1	Morphological and molecular identification of seedborne fungi in squash (Cucurbita
2	maxima, Cucurbita moschata)
3	
4	Marwa Moumni ^{1,2,3} , Mohamed Bechir Allagui ³ , Valeria Mancini ¹ , Sergio Murolo ¹ , Neji
5	Tarchoun ⁴ and Gianfranco Romanazzi ¹ *
6	
7	¹ Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic
8	University, Via Brecce Bianche, 60131 Ancona, Italy
9	² National Agricultural Institute of Tunisia, 43 Avenue Charles Nicolle, 1082 Tunis, Tunisia
10	³ Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia,
11	University of Carthage, Rue Hédi Karray, 2080 Ariana, Tunisia
12	⁴ Laboratory of Vegetable Crops, High Agronomic Institute of Chott Mariem, Sousse, Tunisia
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	*Correspondence: G. Romanazzi
25	Department of Agricultural, Food and Environmental Sciences
26	Marche Polytechnic University
27	via Brecce Bianche
28	60131 Ancona, Italy
29	E-mail: g.romanazzi@univpm.it
30	Tel: +39-071-2204336
31	

33 Abstract

34

Squash is one of the most important crops of tropical and temperate regions, and it can be 35 affected by several fungal pathogens. Most of these infect the seeds, which become an 36 efficient vehicle to disperse seedborne pathogens over long distances, with consequent severe 37 crop losses. The main objective of this study was the identification of the principal seedborne 38 fungi in seeds extracted from 66 samples of asymptomatic and symptomatic squash fruit 39 (Cucurbita maxima, Cucurbita moschata) collected in two countries, Tunisia and Italy. The 40 symptoms of fruit decay were identified and classified according to lesion size. Following the 41 blotter test, 14 fungal species were detected from the seeds. Seedborne fungi were identified 42 in all fruit samples tested, including asymptomatic fruit. The most frequent fungi from 43 Tunisia seeds were Alternaria alternata (25.1%), followed by Stagonosporopsis 44 45 cucurbitacearum (24.6%), Fusarium solani (16.6%), Rhizopus stolonifer (13.3%), Fusarium fujikuroi (7.8%), Albifimbria verrucaria (3.3%), and Stemphylium vesicarium (2.3%). For the 46 47 fruits from Italy, the most frequently identified fungal species in seed samples were: A. alternata (40.0%), followed by F. fujikuroi (20.8%), S. vesicarium (3.0%), and Curvularia 48 spicifera (2.1%). Morphological identification was confirmed by molecular diagnosis using 49 the available species-specific primers. Furthermore, specific primers were designed to identify 50 A. verrucaria, Paramyrothecium roridum and S. vesicarium. Application of seed-health 51 testing methods, including such conventional and molecular diagnostic tools, will help to 52 improve seed quality and crop yields. 53

54

55 Keywords: β-tubulin, diseases of *Cucurbita* species, EF1α, histone H3, ITS, rDNA

- 56
- 57
- 58

60 Introduction

61

Cucurbita L. (pumpkins, squash, gourds) is a widely cultivated genus in agricultural regions worldwide. According to the Food and Agriculture Organization of the United Nations (FAO), a total yield of nearly 20,000,000 tonnes was produced in Asia and Europe, plus 2,932,611 tonnes in the Americas (FAO 2014). Squash (*Cucurbita maxima, Cucurbita moschata*) is one of the most important vegetables in tropical and temperate regions. In Italy and Tunisia, the total production of squash is 580,188 tonnes and 90,080 tonnes of fresh fruit, respectively (FAO, 2016).

Cucurbita spp. can be affected by many diseases, including gummy stem blight, 69 70 Fusarium fruit rot, and Alternaria leaf spot (Gannibal 2011; Keinath 2011; Mehl and Epstein 2007). Gummy stem blight (GSB) (foliar symptoms) and black rot (BR) (fruit symptoms) are 71 72 caused by three species of Stagonosporopsis: S. cucurbitacearum (Fr.) Aveskamp, Gruyter & 73 Verkley (anamorph Phoma cucurbitacearum (Fr.) Sacc.), synonym Didymella bryoniae 74 (Fuckel) Rehm, S. caricae (Syd. & P. Syd.) Aveskamp, Gruyter & Verkley (synonym Mycosphaerella caricae Syd. & P. Syd.), and S. citrulli M.T. Brewer & J.E. Stewart (Stewart 75 et al. 2015). GSB and BR are the most important diseases of cucurbits. Under conducive 76 climatic conditions for the disease, which occur especially in warm and humid environments, 77 severe outbreaks can cause 15% to 50% yield losses, lead to rapid death of the cucurbit plants 78 and reduce yields (Boughalleb et al. 2007; Keinath et al. 1995; Yao et al. 2016; Zitter and 79 Kyle 1992). Pumpkin and winter squash are particularly susceptible to black rot (Brewer et al. 80 2015), where the seeds can become infested or infected through flower and fruit infection (de 81 Neergard 1989). 82

Fusarium fruit rot is caused by Fusarium solani f. sp. cucurbitae W.C. Snyder & H.N. 83 Hansen (Fsc) teleomorph Nectria haematococca Berk. & Broome. This pathogen can infect 84 the seeds, and in this way it can be spread over long distances (Boughaleb and Mahjoub 2006; 85 Farrag and Moharam 2012). Mehl and Epstein (2007) reported a significant relationship 86 87 between infections of F. solani f. sp. cucurbitae in pumpkin fruit tissue and incidence of infected seeds. Fusarium fruit rot is an economically important problem for pumpkin growers, 88 89 with 30% of fruit reported as infected in California, USA (Mehl and Epstein 2007). In the 90 field and greenhouse, Fusarium spp. can cause important yield losses, that may reach 80% 91 (Blanco and Aveling 2018).

The genus *Alternaria* can affect several crops during their growing stages and after
 harvest (Kgatle and Aveling 2018; Mamgain et al. 2013). *Alternaria cucumerina* and

Alternaria alternata are pathogens of cucurbits, and they can cause severe crop losses 94 (Gannibal 2011; Vakalounakis 1990). Furthermore, Alternaria brunsii has also been detected 95 96 on seeds of C. maxima (Paul et al. 2015). Moreover, within the Cucurbitaceae family, leaf spot diseases caused by seedborne pathogens like Pleospora herbarum (anamorph 97 Stemphylium vesicarium), Paramyrothecium roridum, and Albifimbria verrucaria can result 98 in significant production losses (Fish et al. 2012; Petzer 1958; Sultana and Ghaffar 2009). All 99 of these are necrotrophic fungi that can infect cucurbits and can be transmitted by seeds. 100 101 Furthermore, the obligate biotrophic fungus Pseudoperonospora cubensis is a major pathogen of cucurbits; it can be fruit-borne, seed-borne, and seed-transmitted in butternut gourds 102 (Cucurbita moschata) (Cohen et al. 2014). Low percentages of seed infection can still result 103 104 in severe crop losses (Mancini et al. 2016; Vannacci et al. 2014; Walcott et al. 1998).

105 Seeds represent a particularly efficient vehicle for introducing and spread seedborne 106 pathogens over long distances into new niches (Ahmad et al. 2016; Elmer, 2001; Özer and 107 Coşkuntuna 2016; Pellegrino et al. 2010).

108 Therefore, early detection of seedborne fungi is a key step to prevent introduction of infected seeds, to use high standard quality of seeds and to define integrated disease 109 management strategies (Majumder et al. 2013; Mancini and Romanazzi 2014; Yao et al. 110 2016). Conventional methods for seed health testing include the blotter test, which promotes 111 mycelium growth and formation of fruiting bodies on the seed surface, to allow pathogen 112 identification under the microscope (Tsopmbeng and Fomengia 2015). The main problem 113 related to the presence of saprophytic microorganisms on the seed surface can be easily 114 bypassed through surface decontamination of seeds (Du Toit et al. 2005; El-Nagerabi and 115 Elshafie 2000; Rodrigues and Menezes 2005). For detection of S. cucurbitacearum and A. 116 alternata in seeds, the blotter method proved to be more suitable (Ahmad et al. 2016; Lee et 117 al. 1984). However, when these diagnostic methods are used, some fungal species have a high 118 degree of similarity based on their morphology, and so distinguish among these closely 119 related organisms can be difficult, such as between D. bryoniae and Phoma sp. (Keinath et al. 120 121 1995), A. alternata and S. vesicarium (Pryor and Gilbertson 2000), and Bipolaris spp. and Curvularia spp. (Kusai et al. 2015), and also among different Fusarium spp. (Chehri et al. 122 123 2011). Therefore, diagnostic methods can also be based on polymerase chain reaction (PCR) with specific primers to provide high analytical sensitivity to detect and identify different 124 125 strains of fungi (Babu et al. 2015; Carneiro et al. 2017).

The main objectives of the present study were: (i) to estimate the incidence of seedborne fungi identified by morphological features, for seeds extracted from symptomatic and asymptomatic squash fruit; (ii) to carry out molecular identification of the seedborne
fungi using specific primers for *S. cucurbitacearum*, *A. alternata*, *C. spicifera*, *F. solani*, and *Fusarium oxysporum*; and (iii) to design species-specific primers for identification of *P. roridum*, *A. verrucaria*, and *S. vesicarium*.

132

133 Materials and Methods

134

135 Field sites and sample collection

Between 2015 and 2018, 66 samples of asymptomatic and symptomatic squash fruits were 136 sampled in two countries, Tunisia and Italy (Fig. 1). A total of 37 fruit samples were collected 137 from the cultivars 'Batati', 'Bjaoui', and 'Galaoui' in Tunisia. These samples were collected 138 between July and November 2015 and 2016 from multiple farms in Tunisia's five major 139 140 squash production regions. A total of 29 fruit samples were collected from the cultivars 'Aspen', 'Butternut' and 'Naples long' in Italy. These samples were collected between 141 142 September and October 2018 from different farms and fields in five locations in Italy (Table 1). These squash cultivars from both Tunisia and Italy are local varieties, and they represent 143 the most commonly produced squash cultivars in the respective countries. The fruit samples 144 were taken from seeds produced on-farmer and from squash seed lots in their respective years. 145

146

147 Fruit sample evaluation

The day after the sampling, the fruits were examined for fungal disease symptoms. Fungi 148 were identified based on the presence of clear signs and symptoms. When the symptoms were 149 unclear, isolation was carried out from small pieces of skin that were cut from the squash fruit 150 with symptoms. These small pieces (~2 mm) were immersed in 1% sodium hypochlorite 151 solution for 5 min, and three washes with sterilized distilled water, the samples were air dried 152 for 30 min on sterile paper toweling in a laminar flow hood. The pieces of squash skin were 153 placed on potato dextrose agar (PDA, 42 g/L; Liofilchem Srl, Roseto degli Abruzzi, Italy) and 154 incubated at 22 \pm 2 °C for 14 days. The plates were checked daily, and the colonies grown 155 from the pieces of squash skin were transferred to PDA plates to obtain pure cultures. From 156 each fruit sample, the fruit rot, if present, was evaluated according to three levels (Fig. 2): A, 157 asymptomatic fruit; B, infected fruit showing symptoms of rot on the squash skin without 158 reaching the seed cavity; and C, infected fruit showing symptoms of rot that had reached the 159 seed cavity. 160

161

162 Detection and identification of seedborne fungi using classical tools

The seeds were separated, washed with tap water, dried on sterile blotter sheets overnight (10 163 hours) at room temperature (20-24 °C), and stored in paper bags at 4 °C until use. Each 164 sample comprised seeds collected from a single fruit and two hundred seeds per sample were 165 tested using the standard blotter method of the International Seed Testing Association 166 (Mathur and Kongsdal, 2003). The seeds were surface sterilized using the method of 167 sterilization described above. Two-hundred seeds (10 seeds/plate) were placed onto eight 168 169 pieces of sterile blotter paper that was moistened with 5 mL sterile distilled water (Whatman no. 4 filter papers; diameter, 110 mm) in Petri dishes (diameter, 110 mm), these were 170 incubated for 14 days at 22 ±2 °C with a 12/12 h dark/ ultraviolet light photoperiod (TL-D 171 172 36W BLB 1SL, PHILIPS, Dublin, Ireland).

Fungus identification was carried out first by examination of the fungal fruiting bodies 173 and the mycelia and spores that developed on the seeds under a stereomicroscope (M125; 174 Leica Microsystems CMS, Wetzlar, Germany). Then the spores, conidiophores, pycnidia, and 175 176 perithecia of the fungi were examined under a microscope (DM 2500; Leica). To support the initial identification under the microscope, single-spore isolates of each fungus were collected 177 and transferred into PDA in Petri dishes, to obtain fungal colonies (Choi et al. 1999). After 8 178 to 15 days at 22 \pm 2 °C, morphological identification was carried out according to the colors 179 and shapes of the colonies, with measurements of the fungal structures (i.e., pycnidia, 180 perithecia, conidia) using the LAS V3.8 software (Leica DFC 295), which was applied to 50 181 units of each structure for each fungus. The fungal species identification was based on the key 182 of Aveskamp et al. (2010), Booth (1971), Champion (1997), Jeon et al. (2015), Lombard et al. 183 184 (2016), and Mathur and Kongsdal (2003).

185

186 Molecular identification of seedborne fungi

187 DNA extraction from mycelia

On the basis of morphological identification, 93 isolates representative of 14 species isolated 188 189 were used to set up a protocol of detection based on molecular tools (Table 2). The isolates were grown in PDA Petri dishes until the fungi reach the edge of the plate. A modified DNA 190 191 extraction by Varanda et al. (2016) was used for these samples. In particular, the mycelia were collected, lyophilized, and ground in 1.5 mL microcentrifuge tubes with the addition of 192 600 µL extraction buffer (20 mM EDTA, 0.1 M Tris-HCl, pH 8.0, 1.4 M NaCl, 2% 193 cetyltrimethylammonium bromide, 4% polyvinylpyrrolidone, 0.1% sodium metabisulfite 194 195 added just before use), and 60 mg silicon dioxide (Sigma), to promote mycelium

fragmentation. The quality and quantity of the extracted DNA was directly checked on 1% agarose gels, with evaluation using a BioPhotometer (Eppendorf, Hamburg, Germany). The DNA was finally diluted to 20 ng/ μ L for further amplification.

