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Abstract 

Inter-areal synchronization of neuronal oscillations below 100 Hz is ubiquitous in cortical circuitry 

and thought to regulate neuronal communication. In contrast, faster activities are generally considered 

to be exclusively local-circuit phenomena. We show with human intracerebral recordings that 

100−300 Hz high-gamma activity (HGA) may be synchronized between widely distributed regions. 

HGA synchronization was not attributable to artefacts or to epileptic pathophysiology. Instead, HGA 

synchronization exhibited a reliable cortical connectivity and community structures, and a laminar 

profile opposite to that of lower frequencies. Importantly, HGA synchronization among functional 

brain systems during non-REM sleep was distinct from that in resting state. Moreover, HGA 

synchronization was transiently enhanced for correctly inhibited responses in a Go/NoGo task. These 

findings show that HGA synchronization constitutes a new, functionally significant form of neuronal 

spike-timing relationships in brain activity. We suggest that HGA synchronization reflects the 

temporal microstructure of spiking-based neuronal communication per se in cortical circuits. 

  

Keywords: ripple, high gamma activity, high-frequency oscillations, synchronization, functional 

connectivity, epilepsy 

Abbreviations:  

cPLV: complex-valued phase-locking-value (Methods eq.1) 

EZ: epileptogenic zone 

HFO: high-frequency oscillations (100−200 Hz) 

HGA: high-gamma activity (100−300 Hz) 

iPLV: the imaginary part of the complex PLV 

LFP: local-field potential 

nEZ: putative healthy SEEG recording sites 

PLV: the absolute value of the complex PLV  

SEEG: stereo-electroencephalography 
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Introduction 

Observations of organized neuronal population activities at frequencies above 100 Hz, such as high-

gamma activity (HGA, 100−300 Hz)1, high-frequency oscillations (HFOs, 100−200 Hz) and ripple 

oscillations (150−200 Hz)2,3 are abundant in electrophysiological recordings of both humans1,4 and 

animals5,6. HGA has been linked with perceptual and cognitive processes1,4,7,8. Overall, high-

amplitude HGA is a key signature of “active” neuronal processing. Ripple oscillations have been 

traditionally associated with sharp waves and off-task memory formation, but recent studies report 

ripples also during the performance of attention tasks9 and successful retrieval of memories10.  

Electrophysiological HGA signals are thought to mainly arise from broad-band multi-unit spiking 

activity (MUA) and hence to directly reflect the local peri-electrode neuronal population activity per 

se11,12. HGA13 and ripple oscillation signals do, however, also contain contributions from post-

synaptic potentials. While the synaptic mechanisms underlying the hippocampal ripple oscillations 

are already well understood, it appears that genuine oscillations with presumably synaptic-

communication-based mechanisms also contribute to the HGA signals13.  

HGA has been thought to be exclusively local in terms of spike synchronization and phase coupling. 

For slower (< 100 Hz) neuronal oscillations, phase relationships among distributed neuronal 

assemblies are instrumental for coordinating neuronal communication and processing14,15. Several 

lines of experimental and theoretical evidence have shown that these phase relations are dependent 

on frequency and neuroanatomical distance, and on the axonal conduction delays in particular, so that 

slow oscillations are generally more readily phase coupled over long distances than fast oscillations16–

18. In line with this notion, measurements of long-range phase coupling in animal15,19 and human16 

brains suggest that neuronal oscillations only in frequency bands below 100 Hz exhibit inter-areal 

phase synchronization20 whereas the inter-areal cooperative mechanisms of HGA have remained 

poorly understood. 

We hypothesized that long-range synchronization and phase coupling of HGA, even if unexpected, 

could nevertheless be conceivable because local synchronization and high collective firing rate can 

endow local pyramidal cell populations greatly enhanced efficiency in engaging their post-synaptic 

targets21, which would be experimentally observable as inter-areal HGA phase coupling. Such a 

finding would constitute a direct indication of spiking-based long-range neuronal communication per 

se. Nevertheless, there is little evidence for HGA synchronization over long distances so far10,22.  

In this study, we searched for long-range HGA synchronization using an extensive database of 

resting-state human stereo-electroencephalography (SEEG) recordings (N = 67). We used sub-
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millimeter accurate SEEG-electrode localization23 and white-matter referencing16 to obtain 

neocortical local-field potential (LFP) signals with little distortion from signal mixing with 

neighboring grey-matter or distant volume-conducted sources. We found that among these LFPs, 

long-range HGA synchronization was a surprisingly robust phenomenon and much stronger than 

synchronization at around 100 Hz. We rigorously excluded the possibilities of HGA synchronization 

being attributable to putative confounders such as the epileptiform pathophysiology or physiological 

and technical artefacts. The network architecture of resting-state functional connectivity achieved by 

HGA synchronization was split-cohort reliable and had a modular large-scale architecture that was 

distinct from those of lower frequencies. Finally, as two lines of evidence for functional significance, 

we found HGA synchronization to exhibit distinct cortical structures during sleep and awake states 

as well as to reflect the large-scale cortical processing underlying response inhibition in a visual 

Go/NoGo task. These findings thus reveal in the human brains a novel functionally-significant form 

of spatio-temporally highly accurate neuronal coupling, which elucidates the cerebral organization of 

neuronal communication. 

Results 

Probing human large-scale brain dynamics with SEEG 

We recorded ~10 minute resting-state human cortical (local-field potential) LFP signals from 92 

consecutive patients with stereo-electroencephalography (SEEG). Among them, 25 subjects were 

excluded from further analyses due to previous brain surgery (temporal lobotomy) or an MRI-

identified cortical malformation (Suppl. Table 1). The final cohort of 67 patients yielded a total of 

7068 non-epileptic grey matter contacts (113 ± 16.2 per subject, mean ± SD, range 70-152) that gave 

a dense sampling across all neocortical regions (Fig. 1a) and of seven canonical functional brain 

systems defined by fMRI intrinsic connectivity mapping24,25 (Fig. 1b, Suppl. Fig. 1).  
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We assessed the phase interactions between all LFP signals recorded from non-epileptic neocortical 

grey-matter locations. This yielded a dense coverage of cortical interactions with 5,500 ± 1,600 (mean 

± SD) contact pairs per subject (range: 2,094−9,947) and a total of 368,043 contact pairs. Out of all 

possible within-hemispheric connections in the 100-parcel Schaefer atlas25, these recordings sampled 

at least 80% of the left- and 90% of the right-hemispheric connections (Fig. 1c) and provided 

abundant sampling on the scale of functional systems (Fig. 1d). The present data thus yield 

comprehensive insight into large-scale dynamics and connectivity in the human brain.  

Long-range phase correlations in high-gamma activity 

We estimated inter-electrode-contact phase coupling with the phase-locking value (PLV) for 18 

frequency bands between 3 and 320 Hz (see Methods). The inter-contact PLV estimates were 

averaged across subjects for three ranges of inter-contact-distance quartiles for each frequency band 

(Fig. 2a). The first quartile (0−2 cm) was excluded to avoid contamination from residual volume 

conduction. We found that the mean PLV increased from 3 to 7 Hz and then decayed rapidly from 10 

to 100 Hz as expected16. However, from 100 Hz onward, the mean PLV increased monotonically, 

indicating highly significant HGA phase synchronization in all distance ranges.  

To quantify the neuro-anatomical extent of HGA synchronization, we assessed the connection 

density, K, that was defined as the fraction of contact pairs exhibiting significant (p < 0.001 for 

Figure 1 Anatomical sampling statistics and 

coverage of cortical interactions.  

a, Numbers of non-epileptic SEEG electrode 

contacts for each cortical area in a 100-parcel 

parcellation. b, Numbers of contacts in a parcellation 

of seven functional brain systems (see d). c, Cortical 

connectivity coverage in the 100-parcel parcellation 

for left- (blue), right- (yellow) and inter-hemispheric 

(red) region pairs connected by at least one electrode 

contact pair. d, Numbers of contact pairs connecting 

each pair of functional systems (visual, VIS; sensori-

motor, SM; dorsal attention, DAN; ventral attention, 

VAN; limbic, LIM; fronto-parietal, FP; default 

mode, DEF). 
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observed > surrogate PLV) phase synchronization (Fig. 2b). Even at long ranges (> 6 cm), more than 

70% of >100 Hz connections were significant and both the PLV and K findings were split-cohort 

reliable (Suppl. Fig. 4). HGA phase synchronization was thus a widespread phenomenon in SEEG 

recordings of resting-state brain activity.  

 

Visual inspection of HGA synchronization in SEEG electrode time series (Fig. 2 c−f) was in line with 

these observations and readily revealed episodes of significant HGA coupling in time windows across 

centimeter-scale distances. Notably, synchronized HGA was observed as low-amplitude oscillation-

like activity that was visible in the time series also without filtering, which provides first evidence for 

that HGA synchronization was not attributable to spikes or technical artefacts. 

Figure 2 High-Gamma Activity shows 

robust long-range phase synchrony.  

a, Mean phase synchrony, measured with the 

phase-locking value (PLV) among all SEEG 

contacts and b, the fraction, K, of significant (p 

< 0.001) PLV observations for short (2−4.6 cm, 

pink), medium (4.6−6 cm, blue), and long 

(6−13 cm, green) distance ranges. Dashed lines 

represent the 99.9th %-ile for surrogate data 

(Nrandomizations = 100). Shaded areas indicate the 

2.5−97.5 %-ile bootstrap-confidence-limits for 

the mean PLV (Nbootstraps = 100). c-f, Examples 

of long-range HGA phase synchrony with a 

non-zero phase lag (c, d) and a near-zero phase 

lag (e, f) in two subjects. Observation of the 

narrow-band HGA (175−225 Hz) peaks in the 

broad-band (4−400 Hz) time series shows that 

the narrow-band activity does not arise from 

spike or other filtering artefacts in these 

examples. MFG (azure traces), medial frontal 

gyrus; IPS (red traces), intra-parietal sulcus. In 

the MRI insets (c, e), the black dots represent 

the white-matter reference channel for each 

cortical grey-matter channel. 
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Given the novelty and unexpected nature of these observations, we performed a series of control 

analyses to exclude the possibilities that HGA synchronization were due to: referencing schemes and 

volume conduction (Suppl. Fig. 1 & 2), non-neuronal signal sources (Suppl. Fig. 3), inadequate filter 

attenuation or settings (Suppl. Fig. 5), amplifier noise or pathological neuronal activity, such as inter-

ictal spikes, or contamination from muscular signals (Suppl. Fig. 6). The results of these analyses 

converged on the conclusion that the seemingly anomalous HGA synchronization can only be 

explained by true long-range synchronization between local cortical neuronal assemblies (Suppl. 

Text). This conclusion was further consolidated by the findings, as detailed below, that HGA 

synchronization was predominant in specific functional systems, and had a community structure and 

laminar connectivity profile that were distinct from those of slower activities, which are inconceivable 

for technical or physiological artefacts.  

Neuroanatomical localization of high-gamma synchronization 

To characterize the neuro-anatomical features of HGA synchronization networks, we investigated 

large-scale phase coupling of HGA in two spatial resolutions. First on the level of functional 

systems24, robust HGA phase synchrony was found within and between all systems, but the strongest 

and most widespread phase synchrony was found between and within the default-mode (DEF) and 

limbic (LIM) systems (Fig. 3a,b). This observation is in line with the hypothesis that HGA 

synchronization reflects healthy patterns of neuronal communication that is dominated by activity in 

these systems, DEF in particular26, during resting state. The observed systems-level connectivity 

pattern was split-cohort reliable (Suppl. Fig. 4), which rules out biases of individual subsets with 

distinct aetiologies. 

