silver, Grandmaster level in starcraft ii using multi-agent
reinforcement learning, Nature (London) 575 (2019).

[2] C. Berner et al., Dota 2 with large scale deep reinforcement
learning, arXiv:1912.06680.

[3] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
Policy gradient methods for reinforcement learning with
function approximation, in Advances in Neural Information
Processing Systems 12, edited by S. A. Solla, T. K. Leen,
and K. Müller (MIT Press, Cambridge, MA, 2000),
pp. 1057–1063.

[4] G. Gaio, N. Bruchon, M. Lonza, and L. Saule, Advances
in automatic performance optimization at FERMI, in
Proceedings, 16th International Conference on Acceler-
ator and Large Experimental Physics Control Systems
(ICALEPCS 2017): Barcelona, Spain, October 8-13, 2017
(2018), p. TUMPA07, https://doi.org/10.18429/JACoW-
ICALEPCS2017-TUMPA07.

[5] X. Huang, J. Corbett, J. Safranek, and J. Wu, An algorithm
for online optimization of accelerators, Nucl. Instrum.
Methods Phys. Res., Sect. A 726, 77 (2013).

[6] M. Aiba, M. Böge, N. Milas, and A. Streun, Random walk
optimization in accelerators: Vertical emittance tuning at
SLS, Conf. Proc. C1205201, 1230 (2012), https://
accelconf.web.cern.ch/IPAC2012/papers/tuppc033.pdf.

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-18

https://doi.org/10.1038/s41586-019-1724-z
https://arXiv.org/abs/1912.06680
https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPA07
https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPA07
https://doi.org/10.1016/j.nima.2013.05.046
https://doi.org/10.1016/j.nima.2013.05.046
https://accelconf.web.cern.ch/IPAC2012/papers/tuppc033.pdf
https://accelconf.web.cern.ch/IPAC2012/papers/tuppc033.pdf
https://accelconf.web.cern.ch/IPAC2012/papers/tuppc033.pdf
https://accelconf.web.cern.ch/IPAC2012/papers/tuppc033.pdf
https://accelconf.web.cern.ch/IPAC2012/papers/tuppc033.pdf
https://accelconf.web.cern.ch/IPAC2012/papers/tuppc033.pdf


[7] J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A.
Edelen, P. Baxevanis, A. Egger, T. Cope, M. McIntire,
S. Ermon, and D. Ratner, Bayesian Optimization of a
Free-electron Laser, Phys. Rev. Lett. 124, 124801 (2020).

[8] A. Scheinker, D. Bohler, S. Tomin, R. Kammering, I.
Zagorodnov, H. Schlarb, M. Scholz, B. Beutner, and W.
Decking, Model-independent tuning for maximizing free
electron laser pulse energy, Phys. Rev. Accel. Beams 22,
082802 (2019).

[9] N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino,
and L. Saule, Free-electron laser spectrum evaluation and
automatic optimization, Nucl. Instrum. Methods Phys.
Res., Sect. A 871, 20 (2017).

[10] C. Emma, A. Edelen, M. J. Hogan, B. O’Shea, G. White,
and V. Yakimenko, Machine learning-based longitudinal
phase space prediction of particle accelerators, Phys. Rev.
Accel. Beams 21, 112802 (2018).

[11] A. Bartnik et al., Cbeta: First Multipass Superconducting
Linear Accelerator with Energy Recovery, Phys. Rev. Lett.
125, 044803 (2020).

[12] N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino,
and E. Salvato, Toward the application of reinforcement
learning to the intensity control of a seeded free-electron
laser, in 2019 23rd International Conference on Mecha-
tronics Technology (ICMT) (2019), pp. 1–6, https://
ieeexplore.ieee.org/document/8932150.

[13] G. Van Rossum and F. L. Drake, Python 3 Reference
Manual (CreateSpace, Scotts Valley, CA, 2009).

[14] P. Virtanen et al., SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python, Nat. Methods 17, 261
(2020).

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, Scikit-learn:
Machine learning in Python, J. Machine Learning Research
12, 2825 (2011), https://jmlr.csail.mit.edu/papers/v12/
pedregosa11a.html.

[16] M. Zangrando, A. Abrami, D. Cocco, C. Fava, S. Gerusina,
R. Gobessi, N. Mahne, E. Mazzucco, L. Raimondi, L.
Rumiz, C. Svetina, and F. Parmigiani, The photon beam
transport and diagnostics system at FERMI@Elettra, the
Italian seeded FEL source: commissioning experience
and most recent results, in SPIE Optical Engineering +
Applications, edited by S. P. Moeller, M. Yabashi, and S. P.
Hau-Riege (SPIE, 2012), pp. 850404–8, https://www
.spiedigitallibrary.org/conference-proceedings-of-spie/
8504/850404/The-photon-beam-transport-and-
diagnostics-system-at-FERMIElettra-the/10.1117/12
.929749.short.

[17] E. Allaria et al., Two-stage seeded soft-X-ray free-electron
laser, Nat. Photonics 7, 913 (2013).

[18] This parameter controls how much the agent weights future
rewards for the purposes of computing the current reward, as
shown in the expected discounted reward [Eq. (2)]. If γ ¼ 0,
the expected discounted reward would be only computed at
the current step, t. Alternatively, the somewhat special case
of γ ¼ 1 is covered in the text after Eq. (2), when we discuss
the meaning of the horizon, h. In practice, the discount
factor doesn’t change the ordering of policies in the
continuing tasks we consider here, see section 10.4 of [19].

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (The MIT Press, Cambridge, MA, 2018).