199

200 PCR amplification using universal primers and sequence analysis

Amplification of the internal transcribed spacer (ITS) and partial sequences of the β-tubulin 201 gene, histone H3, the translation elongation factor (EF1 α) region, and *calmodulin* gene in the 202 ribosomal (r)DNA of the isolates (Table 1) was performed. These 20 µL PCR reactions 203 contained 2 µL genomic DNA of the fungal isolate, 10 µL Green Plus Econo Master Mix 2× 204 (Lucigen, WI, USA), and 0.5 µL of each primer (10 µM). The primers used were ITS1 and 205 206 ITS4 (White et al. 1990) for ITS, Bt2a and Bt2b (Glass and Donaldson 1995) for tub2, CYLH3F and CYLH3R (Crous et al. 2004) for his3, and EF1-728F/EF1-986R (Carbone & 207 208 Kohn, 1999) for EF1a. The PCR reactions were run in a thermal cycler (MyCycler; Bio-Rad Laboratories, Hercules, CA, USA) following the specific parameters published for TUB, HIS, 209 210 and EF1 α . For ITS, some modifications were made: initial denaturation was at 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 40 s, and annealing at 57 °C for 30 s 211 for A. alternata (Konstantinova et al. 2002), at 55 °C for 1 min for S. cucurbitacearum, P. 212 roridum, and A. verrucaria (Orawan et al. 2014; Babu et al., 2015), at 58 °C for 1 min for C. 213 spicifera and F. solani (Chehri et al. 2011; Dela Paz et al. 2006), and at 57 °C for 1 min for S. 214 vesicarium (Câmara et al. 2002; Dela Paz et al. 2006). Extension was carried out at 72 °C for 215 50 s, with final extension at 72 °C for 7 min at the end of the amplification The PCR products 216 (9 µL per sample) were separated by electrophoresis in 1.5% agarose gels stained with Red 217 Gel (Biotium, Hayward, CA, USA), and visualized and captured using an imagining system 218 (Gel Doc XR; BioRad). 219

Bidirectional sequence analysis was conducted on select amplified isolate fragments at Genewiz (UK) (Table 2). The forward and reverse nucleotide sequences were read and edited using the Chromas version 2.33 software, and were assembled using the CAP3 software, to obtain a consensus sequence. The Bioedit software (version 7.0.0) was used (<u>http://www.mbio.ncsu.edu/Bioedit/bioedit.html</u>) to cut-off 20 bp to 30 bp of the terminal end sequence. Finally, nBlast analysis (<u>http://www.ncbi.nlm.nih.gov/BLAST/</u>) was carried out to verify the identities of the amplicons.

After an accurate research in the literature, we selected and used already published specific primer pairs for the molecular identification of *S. cucurbitacearum*, *A. alternata*, *C. spicifera*, *F. oxysporum*, and *F. solani*, as summarized in Table 3. 230

231 Design of specific primers for molecular identification of *A. verrucaria*, *P. roridum*, and

232 S. vesicarium

The ITS nucleotide sequences for the genera Paramyrothecium, Myrothecium, Albifimbria, 233 Fusarium, Stagonosporopsis, Curvularia, Stemphylium, and Pleospora, available in NCBI 234 GenBank (Supplementary Table S1), were downloaded in the FASTA format and aligned 235 using ClustalX (version 1.83) (Thompson et al. 1994). The specific nucleotide regions that 236 characterized each fungal genus and the conserved intra-genera nucleotide regions were 237 selected to design a new specific primer pair for A. verrucaria, P. roridum, and S. vesicarium 238 respectively (Table 4). The new set of primers that were designed were submitted and 239 validated to Primer-BLAST software (Ye et al. 2012) developed at the NCBI. 240

After optimization of the reaction mixture, the PCR amplifications were performed in 25 μ L reaction mixture that contained 2 μ L genomic DNA (about 20 ng/ μ L) of the fungal isolates, 200 μ M dNTP mixture, 0.5 μ M each primer, 1.2 mM MgCl₂, and 1.25 U Taq polymerase (Promega). The details of the cycling conditions are reported in Table 5 for each primer pair. PCR was carried out with serially diluted DNA extracted from *A. verrucaria*, *P. roridum*, and *S. vesicarium* isolates M144, M123, and P164, respectively (4 ×10 ng to 4 ×10⁻⁵ ng), to determine the analytical sensitivity of the tests.

248

249 **Results**

250

251 Fruit symptom evaluation

In Tunisia, in the Sidi Hamada area, five fruits showed an infection level of 'A, asymptomatic 252 fruit', one of 'B, infected fruit showing symptoms of rot on the squash skin without reaching 253 the seed cavity' and two of 'C, infected fruit showing symptoms of rot that had reached the 254 seed cavity', with three fruits with symptoms related to S. cucurbitacearum, and one to A. 255 alternata. In the Kalâat El-Andalous area, two fruits showed an infection level of 'A' and 256 257 eight of 'B', with one fruit with symptoms related to F. solani, one to C. spicifera, and seven to A. alternata. All of the samples collected in the other three localities of Utique, Sbeïtla, and 258 259 Sahline areas showed infection levels of 'A' (Table 6).

In Italy, in the Castelfidardo area, two fruits showed an infection level of 'A', three of 'B', and three of 'C', with six with symptoms related to *A. alternata*, and two to *C. spicifera*. In the Osimo area, three fruits showed an infection level of 'A' and nine of 'B', with eight with symptoms related to *S. cucurbitacearum* and nine to *A. alternata*. In the Recanati area, one fruit showed an infection level of 'A', three of 'B', and two of 'C', with two fruits with symptoms related to *C. spicifera* and five to *A. alternata*. All of the samples collected in the Monopoli and Baranello areas showed infection levels of 'A' (Table 6).

267

268 Identification of seed-borne fungi using morphological criteria and molecular tools

After 14 days of incubation using the blotter test at 22 \pm 2 °C with a 12/12 h dark/ ultraviolet 269 light photoperiod, all of these seeds were examined under a stereomicroscope for the presence 270 271 of fungal fruiting bodies. The fruiting bodies and fungal structures (i.e., pycnidia, sporodochia, perithecia, conidia) were also analyzed under microscopy, to evaluate the shape 272 and size. For each fungal species identified by morphological criteria, there was a parallel 273 274 molecular identification (sequence analysis and amplification by specific primers). The main fungi isolated from seeds were S. cucurbitacearum, A. verrucaria, P. roridum, S. vesicarium, 275 276 A. alternata, C. spicifera, F. solani, and F. oxysporum, whose descriptions are reported in the following subsections. 277

278 Stagonosporopsis cucurbitacearum (Fr.) Aveskamp, Gruyter & Verkley (Aveskamp et al. 279 2010) (Syns. Didymella bryoniae (Fuckel) Rehm)

Pycnidia were observed on squash seeds with diameters ranging from 116 to 131 μ m (Fig. 3A-C). These spores were cylindrical with rounded ends 4.0 to 8.0 μ m × 1.6 to 3.4 μ m (Fig. 3D). The mycelia of the colonies cultured on PDA were white on the top and black on the bottom, and after 10 days they produced pycnidia with pycnidiospores (Fig. 3E). These morphological traits are consistent with *S. cucurbitacearum*.

By sequence analysis, isolates D33, D29, D49, D12, and D83, showed high nucleotide identity with *S. cucurbitacearum* (Table 2) and also the molecular tools proposed by Brewer et al. (2015) corroborated the morphological identification (data not shown). Finally, the amplification with RG-specific primer pair, able to yield a specific fragment of about 450 bp, allowed to molecularly characterized all analyzed isolates as *S. cucurbitacearum* belonging to the RG group II (Fig. 5A) (Somai et al. 2002).

291

292 Albifimbria verrucaria (Alb. & Schwein.) L. Lombard & Crous (Lombard et al. 2016) 293 (Syns. Myrothecium verrucaria (Alb. & Schwein.) Ditmar)

On squash seeds there was an erumpent crowded cluster of conidiophores that formed a viscus stroma in the form of a cushion. These fruiting bodies are known as sporodochia, and their color was green to dark green, they were surrounded by white cotton mycelia on the seeds (Fig. 3I), and they had a large number of elliptical one-celled conidia with acute ends 4.1 to 5.7 μ m × 1.5 to 2.2 μ m (Fig. 3J). On PDA, this fungus produced white colonies that became greenish black with time, to form black rings of sporodochia. These morphological criteria attributed this fungus to the species *A. verrucaria*, and it was confirmed by the sequence analysis for isolates M144, M135, IAV2, and IAV4 (Table 2).

For the molecular identification of *A. verrucaria*, specific primers were designed. The primer pair Myroverr F1/R1 was used in PCR reactions in a gradient thermal cycler, to determine its maximal annealing temperature; then 60 °C was applied. These conditions yielded a specific fragment of 553 bp amplicons (Fig. 4A). The minimum concentration of the target DNA that could be detected with this primer was 4×10^{0} ng (data not shown).

307

308 Paramyrothecium roridum (Tode) L. Lombard & Crous (Lombard et al. 2016) (Syns. 309 Myrothecium roridum Tode)

In other cases, the sporodochia were black to black green and globular, with a rounded contour and without obvious mycelia (Fig. 3K). Conidia taken from these sporodochia were one-celled and cylindrical, with rounded ends (Fig. 3L). On PDA, this fungus formed white colonies that with time produced successive greenish black and black rings of sporodochia filled with the cylindrical conidia 5.0 to 7.4 μ m × 1.2 to 2.6 μ m. These morphological features indicated that this fungus corresponded to *P. roridum*, and it was confirmed by the sequence analysis for isolates M123, M138, M141, IPR2, and IPR9 (Table 2).

For the molecular identification of *P. roridum*, specific primers were again designed. The primer pair Myroror F1/R1 was used in PCR reactions in a gradient thermal cycler, to determine its maximal annealing temperature; then 58 °C was applied. These conditions yielded a specific fragment of 562 bp amplicons (Fig. 4B). The minimum concentration of target DNA that could be detected with this primer was 4×10^{0} ng (data not shown).

322

323 Stemphylium vesicarium (Wallr.) E.G. Simmons (Simmons, 1969) (Syns. Pleospora 324 herbarum (Pers.) Rabenh.)

Small black fruiting bodies (perithecia) that were flask-shaped or globose appeared on the squash seed samples (Fig. 3O), with the size of 147 to 282 μ m × 131 to 243 μ m. The crushed perithecium discharged several bitunicate clavate asci that measured 50 to 116 μ m × 8.4 to 18.3 μ m (Fig. 3P). These contained eight ellipsoidal monoseriate to biseriate ascospores that were rounded at the ends, 14.7 to 20.0 μ m × 6.1 to 9.5 μ m, with four to six transverse, and one to three longitudinal, septa (Fig. 3Q). After 4 to 6 days on PDA, this fungus produced one muriform conidium per conidiophore (anamorph). The length of the conidia was 8.4 to 18.7

 μ m × 6.0 to 11.1 μ m, with three transverse and one to three longitudinal septa. After 10 to 15 332 days on PDA, the fungus started to differentiate perithecia (teleomorph). The isolates that 333 showed these morphological features were closely related to the fungal species S. vesicarium, 334 and it was confirmed by the sequence analysis of isolates P164, P66, and IP4 (Table 2). 335

For the molecular identification of S. vesicarium, the primer pairs Pleo F/R (Fig. 4C) 336 and Pleo F1/R1 (Fig. 4D) were designed, and these successfully amplified the target DNA 337 from the five isolates of S. vesicarium. The annealing temperature was 60 °C, and under these 338 conditions a specific fragment of 547 bp was yielded. The detection limit for these primers 339 was $\sim 4 \times 10^{-1}$ ng of fungal DNA input (data not shown). 340

341

342 Alternaria alternata (Fr.) Keissl. (1912)

Black conidia were observed in long chains on all of the seed samples, except for sample 343 Bi52 (Fig. 3F, G). Microscopic examination showed conidia that were highly variable in 344 shape, 5.0 to 17.0 μ m × 4.0 to 8.5 μ m, with both transverse and longitudinal septa (Fig. 3H). 345 346 The conidial beaks were also highly variability in shape, with lengths of 1.7 to 14.0 µm. On PDA cultures, the mycelia of this fungus were at first gray, but then became nearly black 347 when sporulation was abundant. The morphological features of this fungus corresponded to 348 the fungal species A. alternata, and it was confirmed by the sequence analysis of isolates A38, 349 A15, IA1, and IA3 (Table 2). 350

For the molecular identification of A. alternata, the set of primers AAF2/AAR3 351 (Konstantinova et al. 2002) yielded a specific fragment of about 350 bp (Fig. 5B). 352

353

Curvularia spicifera (Bainier) Boedijn (Boedijn, 1933) (Syns. Bipolaris spicifera (Bainier) 354 Subram.) 355

Other conidia were found in groups on squash seed samples (Fig. 3M). Microscopic 356 examination showed straight conidia with rounded ends, with three distosepta, which 357 measured 12.0 to 23.4 μ m × 5.1 to 8.0 μ m (Fig. 3N). These morphological features belong to 358 359 the fungal species C. spicifera, and it was confirmed by the sequence analysis of isolates B170, IB41, IB1 (Table 2). 360

For the molecular identification of C. spicifera, the primer pair Bipol-1F/Bipol-1R 361 amplified a specific fragment of 200-bp amplicons for the two isolates tested (Fig. 4C) (Ünal 362 363 et al. 2011).

364

Fusarium solani (Mart. 1842) (Syns. *Neocosmospora solani* (Mart.) L. Lombard & Crous (Lombard et al. 2015))

A fungus characterized by the presence of water droplets was found on seed samples (Fig. 3R). Microscopic examination showed long phialides (Fig. 3S), unicellular and bicellular oval microconidia, with size 6.0 to 14.6 μ m × 2.0 to 4.1 μ m, and cylindrical and slightly curved macroconidia, three to five septate, with mean size of 16.6 to 33.4 μ m × 3.0 to 5.2 μ m (Fig. 3T). On PDA culture, the fungus produced white to cream colored mycelia. These morphological features indicated that this belonged to the fungal species *F. solani*, and it was confirmed by the sequence analysis of isolate F174 (Table 2).

For the molecular identification, the amplification carried out with the specific primers TEF-Fs4f/TEF-Fs4r (Arif et al. 2012) (Fig. 5D) yielded a specific fragment of about 650 bp amplicons. We did not have any amplification with the primer pairs Fsc1EF1/Fsc1-EF-2 and Fsc2-EF1/Fsc2-EF3.

378

379 Fusarium oxysporum Schltdl. 1824

Microscopic examination showed unicellular and bicellular microconidia produced on short monophilides. The macroconidia were generally three to five septate. There were chlamydospores in the mycelial cultures, which were round unicellular and bicellular, and surrounded by a thick cell wall. The fungus developed on PDA culture had white mycelia that became salmon in color, with a tendency to purple. These morphological features indicated that it belonged to the fungal species *F. oxysporum*.