To examine the architecture of HGA synchronization at a finer resolution, we used the 100-parcel 

Schaefer atlas25 and pooled data across subjects to estimate the connectome of inter-regional phase-

synchrony for each frequency. We found these connectomes to be split-cohort reliable (permutation 

test, p < 0.05, one-tailed) across the range of frequency bands investigated, including the HGA 

frequency band (Suppl. Fig. 4). We then applied Leiden community detection to identify the putative 

communities therein and found sets of regions to represent robust modules in the HGA frequency 

bands (see Suppl. Text). The numbers of regions assigned reliably to communities were much higher 

than expected by chance (bootstrap test, p < 0.05, one-tailed) for each HGA frequency and throughout 

the investigated range of the Leiden resolution parameter, , values  = 1−1.5 (Suppl. Fig. 9). These 

networks largely also demonstrated significant community structures compared to equivalent random 

networks (permutation test, p < 0.05, one-tailed) at a range of resolutions (Suppl. Fig. 9).  
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The communities in the high-gamma frequencies were similar to each other and dissimilar from 

communities in the lower frequency bands (Fig. 3c). For the 190 Hz connectome (Fig 3d), at a low 

spatial resolution, the network was split into four large communities that were divided into six to 

seven communities at higher resolutions (Fig. 3e, g). The majority of the communities comprised 

adjacent brain regions but also included spatially distant regions (Fig. 3f, h). Demarcation of spatially 

distal regions into the same modules is not only population level confirmation of long-range HGA 

synchrony observed at contact level, but also a strong indication of the functional relevance thereof. 

The whole-brain networks of HGA synchronization thus exhibited statistically significant and 

Figure 3 Neuroanatomical localization of high-gamma synchronization  

a, Mean PLV across the HGA frequency band (113−320 Hz) among the seven functional brain systems. b, The 

fraction, K, of significant (p < 0.001) PLV observations in electrode contact pairs within (diagonal) or between (off-

diagonal) the systems. c, Similarity of network module structures between different filter frequencies for 100-parcel 

resolution PLV connectomes, computed separately for the left and right hemispheres. Average similarity was 

computed with resolution parameter values from 1 to 1.25. d, With resolution parameter  = 1.1, the Leiden method 

identified four modules in the 190 Hz PLV connectome for the right hemisphere (Null, unsampled connections). The 

allocation of left (e) and right hemisphere (g) cortical regions to modules in 190 Hz PLV matrix for resolution 

parameter values from 1 to 1.25. Neuroanatomical localization of cortical modules at  = 1.1 for left (f) and right 

hemisphere (h) at 190 Hz (opaque color indicates significant, p < 0.05, parcel module-allocation stability). 
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distinctive community structures in putatively healthy brain structures, as well as patterns of 

connection strengths that are stable across participants. These results thus further support the 

neurobiological origin of HGA synchronization. 

High-gamma phase correlations have a unique laminar profile 

Deep and superficial cortical laminae are known to contribute differently to inter-areal phase-

synchronization at frequencies below 100 Hz16. We next asked whether HGA synchronization 

networks also would show a similar differentiation between the laminae across distances. Leveraging 

our accurate localization of the electrode contacts, we divided the electrode contacts into “deep” and 

“superficial” by their cortical depth (see Methods), and assessed HGA phase coupling strength 

separately between the contacts in deep and superficial layers. This analysis reproduced the prior 

observation16 of low-frequency (< 30 Hz) phase coupling being stronger among superficial sources, 

which is well in line with recent observations about the laminar localization of, e.g., alpha oscillation 

Figure 4 High-Gamma phase synchrony differs between cortical layers 

a, Mean PLV at short (2−4.6 cm), medium (4.6−6 cm), and long (6−13 cm) distances exhibits distinct spectral profiles 

for SEEG electrode contact pairs located in deep cortical layers (-0.3 < GMPI ≤ 0; blue) and contact pairs in 

superficial cortical layers (0.5 < GMPI < 1; red).  Dots represent the frequencies at which the difference between the 

superficial and deep contacts was significant (permutation test, Npermutations = 100: p < 0.05, Bonferroni corrected for 

18 frequencies). The GMPI value indicates the normalized depth of the electrode contact (0, white-grey surface; 1 

pial surface). Inset: mean PLV of superficial and deep-layer contacts in the HGA frequency range. Dashed lines 

represent the 99.9th %-ile for surrogate data (Nrandomizations = 100). Shaded areas indicate the 2.5−97.5 %-ile bootstrap-

confidence-limits for the mean PLV (Nbootstraps = 100). b, Fractions, K, of significant (p < 0.001) contact pair PLV 

observations.  
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sources in human cortex27. In contrast, however, HGA synchronization was stronger (Fig. 4a, see 

inset) and more prevalent (Fig. 4b) among signals from deep cortical layers in all distance ranges (p 

< 0.05, Bonferroni corrected with Nfreq. = 18). This reverse pattern was also observed with iPLV and 

in bipolar recordings (Suppl. Fig. 2). Although the resolution of SEEG is insufficient for further 

investigating the underlying neuronal generators of these oscillations, e.g., with a current source 

density analysis, our results indicate that HGA synchronization originates in neuronal circuitry 

distinct from that producing the slower LFP oscillations.  

Long-range HGA synchronization is associated with local synchronization indexed by HGA 

amplitude 

To further delve into the physiological plausibility of HGA synchronization, we asked whether it was 

related to the moment-to-moment variability in the amplitudes of local HGA. HGA amplitude is likely 

to tightly reflect the number of neurons in the local assembly and the degree of their local 

synchronization, both of which are central to the ability of a local assembly to engage its post-synaptic 

targets effectively. We thus hypothesize that the moments of strongest inter-areal HGA phase 

synchrony would coincide with the moments when both contacts recorded high HGA amplitudes. We 

selected electrode contacts exhibiting significant HGA synchronization and for each contact pair, 

distributed the data sample-by-sample into a 2D matrix according to quintiles of the normalized local 

amplitudes (see Methods). First, inspecting the variability in the numbers of samples among the cells 

of these 2D matrices we found that there was a slight positive correlation between the amplitudes so 

that the coincidence of the largest-quintile amplitudes was ~1 % more prevalent than the coincidence 

of the smallest and largest amplitudes. Second, after equalizing the sample counts in amplitude 

quintile pairs, we estimated the PLV from samples in each quintile pair, and averaged the PLVs across 

electrode pairs and subjects for each frequency separately. We found that while HGA phase coupling 

was significant across a range of local amplitudes, it was the strongest in those moments when the 

HGA amplitudes were the largest in both contacts and essentially insignificant when either location 

exhibited the lowest HGA amplitudes (Fig. 5a, b). Quantitatively, PLV was very dependent on the 

local oscillation amplitudes and exhibited a ~400 % difference between smallest and largest values 

in data averaged across the HGA band and a 200-800% difference in individual HGA frequencies 

with the strongest effects observed at highest frequencies (Suppl. Fig. 8). These data thus strongly 

support the notion of local HGA synchronization being instrumental for long-range HGA phase 

coupling.  
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Phase-amplitude coupling (PAC) of HGA with theta and alpha oscillations characterizes 

healthy brain dynamics 

The “nesting” of fast oscillations in cycles of slower oscillations is an often-observed phenomenon 

in electrophysiological recordings at both < 1 Hz28,29 and > 1Hz frequencies. We assessed whether 

HGA were nested within specific phase of slow rhythms by evaluating phase-amplitude correlations 

(see Methods) throughout the 3−320 Hz frequency range and among all pairs, excluding self-

connections, of grey matter electrode contacts. We analyzed data from electrode contacts in the 

epileptogenic zone (EZ) to dissociate healthy from pathological patterns of PAC. 

Among the putatively healthy LFP recordings, i.e., nEZ contacts, the amplitudes of beta and low-

gamma oscillations (14−40 Hz) were strongly coupled with the phase of theta and alpha oscillations 

(5−10 Hz) (Fig. 6a). Importantly, the amplitudes of HGA, peaking between 100−200 Hz, exhibited 

clear coupling with the phase of these theta−alpha oscillations. However, a fundamentally distinct 

cross-frequency PAC pattern was observed within the EZ (Fig. 6b), where instead of predominant 

narrow-band theta/alpha coupling, the amplitudes of oscillations from the lowest frequencies to HGA 

were locked to the phase of delta-band (here 3 Hz) oscillations. This putatively pathological pattern 

was also reflected in PAC evaluated between the healthy and epileptic areas, which exhibited both 

the delta and theta/alpha nesting of faster activities (Fig. 6c). 

Figure 5 Stronger High-Gamma phase synchrony is correlated with maximal amplitude correlations between 

cortical sites   

a, Moment-to-moment HGA synchronization (PLV) for SEEG electrode contact pairs (ch1, ch2) is dependent on the 

HGA amplitude at both contacts. Each matrix element is the mean of instantaneous PLV between all significant 

contact pairs (p < 0.001, Nsurrogates = 100) as a function of their moment-to-moment normalized amplitudes.  b, HGA 

amplitudes are positively, albeit weakly, correlated. Numbers of samples (light grey) in each amplitude bin and their 

distance from a uniform distribution (black).  
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Is high-gamma synchrony characteristic to the epileptic brain areas?  

A crucial question for the functional implications of HGA synchronization is whether it is mainly a 

pathological property of the epileptogenic network or a feature of healthy brain activity and neuronal 

communication therein. The earlier finding of systematic HGA community structures across subjects 

with diverse aetiologies already provided evidence in support of the latter alternative. We further 

addressed this question first by asking whether the strength of HGA synchronization was significantly 

stronger in the EZ or between the EZ and nEZ. Controlling for the neuroanatomical distance of the 

electrode-electrode interactions, we found the epileptogenic zone to exhibit significantly stronger 

phase synchronization than healthy areas at low frequencies (3−10 Hz) but no significant differences 

were observed in the HGA frequency band (Fig. 7, see also Suppl. Fig. 6e).  

We then tested whether the strength of HGA synchronization overall was correlated with the 

frequency of inter-ictal spikes; a proxy for the magnitude of epileptic pathology. No such correlation 

Figure 6 High-Gamma amplitude is 

modulated by the phase of slower 

oscillations. 
a, Among SEEG electrode contacts in putatively 

healthy brain regions (non-epileptogenic zone, 

nEZ), beta- to low-gamma band amplitudes (high 

frequency) are coupled with the phase of theta 

and alpha oscillations (low frequencies). nPAC: 

population mean of individual phase-amplitude-

coupling (PAC) PLV estimates normalized by 

within-subject surrogate mean. Right: fraction of 

significant edges (K) for phase-amplitude 

coupling on the population level. b, Within the 

epileptogenic zone (EZ), prominent PAC is 

observed between the delta, theta, and alpha 

oscillations and the faster brain activities. c, PAC 

in connections between EZ and nEZ recording 

sites. 
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was observed (Suppl. Fig. 6). These data thus converged onto the conclusion that HGA 

synchronization is a property of healthy brain dynamics that is preserved in these patients. 

 

Figure 7 Phase synchronization is stronger 

within the epileptogenic zone (EZ) in low 

frequencies.  

At low frequencies (3−10Hz) and short-to-medium 

distances, mean phase synchrony among 

epileptogenic zone (EZ, pink) is significantly 

stronger than that among putatively healthy regions, 

i.e., nEZ-nEZ (blue) or EZ-nEZ (green) 

connections. At higher frequencies, this difference 

between EZ-EZ and nEZ-nEZ and EZ-nEZ 

recording site is insignificant in all distance ranges. 

Shaded areas represent 5th and 95th percentile of 

PLV values (Nbootstraps = 500). 
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Distinct patterns HGA synchronization differentiate waking resting state and non-REM sleep 

To address the putative physiological relevance of HGA synchronization, we first assessed whether 

it would reflect the large-scale brain state changes between awake resting state and sleep. We 

evaluated HGA phase synchrony with PLV in a subset of subjects (n = 7) with both resting-state and 

slow-wave sleep (SWS) recordings by pooling connections in the seven functional systems (see Fig. 

3a, b). The wake and sleep system-level HGA synchronization matrices (Fig. 8a, b) were significantly 

different (p < 0.001, dissimilarity permutation test) so that during sleep, the pattern of HGA 

synchronization between systems was different, compared to during awake state. Further, increased 

HGA synchronization was found for sleep, within the limbic system and between the limbic and 

default-mode and ventral-attention systems (two-tailed t-test, p < 0.05, uncorrected). This finding as 

well as the anatomical pattern of system-system phase couplings was reproduced with iPLV (p < 

0.001, dissimilarity permutation test, Supp. Fig. 7a, b). These findings are well in line with the notion 

of memory-consolidation-related 100−200 Hz ripple oscillations being a characteristic of non-REM 

sleep and indicate that such ripple activities may not only co-occur10,30 but also exhibit systematic 

phase relationships within the limbic system and between the limbic and other functional systems. 