[20] N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. H. O’Shea,
F. A. Pellegrino, and E. Salvato, Basic reinforcement
learning techniques to control the intensity of a seeded
free-electron laser, Electronics 9, 781 (2020).

[21] R. J. Williams, Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning, Mach.
Learn. 8, 229 (1992).

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller, Playing Atari
with Deep Reinforcement Learning, arXiv:1312.5602.

[23] Epsilon-greedy refers to a policy inwhich the agent generates
a number between 0 and 1. If that number is less than epsilon,
the agent takes a randomaction. Otherwise, it takes the action
which has previously returned the highest reward.

[24] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, Deterministic policy gradient algorithms,
in Proceedings of the 31st International Conference on
International Conference on Machine Learning—
Volume 32, ICML’14 (JMLR.org, 2014), pp. 387–395,
http://proceedings.mlr.press/v32/silver14.html.

[25] It is clear that this happens when going from Eq. (5) to
Eq. (6) because we assume that the agent will follow the
new policy after the update. With the policy now fixed the
order in which the states are visited does not matter because
the agent has nothing to learn from them. Section 10.4 of
[19] gives a similar symmetry argument.

[26] J. Peters, S. Vijayakumar, and S. Schaal, Natural actor-
critic, in Machine Learning: ECML 2005, edited by J.
Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and L.
Torgo (Springer Berlin Heidelberg, Berlin, Heidelberg,
2005), pp. 280–291.

[27] Adroit choice for the initial values of the parameters
allows the user to incorporate information they have into
the agent before it starts to learn using Eq. (8). Herein, we
simply use zero.

[28] Z. Huang, J. Wu, and T. Shaftan, Microbunching instability
due to bunch compression, ICFA Beam Dyn. Newslett. 38,
37 (2005), https://icfa-usa.jlab.org/archive/newsletter/icfa_
bd_nl_38.pdf.

[29] A. L. Edelen, S. G. Biedron, B. E. Chase, D. Edstrom, S. V.
Milton, and P. Stabile, Neural networks for modeling and
control of particle accelerators, IEEE Trans. Nucl. Sci. 63,
878 (2016).

[30] P.-W. Chou, D. Maturana, and S. Scherer, Improving
stochastic policy gradients in continuous control with
deep reinforcement learning using the beta distribution,
in Proceedings of the 34th International Conference on
Machine Learning, Proceedings of Machine Learning
Research, Vol. 70, edited by D. Precup and Y.W. Teh
(PMLR, 2017), pp. 834–843, https://dl.acm.org/doi/10
.5555/3305381.3305468.

[31] A. Perucchi, S. Di Mitri, G. Penco, E. Allaria, and S. Lupi,
The terafermi terahertz source at the seeded fermi free-
electron-laser facility, Rev. Sci. Instrum. 84, 022702
(2013).

[32] A. Tremaine, J. Rosenzweig, S. Anderson, P. Frigola, M.
Hogan, A. Murokh, C. Pellegrini, D. Nguyen, and R.
Sheffield, Measured free-electron laser microbunching

POLICY GRADIENT METHODS … PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-19

https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/10.1103/PhysRevAccelBeams.22.082802
https://doi.org/10.1103/PhysRevAccelBeams.22.082802
https://doi.org/10.1016/j.nima.2017.07.048
https://doi.org/10.1016/j.nima.2017.07.048
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1103/PhysRevLett.125.044803
https://doi.org/10.1103/PhysRevLett.125.044803
https://ieeexplore.ieee.org/document/8932150
https://ieeexplore.ieee.org/document/8932150
https://ieeexplore.ieee.org/document/8932150
https://ieeexplore.ieee.org/document/8932150
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8504/850404/The-photon-beam-transport-and-diagnostics-system-at-FERMIElettra-the/10.1117/12.929749.short
https://doi.org/10.1038/nphoton.2013.277
https://doi.org/10.3390/electronics9050781
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://arXiv.org/abs/1312.5602
http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html
http://proceedings.mlr.press/v32/silver14.html
https://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_38.pdf
https://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_38.pdf
https://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_38.pdf
https://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_38.pdf
https://icfa-usa.jlab.org/archive/newsletter/icfa_bd_nl_38.pdf
https://doi.org/10.1109/TNS.2016.2543203
https://doi.org/10.1109/TNS.2016.2543203
https://dl.acm.org/doi/10.5555/3305381.3305468
https://dl.acm.org/doi/10.5555/3305381.3305468
https://dl.acm.org/doi/10.5555/3305381.3305468
https://dl.acm.org/doi/10.5555/3305381.3305468
https://dl.acm.org/doi/10.5555/3305381.3305468
https://doi.org/10.1063/1.4790428
https://doi.org/10.1063/1.4790428


using coherent transition radiation, Nucl. Instrum. Methods
Phys. Res., Sect. A 429, 209 (1999).

[33] L. H. Yu, Generation of intense uv radiation by subhar-
monically seeded single-pass free-electron lasers, Phys.
Rev. A 44, 5178 (1991).

[34] K.-J. Kim, Z. Huang, and R. Lindberg, Synchrotron
Radiation and Free-Electron Lasers (Cambridge Univer-
sity Press, Cambridge, England, 2017).

[35] P. Domingos, A few useful things to know about machine
learning, Commun. ACM 55, 78 (2012).

F. H. O’SHEA, N. BRUCHON, and G. GAIO PHYS. REV. ACCEL. BEAMS 23, 122802 (2020)

122802-20

https://doi.org/10.1016/S0168-9002(99)00105-9
https://doi.org/10.1016/S0168-9002(99)00105-9
https://doi.org/10.1103/PhysRevA.44.5178
https://doi.org/10.1103/PhysRevA.44.5178
https://doi.org/10.1145/2347736.2347755