For the molecular identification, the amplification carried out with the specific primers
 Fc-1/Fc-2 (Zhang et al. 2012) (Fig. 5E) yielded a specific fragment of ~400 bp.

388

389 Frequency of seedborne fungi

The seedborne fungi isolated from the seed samples collected in Tunisia were A. alternata 390 (25.1%), followed by S. cucurbitacearum (24.6%), F. solani (16.6%), R. stolonifer (13.3%), 391 392 F. fujikuroi (7.8%), A. verrucaria (3.3%) and S. vesicarium (2.3%). A. alternata was detected in all of the localities surveyed and in most of the symptomatic fruits (Table 6, T8, T34, T47, 393 T71, T35, T63, T45, T69) with 6 to 50% infection level. Moreover, A. alternata was also 394 395 detected in 22 asymptomatic fruits collected from these five localities in Tunisia, with incidence ratings from 1% to 38%. S. cucurbitacearum was detected in three Tunisia 396 localities (Sidi Hmada, Sbeïtla, Utique), from three symptomatic fruits (T7, T8, T9) collected 397 398 from the Sidi Hmada area (Table 6). The seed samples extracted from these fruits were highly

infected by S. cucurbitacearum, with infection rates from 20% to 60%. Furthermore, S. 399 cucurbitacearum was also identified in the seed samples from 12 asymptomatic fruits 400 collected from these three localities, with infection rates from 1% to 44%. F. solani was 401 detected in 17 seed samples collected from all five localities in Tunisia (46% of samples). F. 402 solani was isolated from one symptomatic fruit (Table 6, T52), with an infection rate of 7%. 403 Moreover, F. solani was isolated and identified in 13 asymptomatic fruits, with infection rates 404 from 1% to 60%. A. verrucaria and P. roridum were isolated from four seed samples obtained 405 406 from asymptomatic fruits collected from the Sidi Hmada area. Seed sample T18 in Table 7 was highly infected by A. verrucaria (15.5%) and P. roridum (5.0%). S. vesicarium was 407 isolated from 18 seed samples (48.6% of samples), with infection rates from 1% to 13%. C. 408 409 spicifera was isolated from 12 seed samples (32.4% of samples) collected from all five localities, with incidence rates of 1% to 7%. 410

In the seed samples from Italy, A. alternata was also the most frequent, at 40.0%, 411 followed by F. fujikuroi (20.8%), S. vesicarium (3.0%) and C. spicifera (2.1%) (Table 7). A. 412 *alternata* was detected for all of the localities included. This pathogen was isolated from all of 413 the symptomatic fruit samples and also from the seeds extracted from these fruits, with 414 infection rates from 1% to 70%. Moreover A. alternata was identified in eight asymptomatic 415 fruits, with infection rates from 1% to 37%. S. vesicarium was detected in 12 of the seed 416 samples collected (41.3% of samples), with incidence rates from 1% to 9%. The seeds 417 obtained from three symptomatic fruit samples with infection level of 'C' were infected by C. 418 spicifera (Table 6, I2, I5, I31), with infection rates from 11% to 85%. Moreover, another 419 symptomatic fruit sample with an infection level of 'B' was infected with C. spicifera (Table 420 6, I29), with an infection rate of 2%. C. spicifera was also identified in the seed samples of 421 two asymptomatic fruits (Table 6, I23, I37), with an infection rate of 1%. 422

423

424 Discussion

425

In the present study, a survey was carried out to assess the phytosanitary status of squash
seeds collected from fruit samples produced in Tunisia and Italy. The survey allowed to
isolate and identify several fungi in squash seeds, including *S. cucurbitacearum*, *A. alternata*, *F. solani*, *A. verrucaria*, *P. roridum*, *S. vesicarium*, and *C. spicifera*.

We observed a correlation between the symptoms caused on these fruits collected in Tunisia and Italy, and the fungal species isolated from seeds of these fruits. Our data show that *A. alternata* and *S. cucurbitacearum* were detected and isolated from fruit lesions in both

countries. A. alternata is a pathogen of cucurbits, where it can cause severe crop losses 433 (Vakalounakis 1990). S. cucurbitacearum has a world-wide distribution and it can infect at 434 least 12 genera and 23 species of Cucurbitaceae (Stewart et al. 2015; Rennberger and Keinath 435 2018). S. cucurbitacearum was reported in Italy in 1885 on Cucumis melo (Corlett 1981) and 436 in 2019 on C. moschata (Moumni et al. 2019). In Tunisia, S. cucurbitacearum was detected 437 only on watermelon (Citrullus lanatus) in 2007 (Boughalleb et al. 2007). To our knowledge, 438 our work represents the first report of S. cucurbitacearum as a pathogen of squash seed in 439 440 Tunisia.

The pathogenic fungi *A. alternata*, *S. cucurbitacearum*, and *C. spicifera* were present in high percentages for seeds obtained from symptomatic fruits. Therefore, seeds can be infected indirectly through the fruit, when a lesion extends to the seed cavity, or during the process of seed extraction, when the seeds are mixed with the inoculum present on the external part of the fruit, as demonstrated by Mehel and Epstein (2007).

In addition, seedborne fungi were detected also in the asymptomatic fruits. S. 446 447 cucurbitacearum was detected in 12 asymptomatic fruits collected from the Tunisia areas. Similar data were obtained for A. alternata, which was present in all of the 30 asymptomatic 448 fruits collected in Tunisia and Italy. Furthermore, F. solani was isolated from 13 seed samples 449 extracted from asymptomatic fruits. As shown for Stagonosporopsis sp., Fusarium sp., 450 Alternaria sp., even if the fruit does not show any symptoms, the seeds inside the fruit can be 451 infected (El-Meleigi 1991; Keinath 2011; Petkar and Ji 2017). This shows that there are other 452 ways of pathogen penetration. Fusarium wilt of watermelon (Fusarium oxysporum f. sp. 453 niveum) can infect watermelon seeds by direct invasion through vascular bundles or indirect 454 invasion through the pistil, which can lead to infestation of seeds in asymptomatic fruit 455 (Petkar and Ji 2017). Meiri and Rilsky (1983) indicated that conidia of A. alternata can 456 germinate on stigmas of pepper flowers, ingress the ovary through the style in the form of 457 hyphae and establish in pepper seeds. Similarly, De Neergaard (1989) showed that 458 Stagonosporopsis sp. can infect seeds of Cucurbitaceae via the stigmas. Moreover, the 459 460 majority of growers in Tunisia and Italy extract the seeds from the fruit, and the presence of seeds contaminated within asymptomatic fruits might contribute to the large-scale spread of 461 462 these pathogens and to their introduction into new planting area. Therefore, cultural practices, such as visual inspection for absence of lesions on fruit is not sufficient to ensure that seeds 463 464 are not infected. Thomas-Sharma et al. (2017) showed that the selection of healthy plants in the field is an important step to obtain good quality of seeds. In addition, in Italy, eight 465 466 symptomatic fruits were infected by S. cucurbitacearum, but the seeds obtained from these

467 fruits were not infected by this pathogen. The likely explanation for this is that the spatial 468 development of a pathogen is influenced by many factors, such as inoculum source (e.g., 469 infested soil) and environmental conditions, such as relative humidity; e.g., *S.* 470 *cucurbitacearum* is influenced by the environmental conditions during sampling (Rennberger 471 et al. 2018).

472 Correct identification of fungal pathogens is a key factor for crop protection and for 473 the development of disease management strategies (Kusai et al. 2015). For this reason, ITS-474 rDNA, β -tubulin, histone H3, and *EF1a* sequence data were used here to confirm the 475 morphological identification by Blast analysis and the homology of sequence in NCBI 476 database (Peay et al. 2008; White et al. 1990). In particular, for *S. cucurbitacearum*, *A.* 477 *alternata*, *C. spicifera*, *F. oxysporum*, and *F. solani*, the molecular detection was carried out 478 using species-specific primers.

479 In our study, the application of RG-specific primers, allowed to determine that all S. cucurbitacearum isolates from Tunisia and Italy belonged to the genetic group RGII, so none 480 481 belonged to the genetic group RGI, which is prevalent in Florida and Georgia (USA) (Babu et al. 2015) and in Brazil (Santos et al. 2009). For the molecular identification of the genera 482 Albifimbria, Paramyrothecium, and Stemphylium, based to the best of our knowledge, there 483 were no specific primers already available. Hence, in this study, species-specific primers were 484 designed to identify P. roridum, A. verrucaria, and S. vesicarium. The ITS region of nuclear 485 rDNA is the main genomic region targeted for PCR primer development (Guillemette et al. 486 2004). Myrothecium spp. have been detected in cucurbits, with identification through their 487 morphological characteristics and through ITS sequence analysis (Fish et al. 2012; Sultana 488 and Ghaffar 2009). In the present study, ITS specific primers for P. roridum, A. verrucaria, 489 and S. vesicarium were used to identify the target microrganisms. The annealing temperatures 490 of 60 °C for A. verrucaria and S. vesicarium and 58 °C for P. roridum allowed these 491 pathogens to be specifically detected while preventing the amplification of other pathogens. 492 To determine the sensitivity of each primer set designed in this study, serial dilutions of 493 494 fungal genomic DNA of A. verrucaria, P. roridum, and S. vesicarium revealed that 40 ng DNA was necessary to produce a clear results on agarose gels. Using less than 4 ng for A. 495 verrucaria and P. roridum and 0.4 ng for S. vesicarium, the molecular tools set up were not 496 497 able to clearly identify the specific pathogens.

The present study started from a phytosanitary survey that led to the identification of the main fruit rot and seedborne pathogens of squash through conventional and molecular diagnoses. The principal fungi present in the squash seeds in this study included *S*.

cucurbitacearum, A. alternata, A. verrucaria, P. roridum, and S. vesicarium, and these were 501 detected for the first time in Tunisia and Italy for seeds of C. maxima and C. moschata. These 502 fungi are both seedborne and soilborne pathogens. The use of quality seeds is important for 503 improving yields and conservation of genetic material (Duan et al. 2007), and consequently, 504 the sanitary control of seeds is necessary to limit the spread of these pathogens. This can be 505 achieved through application of seed-health testing methods, including conventional and 506 molecular diagnostic tools. This technique has numerous positive characteristics, including 507 rapidity, specificity, sensitivity, and ease of interpretation, which allow its application to the 508 509 detection of seedborne pathogens (Mancini et al. 2016; Vannacci et al. 2014; Walcott 2003; Ward et al. 2004). Such data are useful for the identification of seedborne fungi directly in 510 seed samples, and to clarify the risk of infection for the following crop. This study illustrates 511 how fruit and plant selection can reduce the amount of seedborne pathogen inocula and to 512 513 obtain high-quality seeds, which can be a critical step in the management strategies for sustainable agriculture. 514

- 515
- 516

Acknowledgements. This study was supported by a Fellowship from "*Institution de la Recherche et de l'Enseignement Supérieur Agricoles* (IRESA)", Tunisia, by the Ministry of Agriculture and Water Resources, Tunisia, and by the project "Detection and molecular characterization of seedborne fungi" by Marche Polytechnic University, Italy. Thanks are expressed to Prof. Sebastiano Delfine for providing samples from Campobasso, and squash growers of from Italian and Tunisian regions for their kind cooperation.

523

525 Literature cited

- 526
- Ahmad, L., Pathak, N., and Zaidi, R. K. 2016. Antifungal potential of plant extracts against
 seed-borne fungi isolated from barley seeds (*Hordeum vulgare* L.). J. Plant Pathol.
 Microbiol. 7:350.
- Arif, M., Chawla, S., Zaidi, N. W., Rayar, J. K., Variar, M., and Singh, U. S. 2012.
 Development of specific primers for genus *Fusarium* and *F. solani* using rDNA sub unit
 and transcription elongation factor (TEF 1α) gene. Afr. J. Biotechnol. 11:444-447.
- Aveskamp, M. M., de Gruyter, J., Woudenberg, J. H. C., Verkley, G. J. M., and Crous, P. W.
 2010. Highlights of the *Didymellaceae*: a polyphasic approach to characterize *Phoma* and
- related pleosporalean genera. Stud. Mycol. 65:1-60.
- Babu, B., Kefialew, Y. W., Li, P.-F., Yang, X.-P., George, S., Newberry, E., Dufault, N.,
- Abate, D., Ayalew, A., Marois, J., and Paret, M. L. 2015. Genetic characterization of *Didymella bryoniae* isolates infecting watermelon and other cucurbits in Florida and
 Georgia. Plant Dis. 99:1488-1499.
- Blanco, R., and Aveling, T.A.S. 2018. Seed-borne *Fusarium* pathogens in agricultural crops.
 Acta Hortic. 1204:161-170.
- Booth, C. 1971. The genus *Fusarium*. Commonwealth Mycological Institute, Kew, Surrey,
 England.
- Boughalleb, N., and El Mahjoub, M. 2006. *In-vitro* determination of *Fusarium* spp. infection
 on watermelon seeds and their localization. Plant Pathol. 5:178-182.
- Boughalleb, N., El Mahjoub, M., Abad-Campos, P., Pérez-Sierra, A., García-Jiménez, J., and
 Armengol, J. 2007. First report of gummy stem blight caused by *Didymella bryoniae* on
 grafted watermelon in Tunisia. Plant Dis. 91:468.
- Brewer, M. T., Rath, M., and Li, H. X. 2015. Genetic diversity and population structure of
 cucurbit gummy stem blight fungi based on microsatellite markers. Phytopathology
 105:815-824.
- Câmara, M. P., O'Neill, N. R., and van Berkum, P. 2002. Phylogeny of *Stemphylium* spp.
 based on ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences.
 Mycologia 94:660-672.
- Carneiro, G. A., Matić, S., Ortu, G., Garibaldi, A., Spadaro, D., and Gullino, M. L. 2017.
 Development and validation of a TaqMan real time PCR assay for the specific detection
 and quantification of *Fusarium fujikuroi* in rice plants and seeds. Phytopathology
 107:885-892.