Inter-areal HGA synchronization in the visual system is transiently enhanced during 

visuomotor processing 

To elucidate the functional role of HGA synchronization beyond the insight yielded by its 

characteristics in resting-state activity and sleep-wake differences, we acquired resting- and task-state 

SEEG data from an additional cohort of 11 patients. The patients performed a visual Go/NoGo 

response-inhibition task where they reacted with a button press to Go stimuli (blue rectangles, 75% 

probability) and withheld responses to rare NoGo stimuli (yellow rectangles, 25% probability). In 

this task, correct response inhibition is known to involve large-scale fronto-parietal brain activation. 

We first examined the peri-stimulus amplitude dynamics of local HGA that has been established to 

indicate neuronal spiking in the immediate vicinity of the electrode contact and thereby to localize 

task-relevant brain areas with high accuracy4. In the latency range of 100−600 ms after the NoGo 

stimulus onset, we found 100−300 Hz HGA amplitude to increase above four baseline SDs (Fig. 8b) 

for at least 100 ms in 29−45 channels out of 103−139 grey matter recording sites in eight subjects. At 

the same latencies, markedly smaller HGA responses were observed for the Go stimuli (Suppl. Fig. 

7c). Neither the latency nor duration of these responses were correlated with the reaction times 
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suggesting that the HGA responses primarily reflect 

inhibition-related processing in this task. Three subjects 

showed no HGA responses and were excluded from 

further analyses. We used the 30 electrode contacts with 

the strongest amplitude effect for each subject to localize 

the cortical areas putatively underlying inhibition-

relevant neuronal processing for the NoGo stimuli. 

Group-averaged time-frequency representation of these 

task-region amplitude data showed the amplitude effect 

was most pronounced in the 100-200 Hz frequency range (Fig. 8c), and at the peak frequency, 

individual HGA responses were clearly observable (136-184 Hz filter band, center frequency 160 Hz, 

Figure 8 HGA synchronization is enhanced 

during sleep and visuomotor inhibition. 

PLV across high-gamma (HG) frequencies 

between systems are different for (a) rest  and (b) 

sleep, (dissimilarity permutation test, p < 0.001, 

N=1,000, one-tailed conditions). In (a) asterisks 

indicate greater PLV during rest compared to sleep 

and in (b) asterisks indicate greater PLV during 

sleep (two-tailed post-hoc permutation test, p < 

0.05, uncorrected). c, HGA amplitude increased 

above baseline after NoGo stimulus onset (at 0 ms) 

in a subset of contacts in a representative subject 

(averaged across 120−320 Hz, z-score normalized 

by the pre-stimulus baseline from -500 ms to -10 

ms). Unshaded area indicates z > 3. d, HGA 

amplitude averaged across subjects and the top-30 

task-positive contacts within subjects. e, Event-

related response at 160 Hz averaged across subjects 

for the top-30 task-positive (red) and task-negative 

contacts (azure). Shaded areas indicate the 

2.5−97.5 %-ile bootstrap-confidence-limits of the 

means (Nbootstraps = 10000). f, Anatomical loci of the 

strongest event-related responses. g, Difference in 

HGA synchronization (iPLV) between task and 

rest. Colored shaded areas indicate confidence 

limits of the means (as in e), round markers indicate 

difference between task and rest (two-tailed 

permutation test). In insets, grey shades are 97.5 %-

ile confidence limits for the null hypothesis of no 

difference (p < 0.05, two-tailed permutation test, 

Npermutations = 10000). h, Time-resolved HGA 

synchrony (iPLV) among the top-30 task-positive 

(red) and task-negative contacts (azure) in response 

to the NoGo events. Shaded areas indicate the 

2.5−97.5 %-ile bootstrap-confidence-limits of the 

means (Nbootstraps = 10000). Round markers indicate 

time-windows where HGA synchronization in 

Task+ contacts is greater than among Task- 

contacts (p < 0.05, corrected, one-tailed max-

statistic permutation test). 
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Fig. 8d, see red and black lines). We also picked the 30 contacts with the smallest amplitude effect to 

localize the individual task-irrelevant or -negative brain areas and found them to exhibit a small 

amplitude decrease during this time window (Fig. 8d, blue line). The task-positive amplitude effects 

for the NoGo responses were predominantly localized into both ventral- and dorsal-stream visual 

areas and to the parietal cortex (Fig. 8e; see Suppl. Fig. 1 for sampling).  

We first assessed the role of HGA synchronization in visual processing by comparing with 

time-averaged synchronization estimates of the Go/NoGo-task data with resting-state recordings 

acquired prior to the task. Among both the task-positive and -negative brain areas, HGA 

synchronization was stronger during task performance than during rest (Fig. 8e) and, importantly, 

HGA synchronization was significantly stronger among the task-positive than the -negative areas 

during task processing for all frequencies up to 160 Hz (p < 0.05, two-tailed permutation test, 

Benjamini-Hochberg FDR corrected). To address this in a time-resolved manner, we evaluated HGA 

synchronization in 100 ms time windows across trials. We also produced surrogate estimates with 

trial shuffling to exclude the putative contributions of stimulus-locked signal components and 

amplitude-change related changes in temporal correlation structures. We found HGA synchronization 

to be strengthened among the task-relevant brain areas during the period of active stimulus processing 

in response to NoGo stimuli so that the synchronization in the task-relevant areas was significantly 

stronger than in the task-irrelevant or -negative areas and significantly above the surrogates 

throughout the time windows from 50 to 450 ms (p < 0.05, max-value randomization test). The same 

analysis for the Go events revealed no significant increases in large-scale synchronization in any of 

the three groups. Moreover, HGA synchronization for the NoGo stimuli was significantly stronger 

than that for the Go stimuli in the 50-450 ms time range (p < 0.05, max-value randomization test, 

Suppl. Fig. 7d). These data thus show that HGA synchronization is strengthened from resting-state 

levels during task performance, associated with transient task-relevant neuronal processing, and 

specifically associated with the neuronal communication underlying the large-scale coordination of 

visuo-motor response inhibition in the Go/NoGo task. 

Discussion 

HGA is thought to be a direct indication of ‘active’ neuronal processing per se1,4–6 because of its 

strong correlation with neuronal firing rates and the BOLD signal31,32, and with a range of cognitive 

processes1,4,7,8. In the same frequency range, high-frequency oscillations (HFOs) are predominantly 

observed in epileptogenic brain areas and are elevated in magnitude prior to epileptic seizures33. The 

relationship between HGA and HGOs has remained unclear; HFOs may either be a phenomenon 
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separate from HGA and integral to epileptic pathophysiology or, alternatively, pathological 

modulation of otherwise physiological HGA that also is known to exhibit oscillatory temporal 

patterning13.  

In either case, HGAs or HFOs have been considered exclusively as local phenomena being phase-

synchronized only within a local brain regions. HGA amplitude fluctuations may, however, be 

coupled inter-areally in human cortical networks during reading34, and similarly, ripple oscillations 

bursts co-occur between the rat hippocampus and association cortices during memory formation30. 

However, amplitude correlation does not have the temporal precision that phase-coupling has for 

carrying out important computational functions during neuronal processing. Nonetheless, inter-areal 

phase-coupling has been thought to exist only in slow brain rhythms but not in HGA frequency bands. 

To the best of our knowledge, there is only one reported HGA inter-areal phase coupling22. In this 

study, Yamamoto et al (2014) reported phase synchronization of ripple oscillations within the 

entorhinal-hippocampal circuit in behaving rats.  

We report here that in the human brains, neuronal activity in the 100−300 Hz frequency range may 

be phase synchronized across several centimeters during awake resting-state brain activity. Long-

range synchronization was highly reliable and not explained by physiological or technical artefacts 

in the recorded data. HGA synchronization was also primarily a physiological phenomenon and not 

explained by epileptic pathophysiology. Importantly, the large-scale patterns of HGA 

synchronization were distinct during awake resting state and non-REM sleep, indicating that HGA 

synchronization is dependent on global brain states. Specifically, this finding implies that the non-

REM-sleep ripple oscillations entrain their post-synaptic targets in widespread brain areas, which 

may be essential for memory formation and consolidation10. Moreover, HGA synchronization was 

observed in a narrow time window specifically in response to stimuli for which the responses were 

correctly withheld, which strongly suggests that HGA synchronization is functionally significant in 

the neuronal communication underlying response inhibition in the present visual Go/NoGo task. 

HGA synchronization thus constitutes a novel and functionally relevant form of neuronal long-range 

coupling in the dynamic functional architecture on human brain dynamics. We suggest that these 

observations of HGA long-range synchronization reflect transient assemblies of active neuronal 

processing i.e. spiking in local neuronal circuits. Our results open a new avenue into measuring and 

understanding neuronal communication in the human brains at the level of pre-synaptic population 

spiking, spike synchronization, and their post-synaptic potentials in remote targets. 
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Micro- and macroscale cortical architecture of HGA synchronization 

HGA synchronization exhibited systematic organization at several spatial and temporal scales. At the 

level of cortical systems determined by fMRI intrinsic connectivity24, HGA synchronization was most 

pronounced within and between the limbic- and default-mode systems. These areas exhibit high level 

of activity during resting-state 26 and thus this finding is in line with the notion that HGA 

synchronization reflects neuronal processing or communication per se. Interestingly, in a subset of 

subjects who had recordings both during resting-state and during sleep, we found differences in HGA 

synchronization patterns between these two conditions (Suppl. Fig. 7). This suggests that HGA 

synchronization is state-dependent similar to fMRI resting-state connectivity in humans 35 and non-

human primates36. 

In addition to this insight into HGA synchronization among fMRI-derived brain systems, we 

examined the intrinsic community structure in the whole-brain connectome of HGA synchronization. 

We found evidence for significant and split-cohort reliable community structures in HGA 

synchronization. Together with the split-cohort reliability of the connectome itself, these findings 

show that HGA synchronization has a group-level stable cortical topology that is independent of 

individual subjects and thus also a structure that is not dictated by the individual pathogenesis or 

electrode placement. Moreover, this ties HGA synchronization with phase and amplitude interaction 

networks in slower frequencies, which as known to have salient community structures37–40. The HGA 

communities, however, were dissimilar with those at slower frequencies, which may be attributable 

to distinct cortical generator mechanisms of the slow and HGA signals. This conclusion was 

supported by the finding that at the scale of cortical laminae, HGA synchronization was significantly 

stronger among electrode contacts in deep than superficial layers whilst the opposite laminar 

organization was found for theta, alpha, and beta oscillations in SEEG here and in prior work16,27. 

HGA synchronization thus exhibits reliable neuroanatomical organization at scales from cortical 

laminae to brain systems with phenomenological differences with the oscillations in slower 

frequencies. HGA synchronization is thus not a “by-product” of neuronal interactions coupling the 

slower oscillations, but rather a hitherto undiscovered component in the organization of large-scale 

brain dynamics. 

HGA synchronization is not attributable to artefactual sources 

The connectivity and community structures of HGA synchronization as well as its laminar 

organization strongly suggest that it may not be attributable to physiological or technical artefacts 

such as signals from muscles or extra-cranial sources. Nonetheless, we corroborated this notion with 

a number of controls. First, in addition to white-matter referencing, HGA synchronization was 
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observable with bipolar referencing, indicating that its current sources are millimeter-scale local in 

cortical tissue and very unlikely to originate from extracranial or muscular sources during inter-ictal 

events41. Second, HGA synchronization was also observable with linear-mixing insensitive 

interactions metric and hence not attributable to volume conduction42. Third, HGA synchronization 

was comparable among electrodes along single electrode shafts and between electrodes in different 

shafts, which excludes the contributions of implantation-related lesion along the shafts as well as 

voltage diffusion because of perfusion of CSF in the cortical lesion following shafts implant. Fourth, 

similar observations were made with two different SEEG data-acquisition systems and the recordings 

with the same electrodes in saline solution did not show any indication of artificial HGA 

synchronization. HGA coupling thus does not arise from the signal amplifier or data-acquisition 

electronics. 

HGA activity is not explained by pathological epileptic activity  

The role of epileptic pathology is overall a concern for research carried out with epileptic patients. 

