18.8%). Grade 3 or 4 infections occurred in 27.7% vs 8.3% of pts. LEN-refractory pts had a median Tx duration of 9.7 with PVd vs 6.1 mos with Vd. In LEN-nonrefractory pts, median Tx duration of Pvd vs Vd was 13.6 vs 6.6 mos.

Table 1. Median PFS and Response After 1 Prior LOT

Outcome	LEN Refractory (n = 129)		LEN Nonrefractory (n = 97)		
	PVd (n = 64)	Vd (n = 65)	PVd (n = 47)	Vd (n = 50)	
PFS					
Median, mos	17.8	9.5	22.0	12.0	
HR (95% CI)	0.55 (95% C	0.55 (95% CI, 0.33-0.94)		0.54 (95% Cl, 0.29-1.01)	
P value	.02	.0276*		.0491*	
ORR (≥ PR), %	85.9	50.8	95.7	60.0	
P value ^b	>	< .001		< .001	
≥ CR, %	12.5	7.7	25.5	4.0	
VGPR, %	43.8	15.4	42.6	18.0	
PR, %	29.7	27.7	27.7	38.0	
* 2-sided P value based or	n a Cox proportional haza	rds model. ^b Probabi	lity from Fisher Exact	test.	
CR, complete response; Li free survival; PR, partial re stringent complete respo	EN, lenalidomide; LOT, lin esponse; PVd, pomalidor nse: Vd, bortezomib and	ne of therapy; ORR, o nide, bortezomib, an dexamethasone: VGI	verall response rate; d low-dose dexameth PR. very good partial (PFS, progression asone; sCR,	

Summary/Conclusion: In LEN-refractory and -nonrefractory pts after 1 prior LOT, PVd reduced the risk of progression and death by 45% and 46% vs Vd, respectively. Further, in both subgroups, second-line Tx with PVd significantly improved ORR and led to deeper responses compared with Vd. TEAEs with PVd therapy were generally consistent with the known profiles of POM, BORT, and DEX. These data further demonstrate that PVd is effective and tolerable in pts for whom LEN is no longer a Tx option, including LEN-refractory pts, supporting its use as second-line therapy in RRMM.

PF596 EFFICACY AND SAFETY OF DARATUMUMAB, BORTEZOMIB, AND DEXAMETHASONE (D-VD) IN RELAPSED OR REFRACTORY MULTIPLE MYELOMA (RRMM): UPDATED SUBGROUP ANALYSIS OF CASTOR BASED ON CYTOGENETIC RISK

K. Weisel^{1,*}, A. Spencer², S. Lentzsch³, H. Avet-Loiseau⁴, T. M. Mark⁵,
I. Spicka⁶, T. Masszi⁷, B. Lauri⁸, M.-D. Levin⁹, A. Bosi¹⁰, V. Hungria¹¹,
M. Cavo¹², J.-J. Lee¹³, A. Nooka¹⁴, H. Quach¹⁵, M. Munder¹⁶,
C. Lee¹⁷, W. Barreto¹⁸, P. Corradini¹⁹, C.-K. Min²⁰,
A. A. Chanan-Khan²¹, N. Horvath¹⁷, M. Capra²², M. Beksac²³,
R. Ovilla²⁴, J.-C. Jo²⁵, H.-J. Shin²⁶, P. Sonneveld²⁷, D. Soong²⁸,
T. Casneuf²⁹, C. Chiu²⁸, H. Amin³⁰, J. Ukropec³¹, M. Qi²⁸, M.-V. Mateos³²

¹Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, ²Malignant Haematology and Stem Cell Transplantation Service, Alfred Health-Monash University, Melbourne, Australia, ³Division of Hematology/Oncology, Columbia University, New York, NY, United States, ⁴Unite de Genomique du Myelome, CHU Rangueil, Toulouse, France, ⁵Department of Medicine, University of Colorado, Aurora, CO, United States, ⁶Clinical Department of Haematology, 1st Medical Department, Charles University in Prague, Prague, Czech Republic, ⁷László Hospital, 3rd Dept of Internal Medicine, Semmelweis University, Budapest, Hungary, ⁸Department of Hematology, Sunderbyn Hospital, Luleå, Sweden, ⁹Albert Schweitzer Hospital, Department of Internal Medicine, Dordrecht, Netherlands, ¹⁰Department of Hematology, Careggi Hospital and University of Florence, Firenze, Italy, ¹¹Irmandade Da Santa Casa De Misericordia De São Paulo, São Paulo, Brazil, ¹² "Seràgnoli" Institute of Hematology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy, ¹³Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Korea, Republic Of, 14Winship Cancer Institute, Emory University, Atlanta, GA, United States, ¹⁵St, Vincent's Hospital, University of Melbourne, Melbourne, Australia, ¹⁶University Medical Center of the Johannes Gutenberg University, Third Department of Medicine, Mainz, Germany, 17Royal Adelaide Hospital, North Terrace, Adelaide, Australia, ¹⁸Hospital Santa Marcelina, Sao Paulo, Brazil, ¹⁹Fondazione IRCCS Instituto Nazionale dei Tumori, Milan, Italy, ²⁰Seoul St. Mary's Hospital, Seoul, Korea, Republic Of, 21 Mayo Clinic Florida, Jacksonville, FL, United States, ²²Instituto do Cancer-Hospital Mae de Deus, Porto Alegre, Brazil, ²³Ankara University, Ankara, Turkey, ²⁴Hospital Angeles Lomas, Naucalpan de Juárez y alrededores, Juárez, Mexico, 25 Ulsan University Hospital, Ulsan, 26 Department of Internal Medicine, Pusan National University Hospital, Busan, Korea, Republic Of, ²⁷Erasmus MC, Rotterdam, Netherlands, ²⁸Janssen Research & Development, Spring House, PA, United States, ²⁹Janssen Research & Development, Beerse, Belgium, ³⁰Janssen Research & Development, Raritan, NJ, ³¹Janssen Global Scientific Affairs, Horsham, PA, United States, 32University Hospital of Salamanca/ IBSAL, Salamanca, Spain