- Carbone I, Kohn LM, 1999. A method for designing primer sets for speciation studies in
 filamentous ascomycetes. Mycologia 91, 553-555.
- 561 Champion, R. 1997. Identifier les champignons transmis par les semences. Eds. INRA.
- Chehri, K., Salleh, B., Yli-Mattila, T., Reddy, K. R. N., and Abbasi, S. 2011. Molecular
 characterization of pathogenic *Fusarium* species in cucurbit plants from Kermanshah
 province, Iran. Saudi J. Biol. Sci. 18:341-351.
- 565 Choi, Y. W., Hyde, K. D., and Ho, W. H. 1999. Single spore isolation of fungi. Fungal
 566 Divers. 3:29-38.
- 567 Cohen, Y., Rubin, A. E., Galperin, M., Ploch, S., Runge, F., and Thines, M. 2014. Seed
 568 transmission of *Pseudoperonospora cubensis*. PLoS One 9:e109766.
- Crous, P. W., Groenewald, J. Z., Risède, J. M., Simoneau, P., and Hywel-Jones, N. L. 2004. *Calonectria* species and their *Cylindrocladium* anamorphs: species with
 sphaeropedunculate vesicles. Stud. Mycol. 50:415-430.
- 572 De Neergaard, E. 1989. Studies of *Didytmella bryoniae* (Auersw.) Rehm: development in the
 573 host. J. Phytopathol. 127:107-115.
- Dela Paz, M. A. G., Goodwin, P. H., Raymundo, A. K., Ardales, E. Y. and Vera Cruz, C. M.
 2006. Phylogenetic analysis based on ITS sequences and conditions affecting the type of
 conidial germination of *Bipolaris oryzae*. Plant Pathol. 55:756-765.
- Du Toit, L. J., Derie, M. L., and Hernandez-Perez P. 2005. Verticillium wilt in spinach seed
 production. Plant Dis. 89:4-11.
- Duan, C.-X., Wang, X.-M., Zhu, Z.-D., and Wu X.-F. 2007. Testing of seedborne fungi in
 wheat germ plasm conserved in the national crop gene bank of China. Agric. Sci. China
 6:682-687.
- El-Meleigi, M. A. 1991. *Alternaria* blossom-end rot and seedling blight of cucurbits in AlQuassim. J. King Saud. Univ. 3:77-86.
- Elmer, W. H. 2001. Seeds as vehicles for pathogen importation. Biol. Invasions 3:263-271.
- El-Nagerabi, S., and Elshafie, E. 2000. Incidence of seed-borne fungi and aflatoxins in
 Sudanese lentil seeds. Mycopathologia 149:151-156.
- 587 FAO 2014. FAOSTAT data. <u>http://www.fao.org/faostat/en/#data/QC</u>.
- Farrag, E., S., H., and Moharam, M. H. A. 2012. Pathogenic fungi transmitted through
 cucumber seeds and safely elimination by application of peppermint extract and oil. Not.
 Sci. Biol. 4:83-91.
- Fish, W. W., Bruton, B. D., and Popham, T. W. 2012. Cucurbit host range of *Myrothecium roridum* isolated from watermelon. Am. J. Plant Sci. 3:353-359.

- 593 Gannibal, P. B. 2011. *Alternaria cucumerina* causing leaf spot of pumpkin newly reported in
 594 North Caucasus (Russia). New Dis. Rep. 23, 36.
- Glass, N.L., and Donaldson, G. 1995. Development of primer sets designed for use with PCR
 to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:
 1323-1330.
- Guillemette, T., Iacomi-Vasilescu, B., and Simoneau, P. 2004. Conventional and real-time
 PCR-based assay for detecting *Alternaria brassicae* in cruciferous seed. Plant Dis.
 88:490-496.
- Jeon, S. J., Nguyen, T. T. T. and Lee, H. B. 2015. Phylogenetic status of an unrecorded
 species of *Curvularia*, *C. spicifera*, based on current classification system of *Curvularia* and *Bipolaris* group using multi loci. Mycobiology 43:210-217.
- Keinath, A. P. 2011. From native plants in central Europe to cultivated crops worldwide: the
 emergence of *Didymella bryoniae* as a cucurbit pathogen. HortScience 46:532-535.
- Keinath, A. P., Farnham, M. W., and Zitter, T. A. 1995. Morphological pathological and
 genetic differentiation of *Didymella bryoniae* and *Phoma* spp. isolated from cucurbits.
 Phytopathology 85:364-369.
- Kgatle, M.G., Truter, M., Ramusi, T.M., Flett, B., and Aveling, T.A.S. 2018. *Alternaria alternata*, the causal agent of leaf blight of sunflower in South Africa. Eur. J. Plant
 Pathol. 151:677-688.
- 612 Konstantinova, P., Bonants, P., van Gent-Pelzer, M., van der Zouwen, P., and van den Bulk,
- R. 2002. Development of specific primers for detection and identification of *Alternaria*spp. in carrot material by PCR and comparison with blotter and plating assays. Mycol.
 Res. 106:23-33.
- Kusai, N. A., Azmi, M. M. Z., Zulkifly, S., Yusof, M. T., and Zainudin N. A. I. M. 2015.
 Morphological and molecular characterization of *Curvularia* and related species
 associated with leaf spot disease of rice in Peninsular Malaysia. Fis. Acc. Lincei 27:205214.
- Lee, D. H., Mathur, S. B., and Neergard, P. 1984. Detection and location of seed-borne
 inoculum of *Didymella bryoniae* and its transmission in seedlings of cucumber and
 pumpkin. Phytopathol. Z. 109:301-308.
- Lombard, L., van der Merwe, N. A., Groenewald, J. Z., and Crous, P. W. 2015. Generic
 concepts in Nectriaceae. Stud. Mycol. 80:189-245.

- Lombard, L., Houbraken, J., Decock, C., Samson, R. A., Meijer, M., Réblová, M.,
 Groenewald, J. Z. and Crous, P. W. 2016. Generic hyper-diversity in Stachybotriaceae.
 Persoonia 36:156-246.
- Majumder, D., Rajesh. T., Suting, E. G., and Debbarma, A. 2013. Detection of seed borne
 pathogens in wheat: recent trends. Austral. J. Crop Sci. 7:500-507.
- Mamgain, A., Roychowdhury, R., and Tah, J. 2013. *Alternaria* pathogenicity and its strategic
 controls. Res. J. Biol. 1:1-9.
- Mancini, V, and Romanazzi, G. 2014. Seed treatments to control seedborne fungal pathogens
 of vegetable crops. Pest Manage. Sci. 70:860-868.
- Mancini, V., Murolo, S., and Romanazzi, G. 2016. Diagnostic methods for detecting fungal
 pathogens on vegetable seeds. Plant Pathol. 65:691-703.
- Mathur, S. B., and Kongsdal, O. 2003. in: Common Laboratory Seed Health Testing Methods
 for Detecting Fungi. International Seed Testing Association, Bassersdorf, Switzerland.
- 638 Mehl, H. L., and Epstein, L. 2007. Identification of Fusarium solani f. sp cucurbitae race 1
- and race 2 with PCR and production of disease-free pumpkin seeds. Plant Dis. 91:1288-1292.
- Moumni, M., Mancini, V., Allagui, M. B., Murolo, S., and Romanazzi, G. 2019. Black rot of
 squash (*Cucurbita moschata* Duchesne) caused by *Stagonosporopsis cucurbitacearum*reported in Italy. Phytopathol. Mediterr. (accepted for publication on 3 April 2019, in
 press).
- Orawan, P., Arm, U., and Unartngam, J. 2014. Effectiveness of *Myrothecium roridum* for
 controlling water hyacinth and species identification based on molecular data. Afr. J.
 Microbiol. Res. 13:1444-1452.
- Özer, N., and Coşkuntuna, A. 2016. The biological control possibilities of seed-borne fungi.
 pp. 383-403 in: Current Trends in Plant Disease Diagnostics and Management Practices.
 P. Kumar, V. Kumar Gupta, A. Kumar Tiwari, and M. Kamle, eds. Springer, Cham.
- Paul, N. C., Deng, J. X., Lee, H. B., and Yu, S. H. 2015. Characterization and pathogenicity
 of *Alternaria burnsii* from seeds of *Cucurbita maxima* (Cucurbitaceae) in Bangladesh.
 Mycobiology 4:384-391.
- Peay, K. G., Kennedy, P. G., and Bruns, T. D. 2008. Fungal community ecology: a hybrid
 beast with a molecular master. BioScience 58:799-810.
- Pellegrino, C., Gilardi, G., Gullino, M. L., and Garibaldi, A. 2010. Detection of *Phoma valerianellae* in lamb's lettuce seeds. Phytoparasitica 38:159-165.

- Petkar, A., and Ji, P. 2017. Infection courts in watermelon plants leading to seed infestation
 by *Fusarium oxysporum* f. sp. *niveum*. Phytopathology 107:828-833.
- 660 Petzer, C. F. 1958. Leaf spot disease of muskmelon caused by *Pleospora herbarum* (PERS.)
- RABH. (Conidial stage *Stemphylium botryosum* WALLR.). South Afr. J. Agric. Sci. 1:322.
- Pryor, B. M., and Gilbertson, R. L. 2000. Molecular phylogenetic relationships amongst
 Alternaria species and related fungi based upon analysis of nuclear ITS and mtSSU
 rDNA sequences. Mycol. Res. 11:1312-1321.
- Rennberger, G., and Keinath A. P. 2018. Susceptibility of 14 new cucurbit species to gummy
 stem blight caused by *Stagonosporopsis citrulli* under field conditions. Plant Dis.
 102:1365-1375.
- Rennberger, G., Gerard, P., and Keinath, A. P. 2018. Occurrence of foliar pathogens of
 watermelon on commercial farms in South Carolina estimated with stratified cluster
 sampling. Plant Dis. 102:2285-2295.
- Rodrigues, A. A. C., and Menezes, M. 2005. Identification and pathogenic characterization of
 endophytic *Fusarium* species from cowpea seeds. Mycopathologia 1:79-85.
- Santos, G. R. D., Ferreira, M. A. D. S. V. I., Pessoa-Filho, M. A. C. P., Ferreira, M. E., and
 Cafe[']-Filho, A. C. 2009. Host specificity and genetic diversity of *Didymella bryoniae*from cucurbitaceae in Brazil. J. Phytopathol. 157:265-273.
- 677 Simmons, E.G., 1969. Perfect states of *Stemphylium*. Mycologia 61:1-26.
- Somai, B. M., Keinath, A. P., and Dean, R. A. 2002. Development of PCR-ELISA for
 detection and differentiation of *Didymella bryoniae* from related *Phoma* species. Plant
 Dis. 86:710-716.
- Stewart J. E., Turner A. N. and Brewer M. T. 2015. Evolutionary history and variation in host
 range of three *Stagonosporopsis* species causing gummy stem blight of cucurbits. Fungal
 Biol. 119:370-382.
- Sultana, N., and Ghaffar, A. 2009. Pathogenesis and control of *Myrothecium* spp., the cause
 of leaf spot on bitter gourd (*Momordica charantia* Linn.). Pak. J. Bot. 1:429-433.
- Thomas-Sharma, S., Andrade-Piedra, J., Carvajal Yepes, M., Hernandez Nopsa, J. F., Jeger,
 M. J., Jones, R. A. C., Kromann, P., Legg, J. P., Yuen, J., Forbes, G. A., and Garrett, K.
- A. 2017. A risk assessment framework for seed degeneration: informing an integrated
 seed health strategy for vegetatively propagated crops. Phytopathology 107:1123-1135.
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the
 sensitivity of progressive multiple sequence alignment through sequence weighting,

- position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:46734680.
- Tsopmbeng N. G., and Fomengia, D. N. 2015. Fungi associated with seeds of huckleberry
 (*Solanum scabrum* Mill.) grown in the western highlands of Cameroon. Int. J. Agric.
 Technol. 11:791-801.
- Ünal, F., Turgay, E. B., Yıldırım, A. F., and Yüksel, C. 2011. First report of leaf blotch on
 sorghum caused by *Bipolaris spicifera* in Turkey. Plant Dis. 95:495.
- Vakalounakis, D. J. 1990. *Alternaria alternata* f. sp. *cucurbitae*, the cause of a new leaf spot
 disease of melon (*Cucumis melo*). Ann. Appl. Biol. 117:507-513.
- Vannacci, G., Cristani, C., Forti, M., Kontoudakis, G. E. T., and Gambogi, P. 1999. Seed
 transmission of *Fusarium oxysporum* f.sp. *basilici* in sweet basil. J. Plant Pathol. 1:47-53.
- Vannacci, G., Sarrocco, S., and Porta-Puglia, A. 2014. Improved detection and monitoring of
 seed-borne fungal plant pathogens in Europe. pp. 65-87 in: Global Perspectives on the
 Health of Seeds and Plant Propagation Material. M.L. Gullino, G. Munkvold, eds.
 Springer, Dordrecht.
- Varanda, C. M. R., Oliveira M., Materatski, P., Landum, M., Clara, M. I. E., and Félix, M. D.
 R. 2016. Fungal endophytic communities associated to the phyllosphere of grapevine
 cultivars under different types of management. Fungal Biol. 12:1525-1536.
- Walcott, R. R., McGee, D. C., and Misra, M. K. 1998. Detection of asymptomatic fungal
 infections of soybean seeds by ultrasound analysis. Plant Dis. 82:584-589.
- 712 Walcott, R. R., 2003. Detection of seedborne pathogens. HortTechnology 13:40-47.
- Ward, E., Foster, S., Fraaije, B., and McCartney, H. A. 2004. Plant pathogen diagnostics:
 immunological and nucleic acid-based approaches. Ann. Appl. Biol. 145:1-16.
- 715 White, T. J., Bruns, T., Lee, S., and Taylor, J. W. 1990. Amplification and direct sequencing
- of fungal ribosomal RNA genes for phylogenetics. pp. 315-322 in: PCR Protocols: A
- Guide to Methods and Applications. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J.
- 718 White, eds. Academic Press, San Diego, CA, USA.
- Yao, X., Li, P., Xu, J., Zhang, M., Ren, R., Liu, G., and Yang, X. 2016. Rapid and sensitive
 detection of *Didymella bryoniae* by visual loop-mediated isothermal amplification assay.
 Front. Microbiol. 7:1372.
- Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. 2012. PrimerBLAST: A tool to design target-specific primers for polymerase chain reaction. BMC
 Bioinform, 13:134.

725	Zhang, S., Xiaoyu, Z., Yuxia, W., Jing, L., Xiuling, C., Aoxue, W., and Jingfu, L. 2012.
726	Molecular detection of Fusarium oxysporum in the infected cucumber plants and soil.
727	Pak. J. Bot. 4:1445-1451.
728	Zitter, T. A., and Kyle, M. M. 1992. Impact of powdery mildew and gummy stem blight on
729	collapse of pumpkins (Cucurbita pepo. L.). Cucurbit Genit. Cooper. 15:93-96.