Although HGA within the epileptogenic zone show peculiar spectral and amplitude contents43,44, and 

are temporally predictive of upcoming seizures, most recent work has questioned its pathological-

only origin45,46. We addressed question of physiological vs. pathophysiological genesis of HGA 

synchronization through several lines of analyses. First, only the putatively healthy brain areas and 

time-windows with no epileptic spikes were included in the primary analyses of HGA 

synchronization. Second, if HGA synchronization was attributable to epileptic pathophysiology, one 

would expect highly individual large-scale patterns, but instead of such, we observed that both the 

connectivity and community structures of HGA were split-cohort reliable at the group level and thus 

not driven by individual pathology. Third, in direct comparisons of HGA synchronization among 

healthy areas, between healthy areas and the epileptogenic zone, and within the epileptogenic zone, 

we did not find significant differences between these conditions. We found the epileptogenic zone to 

be distinct from healthy brain areas both in delta-frequency phase synchronization and in the phase-

amplitude coupling of delta and theta oscillations with HGA. Hence, if HGA synchronization were a 

property of the epileptogenic zone, it would likely have been observed in this analysis. Finally, we 

observed no phase coupling of HGA with epileptic spikes. Taken together, HGA synchronization 

appears to be a property of healthy brain dynamics rather than being attributable to epileptic activity 

or pathophysiology. 

Putative generative mechanisms HGA synchronization 

What mechanisms could underlie the signal generation of long-range phase coupled HGA? Whereas 

synaptic mechanisms are known to contribute to the generation of synchronized ~200 Hz oscillations 
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during hippocampal sharp-wave events47, it has remained disputed whether broad-band HGA in the 

100-300 Hz range is associated with synaptic mechanisms generating neuronal population 

oscillations with rhythmicity in specific time scales19. A recent study13 argues that putatively-spiking-

related broadband and genuinely oscillatory components with presumably synaptic-communication-

based mechanisms are dissociable in the HGA signals, even though several studies suggest HGA to 

arise from neuronal spiking activity48,49 per se. We speculate that the HGA signals observed in this 

study may reflect both local cortical population spiking activity and the consequent downstream post-

synaptic potentials resulting from these volleys of spikes. Long-range MUA synchronization has not 

been previously reported, but it is important to note that unlike the micro-electrodes used in animal 

research, the larger surface area of the electrodes heavily predisposes SEEG specifically to detecting 

population spiking activity50 that is already locally synchronized in a sizeable assembly and thus able 

to achieve post-synaptic impact in distant targets21. Hence, by construction, SEEG may be effectively 

filtering out asynchronous multi-unit activity that is unlikely to achieve well-timed downstream 

effects. 
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Methods 

Data acquisition 

We recorded SEEG data from 67 subjects affected by drug resistant focal epilepsy and undergoing 

pre-surgical clinical assessment for the ablation of the epileptic focus. We acquired monopolar (with 

shared reference in the white matter far from the putative epileptic zone) local field potentials (LFPs) 

from brain tissue with platinum–iridium, multi-lead electrodes. Each penetrating shaft has 8 to 15 

contacts, and the contacts were 2 mm long, 0.8 mm thick and had an inter-contact border-to-border 

distance of 1.5 mm (DIXI medical, Besancon, France). The anatomical positions and amounts of 

electrodes varied according to surgical requirements 1. On average, each subject had 17 ± 3 (mean ± 

standard deviation) shafts (range 9-23) with a total of 153 ± 20 electrode contacts (range 122-184, 

left hemisphere: 66 ± 54, right hemisphere:  47 ± 55 contacts, grey-matter contacts: 110±25). We 

acquired an average of 10 minutes of uninterrupted spontaneous activity with eyes closed in these 

patients with a 192-channel SEEG amplifier system (NIHON-KOHDEN NEUROFAX-110) at a 

sampling rate of 1 kHz. Before electrode implantation, the subjects gave written informed consent for 

participation in research studies and for publication of their data. This study was approved by the 

ethical committee (ID 939) of the Niguarda “Ca’ Granda” Hospital, Milan, and was performed 

according to the Declaration of Helsinki. 

Signal pre-processing 

We excluded electrode contacts (1.3±1.2, range 0−10, contacts) that demonstrate non-physiological 

activity from analyses. We employed a novel referencing scheme for SEEG data where electrodes in 

grey-matter were referenced by the contacts located in the closest white-matter (CW)2.  This 

referencing scheme is proven optimal for preserving phase relationship between SEEG contact data2. 

The final size of channels analysed is on average 110±25 for each subject and 7491 in total.  

Prior to the main analysis, SEEG time series were filtered with 18 Finite Impulse Response (FIR) 

filters (equiripples 1 % of maximal band-pass ripples) with central frequency (Fc) ranging from 2.50 

to 320Hz. We used a relative bandwidth approach for filter banks such that pass band (Wp) and band 

stop (Ws) were defined as 0.5×Fc and 2×Fc, respectively for Low- and High-pass filters separately. 

We excluded all 50 Hz line-noise harmonics using a band-stop equiripple FIR filter with 1 % of 

maximal band-pass ripples and 3 up to 8Hz width for the stop band parameters.  

Epileptic events such as interictal spikes are characterized by high-amplitude fast temporal dynamics 

as well as by widespread spatial diffusion. Due to possible filtering artefacts around epileptic spikes 
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and the resultant increase in synchrony, we discarded periods of 500ms containing Interictal Epileptic 

Events (IIE).  We defined such periods as the temporal windows where at least 10% of cortical 

contacts demonstrated abnormal concurrent sharp peaks in more than half of the 18 frequency bands. 

Such episodes were excluded from within- and cross-frequency synchrony analysis. To identify such 

periods in each contact, we partitioned the contact amplitude envelope time series into 500 ms non-

overlapping windows and marked IIE events as the time windows within which at least 3 consecutive 

samples are 5 times the standard deviation above the mean amplitude. 

 

Defining the epileptic zones based on seizure activities in SEEG signals 

The epileptogenic and seizure propagation zone were identified by clinical experts by visual analysis 

of the SEEG traces1,3.  Epileptogenic areas are the hypothetical brain areas that are necessary and 

sufficient for the origin and early organization of the epileptic activities 4, from where contacts 

recording often show low voltage fast discharge or spike and wave events at seizure onset.  Seizure 

propagation area are recruited during the seizure evolution, but they do not generate seizures 5,6, from 

where contact recording show delayed, rhythmic modifications after seizure initiation in the 

epileptogenic areas. In this study, we combined epileptogenic and propagation areas as the 

epileptogenic zone (EZ) to distinguish from the rest of brain areas that are referred to as putative 

healthy zones (nEZ). 

Functional connectivity estimates 

We estimated inter-areal phase-phase interactions at individual subject level using the Phase Locking 

Value (PLV). Defining 𝑥′(𝑡)  =  𝑥(𝑡)  +  𝑖H[𝑥(𝑡)] as the analytical representation of the signal 𝑥(𝑡), 

where H[∙∙] denotes the Hilbert transform, complex PLV (cPLV) is computed as 7: 

𝑐𝑃𝐿𝑉 =
1

 𝑇
∑

𝑥′(𝑡)

|𝑥′(𝑡)|

𝑦′∗
(𝑡)

|𝑦′(𝑡)|
𝑇
𝑡=1             (1) 

where T is the sample number of the entire signal (i.e., ~10 minutes), and * is complex conjugate. We 

computed cPLV for the entire recording excluding 500 ms time windows showing epileptic or 

artefactual spikes (see below). The PLV is the absolute value of complex cPLV (𝑃𝐿𝑉 = |𝑐𝑃𝐿𝑉|), and 

it is a scalar measure bounded between 0 and 1 indicating absence of phase and full phase 

synchronization, respectively.  

Additionally, we used imaginary part of cPLV (𝑖𝑃𝐿𝑉 = 𝐼𝑚(𝑐𝑃𝐿𝑉)), a metric insensitive to zero-lag 

interactions caused by volume conduction 8–10, for verification. For both PLV and iPLV connectivity, 
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the fraction of significant edges (K) is the number of significant edges divided by the total possible 

edge number. Since one same white-matter contact can be used for referencing multiple cortical 

contacts, we rejected derivations with shared reference. 

Statistical hypothesis tests 

We estimated the null-hypothesis distributions of interaction metrics with surrogates that preserve the 

temporal autocorrelation structure of the original signals while abolishing correlations between two 

contacts. For each contact pair, we divided each narrow band time series into two blocks with a 

random time point k so that 𝑥1(𝑡) =  𝑥(1 … 𝑘) and 𝑥2(𝑡) = 𝑥(𝑘 … 𝑇), and constructed the surrogate 

as  𝑥𝑠𝑢𝑟𝑟(𝑡) =  [𝑥2 , 𝑥1 ]. We computed surrogate PLV across all channel pairs and assembled the 

surrogate interaction matrix, and its mean and standard deviation was later used in hypothesis testing. 

Correlation estimates post-processing 

To demonstrate how interaction strength varies as a function of spatial distance between recording 

sites, we divided the inter-contact distances into three ranges (short (SH) 2 cm ≤ x < 4.6 cm; medium 

(MD) 4.6 cm ≤ x < 6 cm, and long-range (LG) 6 ≤ x < 13 cm) with same number of edges falling into 

each distance range.  Therefore, we averaged across subjects all the edges falling within each distance 

range and for each frequency band separately (N=48702/range). The confidence intervals for PLV 

and iPLV, were expressed relatively to the surrogate means (SM) for PLV (3.42*SM corresponding 

to p < 0.001, Rayleigh distribution), and the surrogate standard deviations (SD) for iPLV (3.58*SD 

corresponding to p < 0.001, normal distribution). 

To compare signals from superficial and deep layers in the grey matter (Fig. 4 and Suppl. Fig. 3), we 

divided contacts into “shallow” and “deep” based their Grey Matter Proximity Index (GMPI)2 that is 

defined as the relative distance between the contact location and the nearest white-grey border 

surface, normalized by the grey matter thickness at that location:  

GMPI = [(C − W) ⋅ (P − W)]/|P − W|             (2) 

where P(x, y, z), W(x, y, z) and C(x, y, z) are the vertices on the pial, white-matter surface and contact 

coordinates in 3D individually reconstructed brain from MRI scan, respectively. Values 0 < GMPI < 

1 indicate that the contact midpoint is located in grey matter whereas a negative GMPI indicates that 

the contact midpoint is in the white matter.  

We set the criteria -0.3 < GMPI < 0 and 0.5 < GMPI < 1.2 to classify deep and superficial layer 

contacts respectively. Next, PLV and iPLV estimates were averaged across subjects between deep-

deep (DD) and superficial-superficial (SS) contact-pairs. We tested for between groups difference 
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with a paired permutation test (100 random samples created by shuffling SS and DD labels within 

subjects; threshold for significance corrected for multiple comparisons with Bonferroni p < 0.05/N, 

with N=18). 

Anatomical co-localization of SEEG implant and Functional System characterization 

To show that high-gamma phase coupling is associated with a common systems-level mechanism, 

we assessed the fraction of significant edge (K) between functional systems11. We extracted cortical 

parcels from pre-surgical T1 MRI 3D-FFE (used for surgical planning) using Freesurfer 12, and we 

used the new Schaefer parcellation 13 that favours functional networks topology over structural (gyral) 

topology 14. The resulting cortical meshes were divided into seven functional systems: Visual, 

somato-motor (SM), Dorsal Attentional (DAN), Ventral Attentional (VAN), Limbic, Fronto-parietal 

(FP), and Default Mode Network (DMN).  This atlas does not include subcortical regions and thus 

subcortical contacts were discarded from this analysis. We thus assigned each cortical contact to a 

cortical parcel that belongs to a functional system. We then computed the fraction of significant edges 

(K) between 7 functional systems.  

Note that we initially conducted this analysis in the Destrieux 148-parcel atlas 14, but we re-analysed 

the whole dataset with the Schaefer atlas 13 after its release for both verifying the observations in the 

Destrieux atlas and for achieving optimal parcel-to-system morphing quality. 

Cross-frequency coupling of slow rhythm phase and fast rhythm amplitude  

Two signals of distinct rhythms are cross-frequency phase-amplitude coupled (PAC) if the phase of 

a slow neuronal oscillation modulates the amplitude fluctuations of the faster neuronal oscillations. 