Background: Patients (pts) with multiple myeloma associated with high cytogenetic risk abnormalities have poor outcomes. In CASTOR, D-Vd prolonged progression-free survival (PFS) vs bortezomib and dexamethasone (Vd) alone, and exhibited a manageable safety profile in pts with RRMM. We conducted a subgroup analysis of D-Vd vs Vd in CASTOR, based on cytogenetic risk.

Aims: The purpose of this analysis was to determine the efficacy and safety of D-Vd in CASTOR based on cytogenetic risk status.

Methods: Eligible pts received ≥ 1 prior line of therapy. Cytogenetic risk was based on a combined analysis of next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH)/karyotype testing. High-risk pts had t(4;14), t(14;16), or del17p abnormalities. Standard (std)-risk pts were confirmed negative for all 3 abnormalities. Minimal residual disease (MRD; 10^{-5}) was assessed via NGS using clonoSEQ[®] assay V2.0.

Results: In CASTOR (D-Vd, n = 251; Vd, n = 247), high-risk was confirmed in 26.7% and 25.9% of pts in the D-Vd and Vd groups, respectively. At a median follow up of 40.0 months (mo), D-Vd prolonged PFS vs Vd in pts with high- (median 13.4 vs 7.2 mo; HR, 0.40 [95% CI, 0.24-0.65]; P = 0.0002) or std-risk (median 18.4 vs 6.8 mo; HR, 0.28 [95% CI, 0.20-0.37]; P <0.0001). Higher ORR was seen with D-Vd vs Vd (high risk: 84.8% vs 60.0%; P = 0.0226; std risk: 85.4% vs 65.0%; *P* <0.0001), including deep responses of \geq CR (high risk: 33.3%) vs 8.3%; std risk: 29.9% vs 10.2%) and ≥VGPR (high risk: 65.2% vs 35.0%; P = 0.0049; std risk: 64.3% vs 28.0%; P <0.0001). Higher rates of MRD negativity (high risk: 17.9% vs 0%; P = 0.0003; std risk: 13.3%vs 2.4%; P = 0.0003), and sustained MRD negativity for ≥ 6 mo (high risk: 16.4% vs 0%; P = 0.0006; std risk: 6.1% vs 1.8%; P = 0.0859) and ≥12 mo (high risk: 7.5% vs 0%; P = 0.0581; std risk: 1.8% vs 0%; P = 0.2477) were seen with D-Vd vs Vd. D-Vd significantly prolonged PFS vs Vd in pts with one prior line of therapy only (high risk: median 20.1 vs 8.4 mo; HR, 0.30 [95% CI, 0.14–0.64]; P = 0.0012; std risk: median 32.6 vs 7.9 mo; HR, 0.18 [95% CI, 0.11-0.29]; P <0.0001; Figure). Additionally, D-Vd significantly prolonged PFS2 (high risk: median 27.9 vs 18.6 mo; HR, 0.59 [95% CI, 0.37-0.94]; P = 0.0258; std risk: median 40.1 vs 21.6 mo; HR, 0.43 [95% CI, 0.32-0.59]; P <0.0001) regardless of cytogenetic risk status.

Additional data including safety analyses will be presented.

Summary/Conclusion: Adding daratumumab to Vd demonstrates significant efficacy in pts with high-risk RRMM including PFS2. Among high-risk RRMM pts, MRD negativity was only achieved with D-Vd. These findings support use of D-Vd for high-risk RRMM. NCT02136134

PF597 HIGH DOSE MELPHALAN (200MG/M2) AND AUTOLOGOUS TRANSPLANTATION IN NEWLY-DIAGNOSED MULTIPLE MYELOMA UP TO THE AGE OF 70 YEARS: A SUBGROUP ANALYSIS FROM THE PHASE III GMMG-MM5 TRIAL

E. K. Mai^{1,2,*}, K. Miah³, M. Merz¹, J. Dürig⁴, C. Scheid⁵, K. C. Weisel⁶⁷, C. Kunz³, U. Bertsch^{1,2}, M. Munder⁸, H.-W. Lindemann⁹, D. Hose¹, A. Jauch¹⁰, A. Seckinger¹, S. Luntz¹¹, S. Sauer¹, S. Fuhrmann¹²,