Country	Province	Locality	Fruit	Host	Cultivar ^a	Year of
			sample			collection
Tunisia	Ariana	Kalâat El-Andalous	T34	C. maxima	Bjaoui	2015
		(37°03′45″N, 10°07′06″E)	T35	C. maxima	Galaoui	2015
			T47	C. maxima	Bjaoui	2015
			T52	C. maxima	Bjaoui	2015
			T63	C. maxima	Galaoui	2015
			T71	C. maxima	Bjaoui	2015
			T45	C. maxima	Galaoui	2015
			T69	C. maxima	Galaoui	2015
			T1	C. maxima	Galaoui	2015
			Т3	C. maxima	Batati	2015
	Siliana	Sidi Hmada	T8	C. maxima	Bjaoui	2015
		(35°57'28"N, 9°32'57"E)	T4	C. maxima	Bjaoui	2015
			T13	C. maxima	Bjaoui	2015
			Т9	C. maxima	Bjaoui	2015
			Τ7	C. maxima	Bjaoui	2015
			T18	C. maxima	Bjaoui	2015
			T22	C. maxima	Bjaoui	2015
			T14	C. maxima	Bjaoui	2015
	Bizerte	Utique	T6	C. maxima	Bjaoui	2015
		(37°03′25″N, 10°03′43″E)	T16	C. maxima	Bjaoui	2015
			T38	C. maxima	Bjaoui	2015
			T40	C. maxima	Bjaoui	2015
			T58	C. maxima	Bjaoui	2015
			T66	C. maxima	Bjaoui	2015
			T70	C. maxima	Bjaoui	2015
			T81	C. maxima	Bjaoui	2016
	Kasserine	Sbeïtla	T76	C. maxima	Bjaoui	2016
		(35°14′00″N, 9°08′00″E)	T77	C. maxima	Bjaoui	2016
			T78	C. maxima	Bjaoui	2016
			T79	C. maxima	Bjaoui	2016

Table 1. Field sites and fruit samples collected from Tunisia and Italy.

			T80	C. maxima	Bjaoui	2016
	Monastir	Sahline	T23	C. maxima	Batati	2015
		(35°45′02″N, 10°42′44″E)	T24	C. maxima	Bjaoui	2015
			T26	C. maxima	Bjaoui	2016
			T28	C. maxima	Bjaoui	2016
			T29	C. maxima	Bjaoui	2016
			T30	C. maxima	Bjaoui	2016
Italy	Ancona	Castelfidardo	I2	C. maxima	Aspen	2018
		(43°27′51″N, 13°32′46″E)	I3	C. maxima	Aspen	2018
			I4	C. moschata	Naples long	2018
			15	C. maxima	Aspen	2018
			I8	C. maxima	Aspen	2018
			I12	C. moschata	Naples long	2018
			I13	C. moschata	Naples long	2018
			I16	C. moschata	Naples long	2018
	Ancona	Osimo	I17	C. moschata	Butternut	2018
		(43°29′00″N, 13°29′00″E)	I18	C. moschata	Butternut	2018
			I19	C. moschata	Butternut	2018
			I20	C. moschata	Butternut	2018
			I21	C. moschata	Butternut	2018
			I22	C. moschata	Butternut	2018
			I23	C. moschata	Butternut	2018
			I24	C. moschata	Butternut	2018
			I25	C. moschata	Butternut	2018
			I26	C. moschata	Butternut	2018
			I27	C. moschata	Butternut	2018
			I28	C. moschata	Butternut	2018
	Macerata	Recanati	I29	C. moschata	Butternut	2018
		(43°24′00″N, 13°33′00″E)	I30	C. moschata	Butternut	2018
			I31	C. moschata	Naples long	2018
			I32	C. maxima	Aspen	2018
			I33	C. moschata	Butternut	2018
			I34	C. maxima	Aspen	2018

Bari	Monopoli	I35	C. moschata	Butternut	2018
	(40°57′00″N, 17°18′00″E)	I36	C. maxima	Aspen	2018
Campobasso	Baranello	I37	C. moschata	Butternut	2018
	(41°32′00″N, 14°33′00″E)				

^a The three squash cultivars from Tunisia use the local Tunisian names ('Galaoui', 'Bjaoui',

'Batati') and represent the squash cultivars that are most commonly produced there

736

Table 2. Codes assigned to the isolates of each fungal species from Tunisia (TN) and Italy (IT) that were used during the DNA extraction and PCR analyses of the ITS, EF1α, HIS, and TUB sequences.

Fungal species	Isolate	te Location	Source	Host species	cies Identification method		GenBank accession number			
					Sequencing	Species-	ITS	EF1a	HIS	TUB
						specific PCR				
Stagonosporopsis	D33*	Sidi Hmada, TN	Seed	C. maxima	+	+	MF401569	_*	-	MK497768
cucurbitacearum	D35	Sidi Hmada, TN	Seed	C. maxima		+				
	D43	Sidi Hmada, TN	Seed	C. maxima		+				
	D45	Sidi Hmada, TN	Seed	C. maxima		+				
	D40	Sidi Hmada, TN	Seed	C. maxima		+				
	D36	Sidi Hmada, TN	Seed	C. maxima		+				
	D3	Sbeïtla, TN	Seed	C. maxima		+				
	D23	Sidi Hmada, TN	Seed	C. maxima		+				
	D24	Sidi Hmada, TN	Seed	C. maxima		+				
	D29*	Sidi Hmada, TN	Seed	C. maxima	+	+	MK497779	-	-	MK497766
	D21	Sidi Hmada, TN	Seed	C. maxima		+				
	D5	Sbeïtla, TN	Seed	C. maxima		+				
	D42	Sidi Hmada, TN	Seed	C. maxima		+				
	D49*	Sidi Hmada, TN	Seed	C. maxima	+	+	MF401570	-	MK497771	MK497767
	D48	Sidi Hmada, TN	Seed	C. maxima		+				
	D45	Sidi Hmada, TN	Seed	C. maxima		+				
	D39	Sidi Hmada, TN	Seed	C. maxima		+				
	D2	Sbeïtla, TN	Seed	C. maxima		+				

	D3	Sbeïtla, TN	Seed	C. maxima		+					
	D5	Sbeïtla, TN	Seed	C. maxima		+					
	D10	Sbeïtla, TN	Seed	C. maxima		+					
	D12*	Sidi Hmada, TN	Seed	C. maxima	+	+	MF401568	-	-	-	
	D27	Sidi Hmada, TN	Seed	C. maxima		+					
	D62	Sidi Hmada, TN	Seed	C. maxima		+					
	D69	Sidi Hmada, TN	Seed	C. maxima		+					
	D83*	Sidi Hmada, TN	Seed	C. maxima	+	+	MF401571	-	-	-	
	DBF1	Osimo, IT	Fruit	C. moschata		+					
	DBF2	Osimo, IT	Fruit	C. moschata		+					
	DBF3	Osimo, IT	Fruit	C. moschata		+					
Phoma sp.	Ph39*	Sidi Hmada, TN	Seed	C. maxima	+		MF401572	-	-	-	
Alternaria	A38*	Sahline, TN	Seed	C. maxima	+	+	MK497774	MK497789	MK497770	-	
alternata	A15*	Kalâat El-Andalous, TN	Seed	C. maxima	+	+	MK497773	MK497788	MK497769	-	
	A58	Kalâat El-Andalous, TN	Seed	C. maxima		+					
	A17	Kalâat El-Andalous, TN	Seed	C. maxima		+					
	A5	Kalâat El-Andalous, TN	Seed	C. maxima		+					
	A59	Sidi Hmada, TN	Seed	C. maxima		+					
	IA1*	Recanati, IT	Seed	C. moschata	+	+	MK497775	-	-	-	
	IA2	Recanati, IT	Fruit	C. moschata		+					
	IA3*	Osimo, IT	Seed	C. moschata	+	+	MK497776	-	-	-	
	IA4	Osimo, IT	Seed	C. moschata		+					
	IA5	Osimo, IT	Fruit	C. moschata		+					

	IA6	Osimo, IT	Seed	C. moschata		+				
	IA7	Monopoli, IT	Seed	C. moschata		+				
	IA8	Monopoli, IT	Seed	C. moschata		+				
	IA9	Castelfidardo, IT	Seed	C. maxima		+				
	IA10	Castelfidardo, IT	Seed	C. maxima		+				
Albifimbria	M140	Sidi Hmada, TN	Seed	C. maxima		+				
verrucaria	M149	Sidi Hmada, TN	Seed	C. maxima		+				
	M148	Sidi Hmada, TN	Seed	C. maxima		+				
	M144*	Sidi Hmada, TN	Seed	C. maxima	+	+	MK497782	-	-	MK497761
	M146	Sidi Hmada, TN	Seed	C. maxima		+				
	M155	Sidi Hmada, TN	Seed	C. maxima		+				
	M135*	Sidi Hmada, TN	Seed	C. maxima	+	+	MK497783	-	-	MK497762
	IAV1	Osimo, IT	Seed	C. moschata		+				
	IAV2*	Osimo, IT	Seed	C. moschata	+	+	MK497785	-	-	MK497764
	IAV3	Osimo, IT	Seed	C. moschata		+				
	IAV4*	Osimo, IT	Seed	C. moschata	+	+	MK497784	-	-	MK497763
	M73	Sidi Hmada TN	Seed	C. maxima		+				
	M78	Sidi Hmada, TN	Seed	C. maxima		+				
Paramyrothecium	M123*	Sidi Hmada, TN	Seed	C. maxima	+	+	MF401575	-	-	MK497759
roridum	M138*	Sidi Hmada, TN	Seed	C. maxima	+	+	MF401576	-	-	-
	M167	Sidi Hmada, TN	Seed	C. maxima		+				
	M141*	Sidi Hmada, TN	Seed	C. maxima	+	+	MK497786	-	-	MK497765
	IPR1	Baranello, IT	Seed	C. moschata		+				

	IPR2*	Baranello, IT	Seed	C. moschata	+	+	-		MK497760
	IPR3	Baranello, IT	Seed	C. moschata		+			
	IPR4	Recanati, IT	Seed	C. moschata		+			
	IPR5	Recanati, IT	Seed	C. moschata		+			
	IPR6	Recanati, IT	Seed	C. moschata		+			
	IPR7	Recanati, IT	Seed	C. moschata		+			
	IPR8	Recanati, IT	Seed	C. moschata		+			
	IPR9*	Recanati, IT	Seed	C. moschata	+	+	MK497780		-
Fusarium	F59	Sidi Hmada, TN	Seed	C. maxima		+			
oxysporum	F16	Sbeïtla, TN	Seed	C. maxima		+			
	F19	Kalâat El-Andalous, TN	Seed	C. maxima		+			
Fusarium solani	F82	Sbeïtla, TN	Seed	C. maxima		+			
	F30	Sidi Hmada, TN	Seed	C. maxima		+			
	F174*	Sbeïtla, TN	Seed	C. maxima	+	+	MF401578	MK497790 MK497772	-
	F142	Sidi Hmada, TN	Seed	C. maxima		+			
Curvularia	B172	Sbeïtla, TN	Seed	C. maxima		+			
spicifera	B170*	Sidi Hmada, TN	Seed	C. maxima	+	+	MF401577		-
	IB41*	Castelfidardo, IT	Seed	C. maxima	+	+	MK497777		
	IB4	Castelfidardo, IT	Fruit	C. maxima		+			
	IB1*	Castelfidardo, IT	Seed	C. maxima	+	+	MK497778		-
	IB2	Recanati, IT	Seed	C. moschata		+			
	IB3	Recanati, IT	Seed	C. moschata		+			
Stemphylium	P164*	Kalâat El-Andalous, TN	Seed	C. maxima	+	+	MF401574	MK497787 -	-

vesicarium	P66*	Kalâat El-Andalous, TN	Seed	C. maxima	+	+	MF401573 N	MK497791	-	-
	IP41	Baranello, IT	Seed	C. moschata		+				
	IP4*	Osimo, IT	Seed	C. moschata	+	+	MK497781	-	-	-
	IP5	Osimo, IT	Seed	C. moschata		+				

* -, sequence not available.

Table 3. Nucleotide sequence primers already published for the detection of Stagonosporopsis cucurbitacearum, Alternaria alternata.Curvularia spicifera, Fusarium oxysporum, and Fusarium solani.

Fungal species	Primer pair*	Sequence (5'-3')	Reference
Stagonosporopsis	RGI F	TGTCGTTGAC ATCATTCCAGC	Somai et al. 2002;
cucurbitacearum	RGI R	ACCACTCTGCTTAGTATCTGC	Babu et al. 2015
	RGII F	GCTAAGCCTT AATCTAGCTGC	
	RGII R	GAGAGTAAGCTAACCTAAAGG	
Stagonosporopsis spp.	Db01F	CACGCCAGCAAATCTCACTA	Brewer et al. 2015
(S. cucurbitacearum,	Db01R	CGGTCCGGTCAACCTACTAC	
S. citrulli, S. caricae)	Db05F	TATGACGTTGGGCAAGTGAG	
	Db05R	TTTGCTGGGATGGTGTTGTA	
	Db06F	GGTGACATCTTGCGTGAATG	
	Db06R	TGGTTGTTTGGTTGTTTGGA	
Alternaria alternata	AAF2	TGCAATCAGCGTCAGTAACAAAT	Konstantinova et al. 2002
	AAR3	ATGGATGCTAGACCTTTGCTGAT	
Curvularia spicifera	Bipol-1F	CAGTTGCAATCAGCGTCAGT	Ünal et al. 2011
	Bipol-1R	AAGACAAAAACGCCCAACAC	
Fusarium oxysporum	FC-1	CATACCACTTGTTGCCTC	Zhang et al. 2012
	FC-2	ATTAACGCGAGTCCCACC	
Fusarium solani	TEF-Fs4 F	ATCGGCCACGTCGACTCT	Arif et al. 2012
	TEF-Fs4 R	GGCGTCTGTTGATTGTTAGC	

F. solani f. sp. cucurbitae race 1	Fsc1EF1	GCTAACAATCATCTACAGAC	Mehl and Epstein 2007
	Fsc1-EF-2	GACGGATGAGAGAGCAAC	
F. solani f. sp. cucurbitae race 2	Fsc2-EF1	GTTGGTGACATATCTCCC	
	Fsc2-EF3	GAGTGAGAGACATGACGG	

*F, forward; R, reverse

Table 4. Characteristics of the genus-specific and species-specific primers designed for *Albifimbria verrucaria*, *Paramyrothecium roridum*, and

 Stemphylium vesicarium.