PAC can be estimated using phase synchronization, Euler’s formula, or examining whether the power 

of fast rhythms is non-uniformly distributed over low-frequency phase 15–19. 

The rationale is that if the power fluctuations of fast rhythms are modulated by the phase of the slow 

oscillations, the fluctuations of these two time-series should be synchronized. In this study, we 

estimated PAC with the phase locking value (PLV) as: 

𝑃𝐿𝑉 = |
1

𝑁
∑ 𝑒𝑖(𝜃𝑎𝑚𝑝(𝑛)−𝜃𝑝ℎ𝑎𝑠𝑒(𝑛))𝑁

𝑛=1 |    (3) 

where 𝜃𝑎𝑚𝑝(𝑛) is the phase time series of the power envelope of fast rhythm while 𝜃𝑝ℎ𝑎𝑠𝑒 (𝑛) is the 

narrow band phase time series of the slow rhythm.  When there is a consistent relationship between 

these two time-series, the vector length of the mean phase differences (in the polar coordinate across 

all n samples) should be greater than zero, and a maximum value of 1 indicates perfect coupling. The 
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significance of PAC PLV value was determined in the same manner in individual subjects as we 

conducted for 1:1 phase synchrony described earlier. 

Detecting the modular structures  

If observed individual level long-range phase synchrony between SEEG contacts are truthful, we next 

ask ourselves whether, on the population level, the observed synchrony networks are functionally 

meaningful; in other words, whether the networks can be reliably subdivided into well-separated 

functional subsets of nodes, or ‘modules’, across frequencies and in particular in the HGA band. 

To answer this question, we first unambiguously assigned each cortical SEEG contact to one of the 

100 Schaefer parcels13 (subcortical and EZ cortical contacts were not analyzed). For each frequency, 

we pooled PLV values of contact-pairs originating from homologous parcel-pairs across population, 

and then assigned to each parcel-pair the median of these pooled PLV values, defining this median 

value as the weight of the edge between the selected parcels. The median was used because of the 

non-normality of PLV distribution. Finally, we removed those edges that had not been sampled at 

least 20 times in total, and by at least 3 different subjects. By doing so, we collapsed sparsely sampled, 

patient-specific contact-pair networks into well-sampled, population-level phase synchrony 

networks, defined over brain regions (see Fig. 1c).  Due to the low inter-hemispheric contact 

coverage, we limited our investigation to intra-hemispheric modular structures. 

Given the sparse and non-homogenous sampling of cortical space across patients, 10% to 20% of all 

possible parcel-pairs have not been sampled, i.e., matrices have missing values (Fig. 1c). We assume 

that the missing PLV values come from the same probability distribution of the observed part of the 

corresponding network. Under this assumption, for each frequency, we generated 1,000 variants of 

the original phase synchrony network, by filling in each missing edge with the PLV value of an 

existing edge, randomly and independently selected. We then used a consensus clustering approach20 

over these 1,000 variants for the computation of the modules. Thereby, the modules successively 

obtained from these ‘filled’ networks are less likely confounded by distributed local fragmentation of 

the network topology due to missing values. 

We applied the Leiden algorithm21 to identify modules in each of the 1,000 variants. The resolution 

γ parameter of the method weighs the importance of the null model (i.e., random network with no 

modular structure) against which the original network is compared, when identifying the network 

partition which maximise the modularity value: 

𝑄(𝛾) =
1

2𝑚
∑ [𝐴𝑖,𝑗 − 𝛾𝑝𝑖,𝑗]𝛿(𝜎𝑖, 𝜎𝑗)𝑖,𝑗         (4) 
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where 𝑄(𝛾) is the modularity value at resolution parameter 𝛾, 𝑚 is the total strength of the network, 

𝐴𝑖,𝑗 is the network value in row 𝑖 and column 𝑗, while 𝑝𝑖,𝑗 are the network values in the null model, 

i.e. expected by chance for row 𝑖  and column 𝑗 . Here, 𝑝𝑖,𝑗 =
𝑘𝑖𝑘𝑗

2𝑚
, where 𝑘𝑖  and 𝑘𝑗  are the total 

strength of network values in row 𝑖 and column 𝑗 respectively; 𝛿(𝜎𝑖, 𝜎𝑗) is equal to 1 when node 𝑖 and 

node 𝑗 belong to same community, and 0 otherwise. The modularity value measures the quality of the 

network partition: a good partition should maximize the connections between nodes in the same 

module, while minimizing the connections between nodes in different modules. Values of γ less than 

1 tend to favour a small number of large communities, since the null model is down-weighed; on the 

contrary, values of γ larger than 1 tend to produce a high number of small communities, since the 

importance of the null model is up-weighted. We computed module partitions for a range of values 

for γ, from 1 to 1.5, with steps of 0.05. 

For each frequency and value of γ, we computed a single partition from the 1,000 variants of the 

original network, using a consensus approach20. Briefly, we first computed a modular partition for 

each of the 1,000 variants of the network; from this partition we derived a binary community co-

assignment matrix C, where Cij equals 1 when brain region i and j are assigned to the same module 

and 0 otherwise. This was done in order to be able to compare and pool together different partitions, 

despite possible differences in the numberings of the modules across partitions. We then averaged 

the 1,000 community co-assignment matrices into a single weighted matrix, where each weight 

estimates how often the corresponding pair of nodes were assigned to the same module. We fed this 

final matrix again to the Leiden method, with the same γ value used on the 1,000 variants, to produce 

a single final partition for the given γ. This consensus clustering method considers the set of 1,000 

variants of the functional network as ‘noisy’ versions of the true underlying network: by averaging 

their partition assignments, the graph noise at individual level can be mitigated. 

We also evaluated the similarity between two partitions m and n across frequencies and resolutions. 

Here, m and n are two vectors with as many elements as the cortical parcels: the value of each element 

is the ID of the module to which the parcel was assigned in the partition.  For each m and n, we created 

the community co-assignment matrices 𝐶(𝑚)  and 𝐶(𝑛)  as described earlier, and computed the 

partition similarity between m and n as22: 

𝑐𝑜𝑟(𝑙𝑚, 𝑙𝑛) =
〈𝑙𝑚, 𝑙𝑛〉

√〈𝑙𝑚, 𝑙𝑚〉〈𝑙𝑛, 𝑙𝑛〉
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where 〈𝑙𝑚, 𝑙𝑛〉 = ∑ 𝐶𝑖,𝑗
(𝑚)

𝐶𝑖,𝑗
(𝑛)

𝑖,𝑗 . Since the dot product 〈𝑙𝑚, 𝑙𝑛〉 satisfies the Cauchy-Schwartz 

inequality, such that 〈𝑙𝑚, 𝑙𝑛〉 ≤ √〈𝑙𝑚, 𝑙𝑚〉〈𝑙𝑛, 𝑙𝑛〉, the partition similarity equals 0 for uncorrelated 

partitions and 1 for identical partitions. We only computed the similarity between partitions of the 

same hemisphere of the brain, and not between partitions of different hemispheres because, in the 

Schaefer atlas, the subdivision into brain region is asymmetric across hemispheres, and the number 

and demarcation of nodes is different. 

Lastly, we assessed the range of resolution parameter values at which modules could be reliably 

identified. This was done both at the level of the entire network as well as at the level of individual 

regions (see Suppl. text). 

PLV in amplitude bins 

To assess whether larger values of phase synchrony were correlated with higher amplitude values, 

we estimated instantaneous amplitude and phase profiles of the filtered time-series by means of 

Hilbert transform. We then normalised each amplitude time-course by its median and divided the 

normalized amplitude samples in quintiles. For each frequency, we built an amplitude-amplitude 

correlation matrix containing the instantaneous phase difference between channel pairs of each time-

samples at that amplitude bins. We discarded amplitude samples larger than twice the amplitude 

median to remove effects of subthreshold spikes. We quantified the number of time-samples falling 

in each bin as a simple amplitude correlation measure. We hypothesized that that, if a given contact 

pair is amplitude correlated, the time-samples would not be randomly distributed over amplitude bins. 

Indeed, it will result in highly skewed distribution of time-samples towards larger amplitude bins. On 

the other hand, in the absence of real amplitude correlation that distribution would be 

undistinguishable from a uniform distribution. Hence, to test for a moment-to-moment amplitude 

correlation, we quantified the distance of the time-sample distribution from a uniform distribution for 

each amplitude-amplitude bin under the above null-hypotheses of no correlation. To quantify whether 

phase consistency was correlated with moment-to-moment amplitude modulation, we quantified PLV 

in each amplitude-amplitude bin. The PLV is a measure sensitive to the sample number used23, hence 

we quantified the minimum number of samples falling in each bin and then quantified PLV in 

amplitude bin with matched time-samples. Specifically, for each contact pair, we computed 

instantaneous phase difference across the entire time course. By grouping instantaneous amplitude 

samples falling in same bin, we averaged phase differences in each amplitude bin and later averaged 

this quantity across channel pairs and subjects.  

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/442251doi: bioRxiv preprint 

https://doi.org/10.1101/442251
http://creativecommons.org/licenses/by-nd/4.0/


32 

 

Evoked Phase Synchronization 

In order to investigate whether HG synchrony was functionally relevant in cognitive tasks, we 

recruited 11 subjects and had them perform a visuo-motor Go/no-Go task24. Subjects were asked to 

respond as quickly as possible to a Go cue (blue rectangle) by pressing the space bar on a standard 

keyboard and ignore the no-Go cue (yellow rectangle). After an initial two minutes of resting state 

(used as control condition in the following analyses), subjects performed a total of 1000 trials (750 

Go trials). Pre-processing of SEEG data remained unchanged compared to resting-state analyses. 

Specifically, we removed any defective contacts as well as those recording from subcortical 

structures. We used CW referencing as reference schema and removed all common-reference contact 

pair for further pairwise analyses. Filter settings and spectral resolution remained unchanged as in the 

resting-state case described above. Three patients showed no responses in any channels and thus were 

excluded from further analyses. 

To assess whether a cortical response could be measurable after stimulus onset, we measured Event 

Related Synchronization and Desynchronization (ERSD) for each frequency separately. For each 

CW-referenced SEEG contact, we averaged responses across trials, then normalised evoked 

responses by subtracting the mean baseline amplitude (from 500 to 10 ms before stimulus onset) and 

smoothed with a moving average FIR filter of 25 ms length in order to more reliably estimate peaks 

in amplitude response. Finally, we normalised (z-score) each ERSD and, for each subject, we divided 

the contacts in two groups (task-relevant and -irrelevant) of 30 channels each based on their average 

amplitude response during 200−550 ms after NoGo cue onsets. 

We next compared phase synchronization between resting and task conditions in these eight subjects. 

We computed the cPLV dividing the task data (on average 15 minutes) in 2 minutes (i.e., equivalent 

to the duration of initial resting period) long non-overlapping windows in order to account for the 

sample-size bias of PLV estimates under the null-hypothesis of no coupling, i.e., the larger the sample 

size the smaller the surrogate PLV and hence the more significant the effect might appear. For the 

evoked phase synchrony, we divided each trial (−500 ms to 800 ms around visual cue onset) in 

thirteen 100 ms long windows. Then, we computed the time-resolved cPLV in each time window by 

averaging phase differences within each time windows across trials. Evoked cPLV surrogates were 

constructed by randomly shuffling trials of one channel while keeping unchanged the trial order of 

the other one. We also replicated our observation of time-resolved cPLV for five 260 ms long 

windows (data not shown). 
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Statistical assessment of task relevant effect 

We first performed a permutation test for rest vs task condition on static iPLV. Hence, we pooled 

phase synchrony estimates across subjects and randomly permuted 10,000 times rest and task labels. 

Then, we computed the p-value as the fraction of permuted elements whose iPLV rest-task difference 

exceeds the observed (non-permuted) difference using the exact p-value approximation described in 

25.  

Finally, to describe effects of cognitive load on phase synchronization compared to surrogates and 

between task-relevant and irrelevant channels, we performed a randomization max T test with p < 

0.05. In this test for each comparison, we picked the maximum value of test statistics (iPLV 

difference) across time-bins for all 1000 permutations. We then computed the p < 0.05 confidence 

limit on these 1000 permuted max T and tested whether the observed iPLV difference was above that 

threshold in any time bins for both surrogates and task-irrelevant/relevant tests. 