Target sequence species	Primer name	Sequence (5' to 3')	Tm	Bases	GC content
			(°C)		(%)
Albifimbria verrucaria	Myroverr F1	5'-TGTGAACCTTACCATATTGTTGC-3'	62.4	23	39.1
	Myroverr R1	5'-CGTTCCAACTGCGAGGTTGT-3'	67.4	20	55.0
Paramyrothecium roridum	Myroror F1	5'-CCCTTTGTGAACCTTACCTAT-3'	58.5	21	42.8
	Myroror R1	5'-AGCTCCAATGCGAGTTGTG-3'	64.1	19	52.6
Stemphylium vesicarium	Pleo F	5'-TACACAATATGAAAGCGGGTTG-3'	63.7	22	40.9
	PleoR	5'-AAGGCTGATTCAAAGTGCAAG-3'	63.2	21	42.8
	Pleo F1	5'-ATTCACCCATGTCTTTTGCG-3'	64.7	20	45.0
	PleoR1	5'-AAATGTGGTCTTGATGGATGC-3'	63.7	21	42.8

 Table 5. Cycling conditions for the newly designed primers.

Target sequence species	Designed	primer pair		Validated PCR program	
	Forward	Reverse	Initial denaturation	Denaturation: 25 cycles	Annealing
Albifimbria verrucaria	Myroverr F1	Myroverr R1	95 °C, 2 min	95 °C 30 s, 60 °C 30 s, 72 °C 30 s	72 °C, 5 min
Paramyrothecium roridum	Myroror F1	Myroror R1	95 °C, 2 min	95 °C 30 s, 58 °C 30 s, 72 °C 30 s	72 °C, 5 min
Stemphylium vesicarium	Pleo F	PleoR	95 °C, 2 min	95 °C 30 s, 60 °C 30 s, 72 °C 30 s	72 °C, 5 min
	Pleo F1	PleoR1			

Country	Sample	Region ^a	Fungal	Level of	evel of Incidence of fungal species (% ±SE) ^d														
	code		species	symptoms ^c															
			on fruit ^b		Total ^e	Aa	As	Ab	Cs	Sc	Ph sp	Ff	Fo	Fi	Fs	Pr	Av	Sv	Rs
Tunisia	T4	SH	-	А	46.5	19.5	0.0	0.0	0.0	44.0	2.5	8.5	2.0	0.5	9.0	0.0	0.0	0.5	2.5
					±2.9	±3.3				±4.5	±2.5	±2.3	±1.4	±0.5	±2.5			±0.5	±2.5
	Τ7	SH	Sc	В	73.5	2.5	0.0	0.0	0.0	57.0	3.0	10.5	1.5	0.0	13.5	1.0	2.0	0.0	1.5
					±4.3	±1.4				±4.1	±1.3	±2.5	±1.1		±4.2	± 1.0	± 1.2		±1.5
	T8	SH	Aa/Sc	С	25.0	6.0	0.0	0.0	0.0	21.5	0.0	8.5	0.0	0.0	6.0	0.0	0.0	0.0	6.5
					±3.0	±2.5				±4.5		±2.9			±3.4				±2.1
	Т9	SH	Sc	С	64.0	0.5	0.0	0.0	0.0	62.0	1.0	2.0	1.0	0.0	0.5	0.0	0.0	0.0	0.0
					±7.2	±0.5				±4.2	± 1.0	±2.0	±0.7		±05				
	T13	SH	-	А	54.5	17.0	0.0	0.0	0.0	4.0±	1.0	5.5	0.0	2.0	6.0	1.0	1.5	4.5	8.5
					±6.1	±4.5				4.0	± 1.0	±3.4		±1.2	± 3.8	± 1.0	±1.5	±4.5	±6.0
	T14	SH	-	А	75.0	18.0	4.0	2.0	3.5	4.5	0.0	16.0	0.0	0.0	9.5	0.0	0.0	3.5	3.5
					±5.9	± 4.0	±2.5	±1.6	±1.3	±1.5		±5.9			±4.9			± 1.1	± 1.8
	T18	SH	-	А	57.0	16.0	2.0	1.5	2.0	0.0	0.0	4.5	1.0	0.0	10.5	4.5	15.5	3.0	0.5
					±4.7	±4.7	± 2.0	±1.5	±2.0			±2.2	± 1.0		±3.0	±2.1	±4.6	±1.3	±0.5
	T22	SH	-	А	49.0	11.0	0.0	0.0	0.0	3.5	1.0	7.0	1.0	1.5	0.0b	3.0	7.0	1.0	9.5
					±5.7	±4.1				±1.7	±0.7	±3.0	±0.7	±1.1		± 1.8	±1.9	±0.7	±3.8
	T34	KA	Aa	В	72.0	28.0	0.0	1.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	12.5	29.5
					±6.3	±5.7		±0.7				± 0.8						±0.7	±7.6
	T47	KA	Aa	В	73.0	35.0	0.0	1.5	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	32.0
					±4.4	±3.3		±0.8	±0.7									±0.7	±4.6
	T52	KA	Fs	В	14.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	3.0	0.5	6.5	0.0	0.0	0.0	0.0
					±2.9							±1.5	±1.8	±0.5	±2.0				

 Table 6. Incidence of different seedborne fungi detected on all of the squash samples using blotter tests.

T71	KA	Aa	В	62.0	28.5	0.0	6.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.0	0.0	1.0	30.5
				±4.9	±4.1		±1.7				± 1.0						±0.7	±5.4
T35	KA	Aa	В	77.0	49.5	0.0	0.0	0.0	0.0	0.0	7.5	0.0	0.0	0.0	0.0	0.0	2.5	17.5
				±6.7	±5.2						± 3.0						± 1.0	±4.9
T63	KA	Aa	В	21.5	8.0	0.0	0.5	0.5	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	12.0
				±7.0	±3.5		±0.5	±0.5			± 0.5							±4.7
T45	KA	Aa/Cs	В	38.4	34.8	0.0	0.5	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				±4.1	±3.7		±0.5	±1.7										
T69	KA	Aa	В	17.8	14.9	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	6.0
				±4.0	±3.4			±0.5									±1.2	±2.0
T1	KA	-	А	11.5	3.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	3.5	5.0
				±4.0	±1.7						±0.6						±1.3	±3.0
Т3	KA	-	А	49.0	0.5	0.0	0.0	0.0	0.0	0.0	48.5	0.0	0.0	0.0	0.0	0.0	0.0	1.0
				±2.0	±0.5						±2.0							±1.0
T76	Sb	-	А	12.5	3.0	0.0	3.0	0.0	0.5	0.0	0.5	0.0	0.0	4±3	0.0	0.0	0.0	1.5
				±4.2	±1.0		±3.0		±0.5		±0.5							±0.8
T77	Sb	-	А	62.0	37.5	0.0	0.0	6.5	9.0	0.0	0.0	0.0	0.0	6.5	0.0	0.0	4.5	0.0
				±5.0	±5.0			±2.0	±2.5					±2.0			±1.8	
T78	Sb	-	А	37.0	10.5	0.0	0.0	0.0	2.5	0.0	9.0	1.0	1.0	13.0	0.0	0.0	0.0	1.5
				± 4.0	±2.1				±1.2		±3.0	±1.0	±0.6	±4.2				±1.0
T79	Sb	-	А	18.5	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0
				±4.7					±0.5					±4.7				
T80	Sb	-	А	63.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	59.5	0.0	0.0	0.0	1.5
				±5.2	±1.0							±1.0		±6.0				±1.0
Т6	Ut	-	А	10.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.5
				±5.3														± 5.3

T16	Ut	-	А	15.5	1.5	0.0	0.0	0.0	3.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.5	6.5
				±3.2	± 0.8				±1.2		±1.6						±0.5	±2.2
T38	Ut	-	А	5.0	1.0	0.0	0.0	1.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.5	2.5
				±1.3	±0.6			±0.6			± 0.5						±0.5	±1.2
T40	Ut	-	А	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5
				±2.4														±2.4
T58	Ut	-	А	27.0	17.0	0.0	5.0	1.5	0.5	0.0	0.0	0.0	0.5	2.5	0.0	0.0	0.0	0.5
				±4.9	±4.0		±2.2	±0.8	±0.5				±0.5	±2.5				±0.5
T66	Ut	-	А	33.5	11.5	0.0	0.0	0.0	1.0	0.0	4.5	2.0	2.5	12.0	0.0	0.0	0.0	0.5
				±5.6	±3.5				±0.6		±1.1	±1.5	±1.7	±3.6				±0.5
T70	Ut	-	А	32.5	17.0	0.0	0.0	0.0	0.5	0.0	11.5	0.0	1.5	1.0	0.0	0.0	1.0	1.0
				±4.5	±4.7				±0.5		±2.8		±0.8	±0.6			± 1.0	±0.6
T81	Ut	-	А	35.0	7.0	0.0	0.5	0.0	0.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.5	1.0
				±5.7	±2.4		±0.5				±5.1						±0.5	±1.0
T23	Sa	-	А	21.5	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
				±6.3							±6.3							±1.4
T24	Sa	-	А	6.0	2.0	0.0	0.0	0.5	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.5	1.5
				±1.6	±1.1			±0.5			±1.0						±0.5	±1.0
T26	Sa	-	А	9.0	5.5	0.0	0.5	0.5	0.0	0.0	0.0	0.0	0.5	1.0	0.0	0.0	0.0	1.5
				±1.6	±1.5		±0.5	±0.5					±0.5	±0.6				±0.8
T28	Sa	-	А	14.0	4.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	7.0
				±3.0	±1.5						±0.5							±1.9
T29	Sa	-	А	8.5	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0
				±2.0	±1.3													±1.4
T30	Sa	-	А	13.0	1.5	0.0	0.5	0.5	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	2.0	8.0
				±4.4	± 0.8		±0.5	±0.5			± 0.5						±0.9	± 4.0

Italy	I2	Ca	Aa/Cs	С	85.0	9.5	0.0	0.0	85.0	0.0	0.0	9.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					±2.6	±3.3			±2.6			±2.5							
	13	Ca	-	А	2.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0
					±2.0	±0.5													±2.0
	I4	Ca	Aa	В	19.0	1.5	0.0	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5
					±3.3	±1.5						±2.5							±2.7
	15	Ca	Aa/Cs	С	65.7	4.6	0.0	0.0	11.4	0.0	0.0	53.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					±8.4	±1.8			±2.5			±7.2							
	18	Ca	Aa	С	36.0	2.0	0.0	0.0	0.0	0.0	0.0	17.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					±3.5	±0.9						±3.8							
	I12	Ca	Aa	В	53.5	10.5	0.0	0.0	0.0	0.0	0.0	13.5	0.0	0.0	0.0	0.0	0.0	1.0	29.0
					±5.9	±3.4						±5.2						±0.6	±5.1
	I13	Ca	Aa	В	40.0	6.8	0.0	0.0	0.0	0.0	0.0	21.5	0.0	0.0	0.0	0.0	0.0	0.0	11.5
					±3.7	±2.4						±4.1							±3.5
	I16	Ca	-	А	29.0	1.0	0.0	0.0	0.0	0.0	0.0	27.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
					±4.1	±1.0						±4.0							±1.5
	I17	Os	Sc/Aa	В	6.0	3.1	0.0	0.5	0.0	0.0	0.0	0.6	0.0	0.4	0.0	0.0	0.0	0.0	1.1
					±3.2	±1.7		±0.5				±0.6		±0.4					±1.1
	I18	Os	Sc/Aa	В	33.8	19.7	0.0	1.5	0.0	0.0	0.0	9.3	0.0	1.5	0.0	0.0	0.0	0.5	0.0
					±4.1	±3.7		±1.1				±3.1		±1.1				±0.5	
	I19	Os	Sc/Aa	В	30.7	20.3	0.0	0.0	0.0	0.0	0.0	8.8	0.0	1.5	0.0	0.0	0.0	1.0	0.0
					±4.1	±5.2						±2.9		±1.0				±0.6	
	I20	Os	Sc/Aa	В	38.9	32.2	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.9	0.0	0.0	1.9	2.4	0.0
					±5.2	±4.3						±0.6		±0.6			±1.4	±0.8	
	I21	Os	Sc/Aa	В	27.7	9.0	0.0	0.4	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.4	7.6
					±6.0	±3.0		±0.4				±3.9						±0.4	±4.8

I22	Os	-	А	22.8	11.1	0.0	0.0	0.0	0.0	0.0	10.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				±3.2	±2.0						±2.6							
I23	Os	-	А	21.7	13.5	0.0	2.2	0.4	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0
				±4.2	±4.1		±1.7	±0.4			±1.9						±0.4	
I24	Os	-	А	22.6	11.7	0.0	0.0	0.0	0.0	0.0	9.5	0.0	0.4	0.0	0.0	0.4	0.0	0.4
				±3.1	±2.4						±3.1		±0.4			±0.4		±0.4
I25	Os	Sc/Aa	В	25.1	6.9	0.0	1.6	0.0	0.0	0.0	14.9	0.0	0.0	0.0	0.0	0.0	0.0	1±1
				±3.7	±2.1		± 1.0				± 3.8							
I26	Os	Sc/Aa	В	20.3	3.6	0.0	0.0	0.0	0.0	0.0	15.3	0.0	1.3	0.0	0.0	0.0	0.0	0.0
				±3.1	±1.5						±3.6		±0.9					
I27	Os	Sc/Aa	В	12.7	3.4	0.0	3.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.3
				±3.4	±1.8		±2.2											±2.5
I28	Os	Aa	В	14.9	9.5	0.0	2.7	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4
				±3.8	±3.0		±2.2				± 1.8							±0.4
I29	Re	Aa/Cs	В	73.0	62.0	0.0	0.0	2.0	0.0	0.0	22.0	0.0	0.0	0.0	1.0	0.0	8.5	0.0
				±3.3	±4.3			±1.1			± 3.8				± 1.0		±2.3	
I30	Re	Aa	С	77.5	69.5	0.0	0.0	0.0	0.0	0.0	46.0	0.0	1±1	0.0	0.5	0.0	1.0	0.0
				±3.9	±5.6						±6.1				±0.5		±0.6	
I31	Re	Aa/Cs	С	65.0	52.0	0.0	0.0	11.0	0.0	0.0	9.5	0.0	0.0	0.0	0.0	0.0	2.5	0.0
				±4.2	±4.4			±2.2			±3.5						±1.2	
I32	Re	-	А	18.0	0.0	0.0	0.0	0.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				± 2.8							±2.8							
I33	Re	Aa	В	30.5	24.5	0.0	0.0	0.0	0.0	0.0	3.5	0.0	0.0	0.0	3.0	0.0	0.5	0.0
				±2.9	±3.1						±1.5				±1.4		±0.5	
I34	Re	Aa	В	48.5	32.5	0.0	0.0	0.0	0.0	0.0	21.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				±3.5	±3.3						±4.1							

135	Mo	-	А	21.0	13.5	0.0	3.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	1.0	0.0
				±3.6	±2.2		±1.6				±1.5						±1.0	
I36	Mo	-	А	38.5	36.5	0.0	1.0	0.0	0.0	0.0	14.5	0.0	0.0	0.0	0.0	1.5	0.0	0.0
				±2.8	±3.2		±0.9				±3.4					±1.0		
137	Ba	-	А	47.5	36.0	0.0	0.0	1.0	0.0	0.0	8.0	0.0	0.0	0.0	1.5	0.0	3.0	0.0
				±3.2	±3.9			±0.6			±1.3				±1.0		±1.2	

^a, SH, Sidi Hmada; KA, Kalâat El-Andalous; Ut, Utique; Sb, Sbeïtla; Sa, Sahline; Ca, Castelfidardo; Os, Osimo; Re, Recanati; Mo, Monopoli; Ba, Baranello

^bAa, Alternaria alternata; As, Alternaria solani; Ab, Aspergillus brasiliensis; Cs, Curvularia spicifera: Sc, Stagonosporopsis cucurbitacearum: Ph sp, Phoma sp.; Ff, Fusarium fujikuroi; Fo, Fusarium oxysporum; Fi, Fusarium incarnatum; Fs, Fusarium solani; Pr, Pramyrothecium roridum; Av, Albifimbria verrucaria; Sv, Stemphylium vesicarium; Rs, Rhizopus stolonifer

^c, A, asymptomatic fruit; B, infected fruit showing lesion on squash skin without colonization of fruit cavity; C, infected fruit showing lesion that has colonized fruit cavity

 $^{\rm d}$, Data are means $\pm {\rm standard}\;{\rm error}$

^e, The same seed can be infected by more than one fungus

Fungal species					Disease	incidence (%) ^a			
			Tunisia ^b					Italy ^b		
	SH	KA	Sb	Ut	Sa	Ca	Os	Re	Mo	Ba
Alternaria alternata	11.3 ± 1.3	25.1 ±1.8	10.5 ±1.8	6.8 ±1.0	3.0 ±0.5	4.2 ±0.7	13.0 ± 1.2	40.0 ±2.6	25 ±2.7	36.0 ±4
Stagonosporopsis	24.6 ± 2.3	0.0	2.5 ± 0.6	0.6 ± 0.2	0.0	0.0	0.0	0.0	0.0	0.0
cucurbitacearum										
Rhizopus stolonifer	4.1 ± 1.0	13.3 ± 1.5	0.9 ± 0.3	3.3 ± 0.8	3.7 ± 0.8	6.6 ± 1.2	1.3 ±0.5	0.0	1.25 ± 1.25	0.0
Fusarium fujikuroi	7.8 ± 1.2	6.5 ±1	2.0 ± 0.6	6.3 ±1	3.7 ± 1.2	$20.8\pm\!\!1.8$	7.1 ±0.8	$20.0\pm\!\!2.0$	8.0 ± 2.1	8.0 ± 1.3
Fusarium solani	6.9 ± 1.2	0.6 ± 0.2	16.6 ± 2.7	1.9 ± 0.6	0.1 ± 0.1	0.0	0.0	0.0	0.0	0.0
Albifimbria verrucaria	3.3 ± 0.8	0.0	0.0	0.0	0.0	0.0	0.2 ± 0.1	0.0	0.75 ± 0.5	0.0
Stemphylium vesicarium	1.6 ± 0.6	2.3 ± 0.7	1.0 ± 0.4	0.3 ± 0.1	0.4 ± 0.1	0.1 ± 0.09	0.4 ± 0.1	2.0 ± 0.5	0.5 ± 0.5	3.0 ± 1.2
Pramyrothecium roridum	1.2 ± 0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.7 ± 0.3	0.0	1.5 ± 1.0
Phoma sp.	1.1 ± 0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Aspergillus brasiliensis	0.8 ± 0.4	1 ±0.2	0.6 ± 0.6	0.06 ± 0.06	0.1 ± 0.1	0.0	1.0 ± 0.3	0.0	2.0 ± 0.9	0.0
Fusarium oxysporum	0.9 ± 0.3	0.3 ± 0.1	0.4 ± 0.3	0.2 ± 0.1	0.0	0.0	0.0	0.0	0.0	0.0
Curvularia spicifera	0.7 ± 0.3	0.5 ± 0.2	1.3 ± 0.5	0.3 ± 0.1	0.2 ± 0.1	7.6 ± 2.0	$0.03\pm\!\!0.03$	2.1 ± 0.5	0.0	1.0 ± 0.6
Alternaria solani	0.8 ± 0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fusarium incarnatum	0.5 ± 0.2	0.2 ± 0.1	0.2 ± 0.1	0.5 ± 0.2	$0.08\pm\!\!0.08$	0.0	0.5 ± 0.1	0.1 ± 0.1	0.0	0.0
Mean of infected seeds ^c	55.6 ±2.2	45.3 ±2.2	36.6 ±2.7	20.2 ±1.7	11.6 ±1.5	37.6 ±2.4	23.0 ±1.3	52.0 ±2.4	29.7 ±2.7	47.5 ±3.2

Table 7. Incidence of seedborne fungi detected in the squash seed samples collected in Tunisia and Italy.

^a, Data are means ±standard error.

^b, SH, Sidi Hmada; KA, Kalâat El-Andalous; Ut, Utique; Sb, Sbeïtla; Sa, Sahline; Ca, Castelfidardo; Os, Osimo; Re, Recanati; Mo, Monopoli; Ba, Baranello.

^c, The same seed can be infected by more than one fungus.

Figure Legends

Figure 1. Fruit rot symptoms on squash fruit. (A) Apparently healthy fruit (cv. Galaoui). (B, C) Fusarium rot with white mycelia, caused by *F. solani* (arrow 1) (B, cv. Galaoui; C, cv. Bjaoui). (D, E) Black mycelia of *C. spicifera* on squash fruit (arrow 2) (D, cv, Galaoui; E, cv. Aspen). (F, G) *Alternaria* fruit spot caused by *A. alternata* (arrow 3) (F, cv. Aspen; G, cv. Galaoui). (H, I) Black rot caused by *S. cucurbitacearum* (arrow 4) (H, cv. Butternut; I, cv. Bajaoui). Scale bars: 5 cm.

Figure 2. Evaluation of symptoms on squash fruit collected from growers. (A) Asymptomatic fruit. (B) Infected fruit showing symptoms of rot on squash skin without reaching the seed cavity. (C) Infected fruit showing symptoms of rot that has reached the seed cavity. Scale bars: 5 cm.

Figure 3. (**A**, **B**) Pycnidia of *S. cucurbitacearum* on a seed from a squash, as seen under the stereomicroscope, with the ooze of pycnidiospores indicated (arrow 1). (**C**) Pycnidia under the microscope. (**D**) Pycnidiospores: cylindrical, mostly non-septate, few uniseptate (arrow 2) and biseptate (inset, arrow 3). (**E**) Ten-day-old colony on PDA at 22 ± 2 °C. (**F**, **G**) Long chains of conidia of *A. alternata* on seeds. (**H**) Conidia of *A. alternata*. (**I**) Sporodochia of *A. verrucaria* on seed. (**J**) Elliptical conidia of *A. verrucaria*. (**K**) Sporodochia of *P. roridum* on a squash seed. (**L**) Cylindrical conidia of *P. roridum*. (**M**) Conidia of *C. spicifera* on a seed, as seen under the stereomicroscope. (**N**) Conidia and vegetative hyphae of *C. spicifera*. (**O**) Perithecia of *S. vesicarium* on a seed. (**P**) An ascus of *S. vesicarium*, with short, broad pedicel bearing eight ascospores. (**Q**) Ascospores of *S. vesicarium*. (**R**) *F. solani* on a seed. (**S**) Long phialide of *F. solani* (arrow 4). (**T**) Microconidia and macroconidia of *F. solani*. Scale bars: 200 µm (A and B); 100 µm (C); 10 µm (D); 1 cm (E); 100 µm (F); 400 µm (G); 20 µm (H); 200 µm (I); 10 µm (J); 100 µm (K); 10 µm (L); 200 µm (M); 10 µm (N); 400 µm (O); 20 µm (P); 5 µm (Q); 200 µm (R); 25 µm (S); 20 µm (T).

Figure 4. Gel electrophoresis of PCR products generated with the designed specific primers for the detection of the fungi. (**A**) *A. verrucaria*, with the primer pair Myroverr F1/Myroverr R1. Lanes 1 to 10: *A. verrucaria* (isolates IAV1, IAV2, IAV3, IAV4, M149, M155, M144, M140, M135, M146, respectively); lanes 11 to 13, *P. roridum* (isolates M123, M138, M141, respectively); and lane 14, water control. (**B**) *P. roridum*, with the primer pair Myroror

F1/MyrororR1. Lanes 1 to 10: *P. roridum* (isolates IPR1, IPR4, IPR5, IPR6, IPR9, M73, M123, M138, M141, M167, respectively); lanes 11, 12, *A. verrucaria* (isolates M149, M155, respectively); and lane 13, water control. (**C**) *P. herbarum*, with the primer pair Pleo F/ Pleo R. Lanes 1 to 5: *P. herbarum* (isolates IP4, IP5, P164, P66, respectively); lanes 6, 7, *A. alternata* (isolates A38, A15, respectively); lane 8, *C. spicifera* (isolate B170); lane 9, water control. (**D**) *P. herbarum*, with the primers pair Pleo F₁/Pleo R₁. Lanes 1 to 5, *P. herbarum* (isolates IP4, IP5, P164, P66, respectively); lane 6, *A. alternata* (isolate A38); lane 7, water control. M: molecular weight markers (100-bp intervals).

Figure 5. (A) Specificity of the primer pair RGII F/RGII R used for detection of S. cucurbitacearum in group RGII. Lanes 1 to 10, S. cucurbitacearum (isolates D33, D29, D21, D5, D42, D49, D45, D12, DBF1, DBF2, DBF3, respectively); lane 11, Phoma sp. (isolate Ph39); lane 12, A. alternata (isolate A15); lane 13, C. spicifera (isolate C170); lane 14, water controls. (B) Specificity of the primer pair AAF2/AAR3 for detection of A. alternata. Lanes 1 to 11, A. alternata (isolates A38, A15, A17, A5, A59, IA1, IA3, IA7 IA10, IA2, IA5, respectively); lane 12, S. vesicarium (isolate P66); lane 13, water control. (C) Specificity of the primer pair Bipol-1F/Bipol-1R for detection of C. spicifera. Lanes 1 to 6, C. spicifera (isolates B172, B170, IB41, IB2, IB3, IB4, respectively); lane 7, F. solani (isolate F174); lane 8, water control. (D) Specificity of the primer pair TEF-Fs4 F/TEF-Fs4 R for detection of F. solani. Lanes 1 to 4, F. solani (isolates F174, F82, F30, F142, respectively); lane 5, F. oxysporum (isolate F19); lane 6, S. cucurbitacearum (isolate D33); lane 7, S. vesicarium (isolate P66); lane 8, water control. (E) Specificity of the primer pair FC-1/FC-2 for detection of F. oxysporum. Lanes 1 to 3, F. oxysporum (isolates F59, F16, F19, respectively); lane 4, F. solani (isolate F174); lane 5, S. cucurbitacearum (isolate D33); lane 6, S. vesicarium (isolate P66); lane 7, Paramyrothecium roridum (isolate M123); lane 8, water control. Lane M: molecular weight markers (100-bp intervals).

- Supplementary Table S1. GenBank accession numbers of the six fungal genera used to determine the conserved sequence from the ITS region
 that allows specific identification.
- 739

Species	NBCI sequence code	Host	Locality	GenBank
				accession number
Paramyrothecium roridum	LG7	Wood	India	KC414758.1
	KUAB1MRCD	Cynodon dactylon	India	KF171528.1
	MA-83	Soybean	Brazil	JF724154.1
	ITS4	Valerianella olitoria	Italy	KT354921.1
	LH-5	-	China	HQ433334.1
	A553	Pogostemon cablin	China	KJ813720.1
	MTM-522	Hydrangea	USA	HM215150.1
	CBS 331.51	Foeniculum vulgare	The Netherlands	HQ115647.1
	MRtp-049	Dendrobium officinale	China	KU257608.1
	MRtp-013	Dendrobium officinale	China	KU257606.1
	MRtp-012	Dendrobium officinale	China	KU257605.1
	MRtp-023	Dendrobium officinale	China	KT928648.1
	MRtp-055	Dendrobium officinale	China	KU257609.1
	MRtp-047	Dendrobium officinale	China	KU257607.1
	TVD_Fungal-Culture147	Tomato	-	KF494145.1
	MA-20	Soybean	Brazil	JF724152.1

Pinus albicaulis	USA	GQ152603.1
Tribulus terrestris	China	JX867215.1
Begonia x hiemalis	Brazil	KJ494661.1
Hemionitis arifolia	China	JF343832.1
Begonia elatior	Brazil	KJ776790.1
Dendrobium candidum	China	KM986033.1
Anubias barteri	China	KJ572115.1
Anthurium	Korea	KC581914.1
Phaseolus vulgaris	China	GQ381291.1
Tomato	China	GQ162434.1
Abutilon megapotamicum	China	KF761294.1
Peperomia quadrangularis	Korea	KJ174523.1
Dieffenbachia picta	Taiwan	KC469695.1
Anthurium	China	KF761292.1
Petunia hybrida	China	KJ018792.1
Coffea canephora	Brazil	KJ815095.1
Soybean	Brazil	JF724155.1
Cotton	India	EU927366.1
Eichhornia crassipes	Thailand	AB823655.1
Cowpea	India	KT819765.1
Cowpea	India	KT819764.1
	Pinus albicaulisTribulus terrestrisBegonia x hiemalisHemionitis arifoliaBegonia elatiorDendrobium candidumAnubias barteriAnthuriumPhaseolus vulgarisTomatoAbutilon megapotamicumPeperomia quadrangularisDieffenbachia pictaAnthuriumPetunia hybridaCoffea canephoraSoybeanCottonEichhornia crassipesCowpeaCowpeaCowpea	Pinus albicaulisUSAPribulus terrestrisChinaBegonia x hiemalisBrazilHemionitis arifoliaChinaBegonia elatiorBrazilDendrobium candidumChinaAnubias barteriChinaAnubias barteriChinaPhaseolus vulgarisChinaTomatoChinaAbutilon megapotamicumChinaPeperomia quadrangularisKoreaDieffenbachia pictaTaiwanAnthuriumChinaCottonBrazilCottonIndiaCowpeaIndiaCowpeaIndia