 

References (Methods) 

1. Cardinale, F. et al. Stereoelectroencephalography: Surgical methodology, safety, and 

stereotactic application accuracy in 500 procedures. Neurosurgery  72(3), 353-66 (2013).  

2. Arnulfo, G., Hirvonen, J., Nobili, L., Palva, S. & Palva, J. M. Phase and amplitude correlations 

in resting-state activity in human stereotactical EEG recordings. Neuroimage 112, 114-127 

(2015).  

3. Cossu, M. et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: 

a retrospective analysis of 215 procedures. Neurosurgery 57(4) , 706–18 (2005). 

4. Luders, H. ., Engel, J. J. & Munari, C. General principles. in Surgical Treatment of the 

Epilepsies . 2nd ed. 137–153 (1993). 

5. Bartolomei, F., Guye, M. & Wendling, F. Abnormal binding and disruption in large scale 

networks involved in human partial seizures. EPJ Nonlinear Biomed. Phys.1, 4 (2013).  

6. Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling 

predict seizure propagation. Brain 140(3), 641-654(2017). 

7. Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring Phase Synchrony in 

Brain Signals. Hum Brain Mapping 8, (1999). 

8. Nolte, G. et al. Identifying true brain interaction from EEG data using the imaginary part of 

coherency. Clin. Neurophysiol. 115(10), 2292-307 (2004) 

9. Palva, S. & Palva, J. M. Discovering oscillatory interaction networks with M/EEG: Challenges 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/442251doi: bioRxiv preprint 

https://doi.org/10.1101/442251
http://creativecommons.org/licenses/by-nd/4.0/


34 

 

and breakthroughs. Trends in Cognitive Sciences 16(4), 219-30 (2012).  

10. Palva, J. M. et al. Ghost interactions in MEG/EEG source space: A note of caution on inter-

areal coupling measures. Neuroimage 173, 632-643 (2018).  

11. Thomas Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic 

functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011). 

12. Fischl, B. et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical 

Structures in the Human Brain. Neuron 33, 341–355 (2002). 

13. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic 

Functional Connectivity MRI. Cereb. Cortex 28(9), 3095-3114 (2017).  

14. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri 

and sulci using standard anatomical nomenclature. Neuroimage  53(1), 1-15 (2010).  

15. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends in 

Cognitive Sciences 14(11), 506-515 (2010).  

16. Jensen, O. & Colgin, L. L. Cross-frequency coupling between neuronal oscillations. Trends in 

Cognitive Sciences 11(7), 267-269(2007).  

17. Jirsa, V. & Müller, V. Cross-frequency coupling in real and virtual brain networks. Front. 

Comput. Neurosci. 7, 78 (2013).  

18. Tort, A. B. L., Komorowski, R., Eichenbaum, H. & Kopell, N. Measuring Phase-Amplitude 

Coupling Between Neuronal Oscillations of Different Frequencies. J. Neurophysiol. 104(2), 

1195-210 (2010).  

19. Hyafil, A., Giraud, A. L., Fontolan, L. & Gutkin, B. Neural Cross-Frequency Coupling: 

Connecting Architectures, Mechanisms, and Functions. Trends in Neurosciences 38(11), 725-

740 (2015).  

20. Lancichinetti, A. & Fortunato, S. Consensus clustering in complex networks. Sci. Rep. 2, 336 

(2012).  

21. Traag, V., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected 

communities. Sci. Rep. 9, 5233 (2018). 

22. Ben-Hur, A., Elisseeff, A. & Guyon, I. A stability based method for discovering structure in 

clustered data. in Biocomputing 7,  6-17  (2002).  

23. Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F. & Pennartz, C. M. A. An 

improved index of phase-synchronization for electrophysiological data in the presence of 

volume-conduction, noise and sample-size bias. Neuroimage 55, 1548-1565 (2011).  

24. Simola, J., Zhigalov, A., Morales-Muñoz, I., Palva, J. M. & Palva, S. Critical dynamics of 

endogenous fluctuations predict cognitive flexibility in the Go/NoGo task. Sci. Rep. 7, 2909 

(2017).  

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/442251doi: bioRxiv preprint 

https://doi.org/10.1101/442251
http://creativecommons.org/licenses/by-nd/4.0/


35 

 

25. Phipson, B. & Smyth, G. K. Permutation P-values should never be zero: Calculating exact P-

values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9(1), (2010).  

 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/442251doi: bioRxiv preprint 

https://doi.org/10.1101/442251
http://creativecommons.org/licenses/by-nd/4.0/


36 

 

Supplementary Text  

Is high-gamma synchronization attributable to artificial sources?  

Cohort demographics and sampling statistics. 

The majority of the patients had SEEG electrodes implanted either in left or right hemisphere, 

and 11 subjects had bilateral implantation. There was some variability in non-epileptic cortical 

contact number per patient (b) and distinct patients per cortical parcel (c), but contact number 

and fraction of subject per parcel was correlated (r= 0.9), thus ruling out the possibility that a 

subset of subjects is biasing the connectivity estimates on parcel-to-parcel scale. On the 

systems-level the right hemisphere was sampled more extensively than the left hemisphere 

(d), but note that the majority of the left hemisphere functional systems was sample with more 

than 20 distinct subjects. Therefore, the connectivity is well sampled on the systems-level as 

well.  

 

For the majority of the connectivity analyses, we included only the tentative healthy contacts 

(Fig 1, Suppl. Fig. 1 c,d), but we also analyzed the epileptogenic (EZ) contacts for some 

comparisons. The spatial sampling of the EZ contacts is shown in panels e and f of Suppl. Fig. 

1. 

HGA phase synchrony is a property of inter-areal coupling in human brain and is not 

confounded by specific referencing scheme or volume-conduction. 

Referencing scheme Although local white matter referencing effectively suppresses volume-

conducted signal components and best preserve phase dynamics1, we employed two extra 

control analyses to confirm that high-gamma synchronization was not attributable to 

referencing scheme and/or volume conduction.  

 

First, we inspected the mean PLV as a function of frequency using the classical bipolar 

referencing (i.e., each contact is referenced by its neighbouring contact). With a center-to-

center separation of 3 mm between two neighbouring contacts, bipolar signals reflect strictly 

local neuronal activities. However, it can also distort signals due to cancellation, especially 

when neighbouring contacts are located in functionally/anatomically different regions 1. The 

mean PLV and the fraction of significant PLV of bipolar data (Suppl. Fig. 1g) had no visible 

differences from corresponding results with white matter referencing (Fig. 2a, b).  

 

Volume conduction The PLV is known to be contaminated with spurious correlations due to 

volume conduction or field spread in macro-scale, on-scalp measurement of the cortical 

activity such as EEG and MEG. We excluded nearby contacts from phase synchrony analysis, 

but to further prove the observed HGA synchrony with PLV was not due to volume 

conduction, we inspected the phase synchronization using the imaginary part of the complex-

valued PLV (iPLV). The iPLV is insensitive to instantaneous linear signal mixing effects 2–4. 

However I did not use it as a main connectivity metric because it does not report true near 

zero-phase-lag interactions, and its ambiguity: a change in the iPLV value can be caused by a 

change in phase locking, a change in the phase lag, or the combination of both.  

 

We found that the HGA synchrony remained prominent when estimated with iPLV for both 

closest-white-matter (Suppl. Fig. 1h) and bipolar (Suppl. Fig. 1g) referencing. Hence, a 
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significant amount of the long-range HGA synchrony emerged between local populations 

have non-zero phase lag (i.e., iPLV remove phase correlations with near zero phase-lag). 

 

Last, with bipolar referencing, we reproduced similar results on synchronization profiles 

between cortical layers (Suppl. Fig. 2a, see Fig 4). Bipolar approach mixes neuronal sources 

coming from superficial and deep layers given the contact edge-to-edge distance of 1.5 mm 

and the contact dimensions of 2 mm which are comparable to the average cortical thickness 

in adult brain 4mm1. Interestingly, phase synchrony was not different between deep and 

shallow bipolar referenced contacts (permutation test, p < 0.05 Bonferroni corrected with 

N=18) for slower rhythms (< 100Hz) (Suppl. Fig. 2a). This might arise from the fact that 

slower oscillations have been demonstrated to spread much further in distance compared to 

HGA, hence leading to a cancellation between layers due to the inappropriate bipolar 

referencing (i.e., the main merits of the closest-white-matter over bipolar referencing). On the 

other hand, the highly local nature of HGA still yields significant difference between shallow 

and deep contacts even at long-range distances. This suggests that HGA synchrony is an actual 

property of the human cerebral cortex and that such synchrony is tightly related to cortical 

laminar architecture.  

 

In summary, the parallel set of analyses conducted using bipolar montage and iPLV (Suppl. 

Fig. 2, 3) effectively refuted that the HGA phase coupling were attributable to extra-cranial 

sources of physiological artefacts, such as eye or scalp muscle activities, or external device 

related noise patterns. Such sources of non-neuronal origin could not produce electric field 

gradients steep enough to be observable in bipolar recordings while maintaining systematic 

long-range phase relationships with a non-zero-lag between widely separate and highly local 

cortical SEEG signals. 

Line-noise leakage does not confound HGA phase synchrony.  

To test whether an insufficient attenuation in band-stop filters left residual artefactual power 

from line-noise sources, we divided subjects in two groups based on relative quantity of line 

noise power in respect to side bands (see Methods). Properly controlled setup has already 

ruled out much contribution from line-noise: 6 subjects showed peaks in power spectrum 

profiles (Suppl. Fig. 3a). We used k-means algorithm to split population in two groups using 

a 9 dimensional parameter-space described by the relative power of line-noise central peak, 

i.e. 50Hz, and its 6 harmonics (100, 150, 200, 250, 300, 350, 400, 450 Hz) in respect to the 

side bands (5Hz each). Principal Component Analysis (PCA) suggested that two groups could 

be identified (Suppl. Fig 3b, their power spectrum see c, d). Finally, we computed mean PLV 

and iPLV (Suppl. Fig. 3e, 3f) for both groups and found no differences between groups. Thus, 

we concluded that line-noise does not confound observed HGA phase synchronization.  

Split-cohort reliability of strength, density and connection pattern of HGA synchrony  

The HGA synchronisation had split-cohort reliability in PLV strength and K on contacts level 

and systems-level (Suppl. Fig. 4 a, b & d, e, see Fig. 2a, b) and pattern of functional 

connections (Suppl. Fig. 4c, right). We split the subjects into two cohorts (34, 33 subjects 

respectively) so that match between number of contacts per region in the two cohorts was 

maximised (Suppl. Fig 4c, left). It is inconceivable that the across-subject reproducibility of 

large-scale cortical architecture could arise from technical artefacts or extra-cranial sources in 

a cohort where each subject has a unique pattern of SEEG shaft implantation. 
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Spectral leakage from lower-frequency processes and filtering approach.  

We considered whether high-gamma synchronization could be explained by inadequate 

attenuation in band-pass filtering, which would cause leakage of low-frequency components 

into the high-gamma band. This confounder was ruled out due to absence of any low-

frequency components in the filtered time series (Suppl. Fig. 5a).  From the physiological 

perspective, the dissimilarity between the community structures high-gamma synchronization 

to reflect a facet of neuronal activity that is distinct from the lower-frequency (< 100 Hz) 

signals.  

Moreover, to exclude the possibility that the observations of HGA could be biased by the 

finite impulse response (FIR) filtering approach, we used Morlet filtering to reproduce all 

principal analyses. We found Morlet wavelets (Suppl. Fig. 5b) to yield similar results as FIR 

filters (see Fig. 2a, b) for closest-white-matter referenced data. 

Ruling out other possible confounders: Dissociation of oscillatory from unitary spike-like 

generators of high-gamma activity.  

Technical confounder from the amplifier Given the relatively small amplitudes of cortical 

oscillations in high-gamma range, we asked whether observed phase synchrony could 

possibly be due to synched noise generated within amplifiers. At the beginning of 2017 the 

Niguarda Hospital renewed the acquisition system to a more recent version from Nihon-

Kohden. Hence, we acquired 10 new subjects (data not included in main results but presented 

here) as well as 10 minutes data from two electrodes (18 contacts each) immersed in a saline 

solution. We then performed the same analysis pipeline on these data and observed that saline 

solution yields no synchrony in any frequency range (Suppl. Fig. 6a). Furthermore, the 

strength of between-contact phase synchrony from saline solution test is close to the surrogate 

of patients data but smaller than the HGA synchrony strength. Thus we concluded that the 

observed HGA synchrony is not due to artificial sources from the acquisition system. 

 

Spikes are not correlated with synchrony strengths Theoretically, transient spike-like 

neuronal events could be picked up by filtering in the high-gamma frequency band. We 

effectively discarded all time-windows containing epileptic spikes (referred to as “cleaned-

data”, see main text and Methods) that could possibly introduce spurious correlations. We 

found that the number of spikes detected were not correlated with the mean PLV across most 

of the frequencies except for 2.5 Hz (Suppl. Fig. 6c), which rules out the phase 

synchronization observed in the gamma to ripple frequency bands is artificial due to the 

epileptic or inter-ictal spikes.  

 

No evidence of muscular activity contributions to HGA synchrony To further assess 

whether muscular activity inflated the PLV estimates, we hypothesized that contacts closer to 

skull would have picked more muscular activity compared to contacts recording far from it. 

Hence, we analyzed separately contacts recording far-from-skull and those near-skull. We 

observed that former type of contacts show increased phase synchrony compared to latter 

(Suppl. Fig. 6d) further suggesting absence of confounds from muscular artefacts. 

 

However, sub-thresholds spikes could still artificially inflate phase synchrony. We localized 

all high-gamma amplitude peaks from our cleaned-data and assessed the phase distributions 

of high-gamma oscillations at the amplitude peaks for channel pairs exhibiting significant (p 
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< 0.001) long-range phase coupling. If spikes played any role in the generation of these 

signals, the phase distributions would have a peak at zero-lag whereas for ongoing 

oscillations, these distributions are indistinguishable from a uniform distribution. We set the 

amplitude peak detection threshold to mean plus three times the standard deviations of the 

filtered amplitude time series, which yielded 1523.06 ± 231850 (mean ± SD) peaks per 

electrode contact. 

 

We found that 81.2% ± 0.29% of channels show phase distribution at amplitude peaks 

indistinguishable (p > 0.001, Rayleigh test for uniformity) from uniform phase distribution. 

This observation further consolidates the notion of these high-gamma observations are 

reflecting genuine neuronal oscillations.  

The synchrony was different between sleep and wakeful resting.  

To further support physiological relevance of the HGA synchrony, we measured phase 

synchrony with iPLV during slow-wave sleep (SWS) in 7 subjects and compared with iPLV 

during resting state for the same 7 subjects. The matrices of mean iPLV (across HGA 

frequencies) between functional systems were different between rest and sleep conditions 

(dissimilarity permutation test, p < 0.001, N = 1,000, one-tailed), (Supp. Fig. 7a,b). Distance 

between rest and sleep mean PLV matrices was quantified using dissimilarity, i.e., 1-

correlation, between the matrices. Null distribution of dissimilarity was estimated by 

computing dissimilarity between pairs of surrogate rest and sleep matrices, generated by 

random mixing (without replacement) 1,000 times of the rest and sleep subject-level matrices 

prior to estimating the surrogate group-level rest and sleep matrices. Furthermore, higher 

phase synchrony, as measured with iPLV, was found for slow-wave sleep within the limbic 

system and between the limbic and default-mode and ventral-attention systems (two-tailed t-

test, p < 0.05, uncorrected). 

These findings together with all above proves that high-gamma synchrony is a general 

property of cortical dynamics, which is modulated by altered conscious states during SWS 

and hence cannot be attributable to artefactual source.   

Additional PLV in AA bins frequency 

To further corroborate that HGA synchrony is mostly correlated with HG amplitude bursts 

rather than with background activity, we showed that higher PLV values are measured in 

correspondence with concurrent amplitude bursts between contacts. This main effect is shown 

in Fig.5, and here we show the other ranges of HGA (Suppl. Fig. 8). 

Community structures are stable at a range of resolution parameter values 

To assess the range of resolution parameters at which communities could be identified, we 

performed tests at the level of individual regions and also at the level of the whole network. 

The range of resolution parameter values explored was 1 to 1.5 and for this range, the number 

of modules identified was between 2 and 13 (Suppl. Fig. 9a).  

At the level of the whole network, we determined if the ‘modularity’ value of the network, i.e. 

the extent to which it can be divided into non-overlapping communities, was higher than that 

of equivalent random networks. We found that across the high-gamma frequencies, there was 

a range of resolution parameters for which the networks were significantly modular 

(permutation test, p<0.05, N=100, one-tailed) (Suppl. Fig. 9b). This was so for both left and 

right hemispheres. 
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To determine the range of resolution parameters at which significant modular structure can be 

detected, we first identified modules at γ values from 1 to 1.5 using consensus clustering with 

100 repetitions (see Methods). For the identified modular structure at each γ value, the 

‘modularity’ output parameter was obtained, i.e., the extent to which network can be sub-

divided into non-overlapping modules. To determine if this modularity value was statistically 

significant, we generated equivalent random networks of the original network, by randomly 

rewiring the edges while maintaining degree and strength distributions of the original network. 

Modules were then identified for this ensemble of 100 equivalent random networks, for the 

gamma values between 1 and 1.5, and the corresponding modularity value was obtained. This 

procedure was repeated 100 times, to obtain a distribution of modularity values corresponding 

to equivalent random networks. For the entire set of gamma values, modularity from the 

original network was z-scored with respect to the distribution of modularity values for 

equivalent random networks. The γ values for which modular structure had a z-scored 

modularity value > 2 were marked as statistically significant. This was done for frequencies 

from 113 Hz to 320 Hz, and for two hemispheres separately. 

At the level of individual regions, we assessed the percentage of stable regions, i.e. the 

percentage of regions for which modules could be assigned reliably (Suppl. Fig. 9c). For each 

of the high-gamma frequencies, across the range of resolution parameters studied, we found 

a statistically significant percentage of stable regions (bootstrapping test, p<0.05, N=100, one-

tailed) for both left and right hemispheres. 

To determine the reliability with which each brain region can be assigned to its module, we 

generated a set of 100 functional connectomes for each HGA frequency band by bootstrapping 

(with replacement) across subjects. For 1< γ < 1.5, we identified modules for each of the 

bootstrapped connectomes, via consensus clustering with 100 repetitions (see Methods). 

Then, for each brain region, we generated a vector indicating the set of regions in its same 

module (indicated by 1) and those regions in other modules (indicated by 0). This vector was 

compared to the corresponding vector from the modular structure of the original functional 

connectome. In particular, we estimated the sum of the number of regions that were correctly 

located in the same module and the number that was correctly located in other modules 

(compared to the original modular structure), as a function of the total number of regions 

(excluding own region). This was done for each of the 100 bootstrapped functional 

connectomes and gave a value between 0 and 1, quantifying the similarity of the modular 

structure between the original and bootstrapped network, for that region. Values close to 1 

across the 100 bootstrapped networks indicate that the assignment of the region to its module 

in the original network is reliable. To ascertain a statistically significant and reliable module 

assignment, we created a null-distribution by estimating the same measure when the vector 

indicating the modular structure of a region is randomly permuted 100 times (without 

replacement). The module affiliation of a region was then considered to be stable if the mean 

‘reliability’ of the region across the 100 bootstrapped networks was higher than the 95th 

percentile value of the corresponding null distribution, i.e. mean ‘null reliability’ across 

permutations, for the 100 bootstrapped networks.  The percentage of stable regions was 

considered statistically significant when it was higher than 5% of the total number of regions, 

which was the expected false positive rate. 

 

 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/442251doi: bioRxiv preprint 

https://doi.org/10.1101/442251
http://creativecommons.org/licenses/by-nd/4.0/


41 

 

References (Suppl. Text) 

1. Arnulfo, G., Hirvonen, J., Nobili, L., Palva, S. & Palva, J. M. Phase and amplitude correlations 

in resting-state activity in human stereotactical EEG recordings. Neuroimage 112, 114–127 

(2015). 

2. Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in 

brain signals. Hum. Brain Mapp. 8, 194–208 (1999). 

3. Palva, S. & Palva, J. M. Discovering oscillatory interaction networks with M/EEG: Challenges 

and breakthroughs. Trends Cogn. Sci. 16, 219–230 (2012). 

4. Palva, J. M. et al. Ghost interactions in MEG/EEG source space: A note of caution on inter-

areal coupling measures. Neuroimage 173, 632–643 (2018). 

  

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/442251doi: bioRxiv preprint 

https://doi.org/10.1101/442251
http://creativecommons.org/licenses/by-nd/4.0/


42 

 

 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/442251doi: bioRxiv preprint 

https://doi.org/10.1101/442251
http://creativecommons.org/licenses/by-nd/4.0/


43 

 

Figure S1 

Cohort demographics and supporting evidences against confounds by specific referencing scheme or volume 

conduction.  

a, Number of SEEG electrode contacts per subject in cortical and sub-cortical regions (in left or right hemisphere). b, 

Number of epileptic (EZ) and healthy (nEZ) cortical contacts. c, Number of subjects sampled in each Schaefer cortical 

parcel using nEZ contacts only. d, Number of subjects sampled in each of the 7 functional systems. e, Number of distinct 

EZ contacts across subjects for each of 100 cortical parcels (Schaefer et al, 2017). f, Number of subjects with at least one 

EZ contact in each of 100 cortical parcels (Schaefer et al, 2017). g, The main finding of HGA phase synchrony (see Fig. 

2) persists when using the bipolar referencing scheme and when synchrony was estimated with iPLV and K of iPLV; 

shaded areas represent confidence limits (two-tail; p < 0.05) for bootstrapped values (N = 100). Dashed lines represent 

surrogate (N = 100) data level for p < 0.001. h, iPLV and connection density K for closest-white referenced data. i, 

Number of cortical contacts in the Go/NoGo cohort. 
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Figure S2  

High-gamma phase synchrony also differs between cortical layers in bipolar-referenced data.  

a, Different layer profiles in HGA frequencies for bipolar-referenced data at short, medium and long distances. Shaded 

areas represent 2.5% and 97.5% confidence limits for bootstrapped values (N = 100).  Square markers represent 

significance for a two-tail permutation test (N = 100) over edges with p < 0.05. b, Mean phase synchrony as estimated 

with iPLV and K of iPLV of closest-white-matter referenced data also shows distinct layer profiles.  
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Figure S3 

Line noise harmonics are not correlated with increased phase synchrony.  

a, Group average (red) and single-subject (gray) mean power (across channels) of the unfiltered raw time-series show the 

presence of line-noise peaks. b, PCA-decomposed power ratio of central line noise harmonics relative to side-flanks show 

a clear separation between affected (red) and un-affected (azure) subjects. c-d, Within-group mean power for unaffected 

(azure) and affected (red) subjects show that the vast majority (61/67) of data are not affected by line noise. e-f, No 

prominent differences in mean PLV and mean iPLV are observed between the two groups, indicating complete 

suppression of line-noise artefacts. 
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Figure S4 

Strength, density and 

connection patterns of High-

gamma phase synchrony are 

split-cohort reproducible.  

a-b, The mean phase synchrony 

(PLV) and fraction of significant 

PLV (K) of the two cohorts. c, 

Left: Number of contacts per 

connection in the Schaefer 

parcellation for the two cohorts. 

Right: Spearman correlation 

between inter-regional functional 

connection strengths of the two 

cohorts across all frequencies. 

Color code: the four solid lines 

represent the Spearman 

correlations between 

connectomes where minimum 

number of samples to estimate a 

functional connection was set to 0 

(green), 10 (yellow), 20 (blue) 

and 40 (orange) respectively. 

Dotted lines: 95th percentile of 

null distribution of Spearman 

correlation, where the null 

distribution was generated by 

estimating Spearman correlation 

of randomly resampled (N = 

1000, without replacement) 

versions of the connectomes of 

the two cohorts. d-e, Mean PLV 

and K between Yeo functional 

systems of the two cohorts. 
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Figure S5 

Amplitudes of slower rhythms do not confound 

HG activity.  

a, The power spectral densities of band-pass filtered 

data averaged across subjects. Colors represent the 

central frequency of the band pass. b, Mean PLV and 

connection density K for phase synchrony that has 

been estimated from CW data filtered with Morlet 

wavelets. 
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Figure S6 

Additional analyses to rule out technical and pathological confounds.  

a, Mean PLV and fraction of significant PLV (K) from 10 subjects is compared with that estimated from two electrodes 

with 18 contacts submerged in a saline solution. b, In patients’ brain, mean PLV between contacts from different shafts 

(red) is larger than for contacts from mean PLV within the same shaft (azure) for all distance ranges. Shaded areas: 
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confidence limits (two-tail; p < 0.05) from bootstrapped (N = 100, with replacement) population variance. Square markers 

indicate significant differences (two-tail permutation test, N = 100, p < 0.05). c, The Pearson correlation coefficient 

between edge strengths (PLV) and frequency of inter-ictal events as a function of frequency. Markers: significant 

correlation (p < 0.05, uncorrected). d, PLV and iPLV for near-skull (red) and far-from-skull (azure) contacts are reported 

as a function of frequency for short, medium and long distances. Shaded areas represent confidence limits and square data 

points represent significant group differences as in b. e, The mean number of available edges as a function of distance for 

the computation of distance-specific PLV (see Fig. 7) at different frequency ranges. 
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Figure S7 

HG Phase synchrony is enhanced 

during slow wave sleep and 

visuomotor inhibition.  

a-b, mean iPLV matrices (across 

HGA frequencies) between Yeo 

systems are different for rest and 

sleep (dissimilarity permutation 

test, p < 0.001, N = 1,000, one-

tailed) conditions. Higher iPLV 

values for rest compared to sleep 

are shown with asterisks on the 

‘rest’ image, and vice versa for the 

‘sleep’ image (two-tailed t-test, p < 

0.05, uncorrected). 

c, evoked ERSD for task positive 

channels in NoGO (red) and Go 

(azure) conditions. The latter were 

divided in three groups based on the 

timing of the behavioral response in fast (plain: 7.3 – 356ms), medium (single dashed: 356 – 459 ms) and slow (double 

dashed: 459 – 1012 ms) response. Shaded areas represent confidence intervals around mean with 1,000 bootstraps d, 

Evoked iPLV difference from baseline in task positive channels for NoGO (red) and Go (azure) conditions. Shaded areas 

represent confidence intervals around mean with 1,000 bootstraps. Square markers represent time points where evoked 

iPLV in NoGo events are significantly different from Go events (permutation test, p < 0.05, uncorrected). 
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Figure S8 

PLV in amplitude bins in High-

gamma frequency bands.  

a-d, Joint distribution of moment-

to-moment PLV (left column) 

when two involved channels (x: 

ch1, y: ch2) demonstrate different 

amplitude dynamics.  Each matrix 

element is the mean of 

instantaneous PLV between all 

significant channel pairs (p <0.001 

with 100 surrogates) as a function 

of their moment-to-moment 

normalized amplitudes.  Strength 

of moment-to-moment amplitude 

correlation (Right column). 

Distribution of instantaneous phase 

samples (light grey) in each 

amplitude bin and its distance from 

uniform distribution (black) of 

samples (i.e., null-hypothesis for 

the absence of moment-to-moment 

amplitude correlation).  190Hz, 

226Hz, 270Hz, and 320Hz. 
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Figure S9 

Stable community structure in high-gamma frequency bands across a range of resolutions  

a, Number of modules for left (top-row) and right (bottom row) hemisphere as a function of resolution parameter  in 

high-gamma frequency ranges. b, Normalized (z-score) modularity as a function of resolution parameter . All frequency 

and  combinations yielded significant modularity (permutation test, p<0.05, N=100, one-tailed). c, Percentage of stable 

regions for high-gamma bands as a function of resolution parameter   Grayed values represent non-significant 

(bootstrapping test, p < 0.05, N=100, one-tailed) combinations. 
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ID Ez Location age duration Sex Drugs Outcome
1 Right mesial frontal 21 15:01 M CBZ 600 mg- LVT 1500 mg IB (8 years)
2 Right temporal insular 26 9:53 M CBZ 1200 mg- PRIMIDONE 750 mg- clonazepam 10 mg IA (37 months)
3 Right temporal 38 10:29 M CBZ 1200 mg- dintoina 450mg lacosamide 300mg clonazepam 10 mg ---
4 Left temporal-parietal 38 10:51 F FENOBARBITAL 100 MG TOPIRAMATO 100MG LEVETIRACETAM 3000 MG IA (25 months)
5 Left temporal-insular 24 10:48 M OXC 600 mg- lacosamide 400 mg IA (15 months)
6 Right temporo-insular 40 10:33 F LBT 1000mg, lacosamide 350mg sertralina 50 mg lorazepam 1mg IIIA(32 months)
7 Left temporal- orbital* 38 11:22 M CBZ 1200 mg- levetiracetam 3500mg - topamax 200 mg IA (3 years )
8 precuneus 19 11:30 M OXC 600 mg- lacosamide 400 mg ---
9 functional epilepsy 20 13:13 F CBZ 1200 mg - levetiracetam 1500 mg ---
10 Right occipito-temporal parietal 20 10:23 M lamotrigina 400 mg, levetiracetam 3000mg, lacosamide 400 mg IA(3 years)
11 Right temporal-occipital 41 10:03 M fenitoina 200mg, lacosamide 300mg IA (6 months)
12 Left temporal 35 10:05 M topiramato 200mg, CBZ 900mg IA (12 months)
13 Rigth anterior temporal 28 10:23 M CBZ 1200 mg IIA( 66 months )
14 Temporo-hip* 36 11:26 F CBZ 1400 mg levetiracetam 3000 mg IIA( 6 months)
15 Left anterior frontal* 40 10:01 M levetiracetam 2750mg CBZ 800mg primidone 750mg IA (12 months)
16 Left anterior frontal* 39 9:58 M oxCarbazepina 1800 mg, clobazam 20 mg, IA(36 months)
17 Rigth fronto-temporal-insular 24 10:03 F CBZ 1000mg, clobazam 20 mg, lomotrigina 200 mg IVA(24 months)
18 Left parieto-opercolo-insular 31 11:09 F CBZ 1200 mg, clobazam 40 mg, fenobarbital 75mg IVA(12 months)
19 Right termporal perisilvian 34 10:02 F Fenobarbital 150 mg, lacosamide 400 mg, clobazam 10mg IIC(38 months)
20 Right perisilvian insular 17 10:36 M CBZ 800 mg, lamotrigina 400mg IVA( 26 months)
21 Right tempo-parieto-occipital 36 10:09 M oxCarbazepina 1200mg, fenobarbital 150mg, valproato 1000mg IA( 35 months)
22 --- 32 14:40 F CBZ 700 mg ---
23 Left temporal antero-mesial 32 11:26 M CBZ 1200 mg levetiracetam 750 mg IA (61 months)
24 Right fronto-centro-insular 33 10:11 M CBZ  800mg, lacosamide 800mg, zonisamide 250 mg IIA (38 months)
25 Left temporal 21 10:07 F levetiracetam 1750 mg, lacosamide 400mg, valproato 1000mg IA( 24 months)
26 Right parietal 23 1:54 M levetiracetam 3000mg, CBZ 1000mg lacosamide 500mg IA (24 months)
27 termo-coagualed multiple sites 46 10:02 M CBZ 1200mg, fenobarbital 100mg IA (24 months)
28 Right frontal 20 10:48 F valproato 800mg, clobazam 10mg IIA (36 months)
29 Right mesial frontal 21 16:55 M CBZ 800 mg, levetiracetam 3000 mg, nitrazepam 1,5mg IIIA (13 months)
30 Rigth fronto central 22 10:10 M amotrigina 400 mg, leveracitam 2000mg IA(24 months)
31 Right frontal 20 10:33 M CBZ 600mg, rufinamide 1500mg, IVA(13 months)
32 Right frontal 44 10:05 F CBZ 1200mg, zonisamide 400 mg, fenobarbital 1000 mg IC (24 months)
33 --- 17 11:13 M CBZ 300 mg, ---
34 --- 14 10:05 M levetiracetam 1500 mg, clobazam 5mg ---
35 Right antero mesial  temporal 30 10:19 F oxcarbazepina 2000mg, fenobarbital 150mg IIA (36 months)
36 24 10:01 M CBZ 16000 mg, levetiracetam 4000 mg ---
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37 29 9:53 F levetiracetam 3000 mg ---
38 Right orbito temporal 29 9:56 F zonisamide 400 mg, levetiracetam 750 mg, CBZ 1400 mg IA (62 months)
39 45 10:10 F lacosamide 500 mg, valproato 1000 mg, zonisamide 200 mg ---
40 termo-coagualed multiple sites 34 10:00 F CBZ 1000mg ,levetiracetam 2500mg IA( 12 months)
41 termo-coagualed multiple sites 50 10:00 M levetiracetam 2000mg, lacosamide 600mg IIA( 6months)
42 Left occipital 17 10:03 F CBZ 1200 mg, levetiracetam 1500 mg, lacosamide 300 mg IB (49 MES)
43 Right temporal 44 10:03 F topiramato 300 mg, oxcarbamazepina 1200 mg IIA (50 months)
44 27 9:58 M CBZ 800 mg, lamotrigina 200 mg ---
45 46 10:01 M CBZ 1200 mg, levetiracetam 3000 mg, lacosamide 150mg, clobazam 20mg, ---
46 Left cingulate 30 10:02 M oxcarbamazepina 1800 mg, topiramato 200 mg, levetiracetam 3000 mg, clobazam 10mg IA (16 months)
47 Right anterior frontal 28 11:07 M CBZ 1000 mg, levetiracetam 1000 mg IIIA (61 months)
48 Right temporo-parieto-perisilvian* 27 10:01 F topiramato 200 mg, lamotrigina 200 mg IA (5 years)
49 Right antero mesial  temporal 42 11:28 F lacosamide 500 mg, IB (36months)
50 Left parieto-temporal 15 10:08 M CBZ 900mg IA (6 months)
51 Right temporo-opercolar* 37 10:02 M CBZ 900mg, levetiracetam 3000mg IVA (12 months)
52 Left frontal 30 10:16 F CBZ 1200mg, lamotrigina 200 mg, cllobazam 20mg IA(5 years)
53 Left frontal 15 10:00 F levetiracetam 1250 mg, oxcarbamazepina 1200 mg IA (4 years)
54 termo-coagualed multiple sites 41 10:04 M levetiracetam 3000 mg, lacosamide 400 mg IA (2 years)
55 Right temporo-occipital 37 10:07 M lamotrigina 600mg, levetiracetam 2000 mg IA (2 years)
56 Right temporal 29 10:20 M CBZ 1400 mg, levetiracetam 3000 mg, clobazam 10 mg IA (31 months)
57 Left opercolo insula 10 10:02 F CBZ 800 mg IIIA (34 months)
58 Right temporo frontal 40 10:02 F lamotrigina 600mg, clobazam 20mg, fenitoina 500 mg IA (13 months)
59 Left temporo insula opercolar 29 11:04 F CBZ 1800 mg, clobazam 20 mg IA (24 months)
60 Right temporal 27 11:15 M lamotrigina 400 mg, topiramato 400 mg IA (24 months)
61 26 9:54 M fenitoina 400mg, topiramato 500 mg ---
62 Left temporal 17 10:15 M oxcarbamazepina 1500 mg, clobazam 20 mg, levetiracetam 2500 mg IA (36 months)
63 Right mesial temporal 25 11:03 F topiramato 75mg, CBZ 1500 mg IA (12 months)
64 Nodular heterotopy* 24 10:11 F CBZ 1000 mg, levetiracetam 500 mg, clobazam 20 mg IVA (12 months)
65 Left temporo perisilvian 37 9:54 F CBZ 1200mg, lamotrigina 550mg, IIIA( 12 months)
66 Left  antero-mesial temporal 32 10:30 F clobazam 20mg, fenobarbital 45mg IIA (55 months)
67 Right temporo occiptal 44 10:02 M CBZ 800mg, levetiracetam 3000mg, fenobarbital 125mg IA (24months)
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