KKFC403	Eichhornia crassipes	Thailand	AB823654.1
KKFC483	Eichhornia crassipes	Thailand	AB857223.1
KKFC470	Eichhornia crassipes	Thailand	AB857221.1
KKFC406	Eichhornia crassipes	Thailand	AB857216.1
KKFC447	Eichhornia crassipes	Thailand	AB857217.1
KKFC448	Eichhornia crassipes	Thailand	AB857218.1
KKFC400	Eichhornia crassipes	Thailand	AB823652.1
KKFC390	Eichhornia crassipes	Thailand	AB823651.1
KKFC402	Eichhornia crassipes	Thailand	AB823653.1
KKFC457	Eichhornia crassipes	Thailand	AB857219.1
KKFC462	Eichhornia crassipes	Thailand	AB857220.1
KKFC509	Eichhornia crassipes	Thailand	AB857228.1
KKFC499	Eichhornia crassipes	Thailand	AB857227.1
KKFC497	Eichhornia crassipes	Thailand	AB857226.1
KKFC496	Eichhornia crassipes	Thailand	AB857225.1
KKFC492	Eichhornia crassipes	Thailand	AB857224.1
KKFC519	Eichhornia crassipes	Thailand	AB857229.1
KKFC480	Eichhornia crassipes	Thailand	AB857222.1
MA-73	Soybean	Brazil	JF724153.1
782	Melon	Brazil	JF724156.1
LGHT07091402	Hiemalis begonia	China	KJ018794.1

	-	Salvia sp.	USA	EF151002.1
	-	Tomato	Italy	KR709186.1
	RDCCT07091402	Swedish ivy	China	KP942366.1
	794	Soybean	Brazil	JF724158.1
	802	Soybean	Brazil	JF724150.1
	801	Soybean	Brazil	JF724151.1
	784	Melon	Brazil	JF724157.1
	MTL07081001	Zantedeschia aethiopica	China	KF761293.1
	IMI 394934	Eichhornia crassipes	Nigeria	GQ853401.1
	HXC15051716	Water spinach	China	KU312191.1
	HXC15051715	Water spinach	China	KU312190.1
	HXC15051715	Ipomoea aquatica	China	KT943519.1
	IFB-E091	Artemisia annua	China	GU074399.1
Myrothecium inundatum	IN-5	<u>Acalypha indica</u>	India	HQ165763.1
	A2S4-D45	Soil	Malaysia	KJ767119.1
	77F	Homo sapiens	Vietnam	AB704784.1
	SCSAAF0024	Antipathes dichotoma	China	JQ647903.1
	SCSGAF0095	Melitodes squamata	China	JN851023.1
	A1S2-2	Soil	Malaysia	KJ767118.1
	C45	Soybean	Brazil	JQ936268.1
	C13.1	Soybean	Brazil	JQ936267.1

	F216	Glycine max	Brazil	KM979993.1
	CBS 582.93	-	Spain	AY254152.1
	GHJ-2	-	China	FJ797514.1
	CBS 582.93	-	Germany	AJ302005.1
Myrothecium leucotricha	ZM0902-9	Soil	China	JX077071.1
	ZM0902-23	Soil	China	JX077070.1
	CBS 131.64	-	Germany	AJ302000.1
	BBA 65577	-	Germany	AJ301992.1
Albifimbria verrucaria	23221	Taxus chinensis	China	KF574891.1
	wxm94	Wood	China	HM037988.1
	F0705	Apple	Japan	AB693919.1
	E21	Ferula	China	KF887115.1
	G340	Milk thistle leaf	-	KM215639.1
	MYRver2	Soil	Italy	GQ131886.1
	ITS6	Spinach	Italy	KT354922.1
	KASHMIR	Pinus sp.	India	KP310497.1
	I-5	Wood	China	KT305924.1
	A-304	Soil	Iran	KC140223.1
	QWKF1	-	China	KJ589551.1
	NRRL 52420	Zea mays	USA	GU183129.1
	Hmp-F73	Hymeniacidon perleve	China	HQ625520.1

F17	Tomato	Egypt	KU681402.1
F12	Pigeon Pea	China	KJ026704.1
PTCC 799	Soil	Iran	KC140228.1
HGUP 0731	Soil	China	KC806230.1
E16	Soybean	China	JQ356542.1
VKKSP1	Soil	India	HM358041.1
NIi	-	Malaysia	KM246762.1
A-284	Soil	Iran	KC140222.1
CNXY-007	Houttuynia cordata	China	KF750592.1
AR346	Soil	India	HQ596904.1
A-115	Soil	Iran	KC140221.1
F16	Pigeon Pea	China	KJ026703.1
A-336	Soil	Iran	KC140225.1
NJR102-16	Sediment	China	JX077018.1
KAUEF26	Calotropis	Saudi Arabia	HF548712.1
A-70	Soil	Iran	KC140220.1
MYCver2	Soil	Italy	EF017211.1
C-1	Wood	China	KT305923.1
D2	Zingiber officinale	Japan	AB778924.1
XZ04-18-2	Soil	China	JF812340.1
M2	Soil	France	AY303603.1

Myrothecium atroviride	wb256	-	Austria	AF455507.1
Myrothecium gramineum	CY176	-	USA	HQ608010.1
	LCJ 177	Tree trunk	India	KF414681
	A243	Cotton	China	GQ373154.1
Stemphylium vesicarium	1664	Pear	Japan	LC056844.1
	1680	Pear	Japan	LC056845.1
	CT09AMS6S	Ammi majus	Japan	AB938190.1
	FF51	Pyrus commuis	South Africa	KR912336.1
	FF50	Pyrus commuis	South Africa	KR912335.1
	OT3-175.1	Madural cultivar	Portugal	KT804104.1
	EA	Wood	Italy	KF482449.1
	H09-007	-	Spain	KC009768.1
	AFTOL-ID 940	-	USA	DQ491516.1
	ATCC 11681	-	USA	AF229479.1
	-	-	China	AF383967.1
	ICMP 5620-77	Carrot	UK	Y17068.1
	E. G. Simmons 08-069	-	-	AF071345.1
	4248	Eucalyptus globulus	Spain	FR667974.1
	EGS48-095	-	New Zealand	AY329232.1
	EGS29-089	-	USA	AY329229.1
	EGS36-088	-	Australia	AY329171.1

	EGS36-138	-	India	AY329169.1
	CT09AMS1S	Ammi majus	Japan	AB938189.1
	CBS 191.86	Medicago sativa	India	KC584239.1
	MH955	Soil	Czech Republic	LN901148.1
	MAFF 306801	Asparagus officinalis	Japan	AB979880.1
	MAFF 305562	Asparagus officinalis	Japan	AB979878.1
	MAFF 241964	Allium tuberosum	Japan	AB979877.1
	EPS26	Pear	Spain	GU065719.1
	EGS 40-038	Medicago sativa	USA	AF442776.1
Stemphylium solani	bgr1	Avicennia marina	China	KJ767499.1
	LS2	Lettuce	Malaysia	KC796636.1
	LS1	Lettuce	Malaysia	KC796635.1
	LT5	Lettuce	Malaysia	KC796634.1
	LT4	Lettuce	Malaysia	KC796633.1
	LT3	Lettuce	Malaysia	KC796632.1
	LT2	Lettuce	Malaysia	KC796631.1
	LT1	Lettuce	Malaysia	KC796630.1
	LM	Lettuce	Malaysia	KC796629.1
	LKR2	Lettuce	Malaysia	KC796628.1
Stemphylium botryosum	CBS 714.68	Medicago sativa	Canada	KC584238.1
Stemphylium paludiscirpi	EGS31-016	-	USA	AY329231.1

Stemphylium eturmiunum	EGS29-099	-	New Zealand	AY329230.1
	Riv-St	Onion	Puerto Rico	DQ323706.1
	EGS29-099	-	New Zealand	AY329230.1
Stemphylium lycopersici	THYB1	Aegiceras corniculatum	China	KU518355.1
	EGS17-137	-	New Caledonia	AY329206.1
Stemphylium majusculum	EGS16-068	-	USA	AY329228.1
Pleospora gigaspora	EGS37-017	-	Switzerland	AY329177.1
Stemphylium triglochinicola	EGS36-118	-	United Kingdom	AY329175.1
Curvularia sesuvii	Bp-zj 03	Sesuvium portulacastrum	China	EF175942.1
Curvularia spicifera	L3	Sugarcane	China	JN695636.1
	L2	Sugarcane	China	JN695635.1
	L1	Sugarcane	China	JN695634.1
	FBA-1	Sorghum bicolor	Turkey	HQ538774.1
	MH12073	Panicum virgatum	USA	HQ015445.1
Curvularia lunata	JGS10	-	China	GU966505.1
	IP 2328.95	-	France	DQ836800.1
	DSM-63137	Crotalaria juncea	Burkina Faso	KF897859.1
	NBAIR-NEF10	Maize	India	KU158873.1
	MP03	Sorghum	India	KT598350.1
Fusarium oxysporum	FusO-JSB63	Cucurbita pepo	India	JQ665266.1
	FO	Squash	New Zealand	AF055220.1

	-	Squash	Spain	AM940070.1
Fusarium solani f. sp. cucurbitae	PCI-511	Zucchini squash	Spain	KF372878.1
	Fsm711	Cucumis melo	Spain	KC711040.1
	Fsm731	Cucumis melo	Spain	KC711041.1
Fusarium solani	-	Squash	Spain	AM940071.1
	FRC#s1195	Pumpkin	USA	DQ094744.1
Stagonosporopsis cucurbitacearum	Di-4 (426)	Watermelon	Tunisia	EF107642.1
	Di-3 (425)	Watermelon	Tunisia	EF107641.1
	NY1	Cucumis melo	USA	AF495850.1
	C76	Cucumis melo	USA	AF495849.1
	T153	-	China	FJ462750.1
	ATCC 16241	Cucumis melo	USA	AF297228.1
	MA71	Mangrove	Thailand	GU592001.1
	FG58	Vitis vinifera	China	EU030365.1
	TMK-4	Muskmelon	China	EF160076.1
	TMK-3	Muskmelon	China	EF160075.1
	TMK-2	Muskmelon	China	EF160074.1
	TMK-1	Muskmelon	China	EF160073.1

CBS: Westerdijk Fungal Biodiversity Institute; UB: University of Brasilia Herbarium; CICR: Crop Improvement Division, Central Institute for
Cotton Research; ATCC: The Global Bioresource Center; MAFF: Ministry of Agriculture Forestry and Fisheries.

Figure 1. Fruit rot symptoms on squash fruit. (A) Apparently healthy fruit (cv. Galaoui). (B, C) Fusarium rot with white mycelia, caused by F. solani (arrow 1) (B, cv. Galaoui; C, cv. Bjaoui). (D, E) Black mycelia of C. spicifera on squash fruit (arrow 2) (D, cv, Galaoui; E, cv.Aspen). (F, G) Alternaria fruit spot caused by A. alternata (arrow 3) (F, cv. Aspen; G, cv. Galaoui). (H, I) Black rot caused by S. cucurbitacearum (arrow 4) (H, cv. Butternut; I, cv. Bajaoui). Scale bars: 5 cm.

85x83mm (300 x 300 DPI)

Figure 2. Evaluation of symptoms on squash fruit collected from growers. (A) Asymptomatic fruit. (B) Infected fruit showing symptoms of rot on squash skin without reaching the seed cavity. (C) Infected fruit showing symptoms of rot that has reached the seed cavity. Scale bars: 5 cm.

85x29mm (300 x 300 DPI)

Figure 3. (A, B) Pycnidia of S. cucurbitacearum on a seed from a squash, as seen under the stereomicroscope, with the ooze of pycnidiospores indicated (arrow 1). (C) Pycnidia under the microscope.
(D) Pycnidiospores: cylindrical, mostly non-septate, few uniseptate (arrow 2) and biseptate (inset, arrow 3).
(E) Ten-day-old colony on PDA at 22 ±2 °C. (F, G) Long chains of conidia of A. alternata on seeds. (H) Conidia of A. alternata. (I) Sporodochia of A. verrucaria on seed. (J) Elliptical conidia of A. verrucaria. (K) Sporodochia of P. roridum on a squash seed. (L) Cylindrical conidia of P. roridum. (M) Conidia of C. spicifera on a seed, as seen under the stereomicroscope. (N) Conidia and vegetative hyphae of C. spicifera. (O) Perithecia of S. vesicarium on a seed. (P) An ascus of S. vesicarium, with short, broad pedicel bearing eight ascospores. (Q) Ascospores of S. vesicarium. (R) F. solani on a seed. (S) Long phialide of F. solani (arrow 4). (T) Microconidia and macroconidia of F. solani. Scale bars: 200 µm (A and B); 100 µm (C); 10 µm (D); 1 cm (E); 100 µm (F); 400 µm (G); 20 µm (H); 200 µm (I); 10 µm (J); 100 µm (K); 10 µm (L); 200 µm (M); 10 µm (N); 400 µm (O); 20 µm (P); 5 µm (Q); 200 µm (R); 25 µm (S); 20 µm (T).

177x218mm (300 x 300 DPI)

Page 59 of 71

Figure 4. Gel electrophoresis of PCR products generated with the designed specific primers for the detection of the fungi. (A) A. verrucaria, with the primer pair Myroverr F1/Myroverr R1. Lanes 1 to 10: A. verrucaria (isolates IAV1, IAV2, IAV3, IAV4, M149, M155, M144, M140, M135, M146, respectively); lanes 11 to 13, P. roridum (isolates M123, M138, M141, respectively); and lane 14, water control. (B) P. roridum, with the primer pair Myroror F1/MyrororR1. Lanes 1 to 10: P. roridum (isolates IPR1, IPR4, IPR5, IPR6, IPR9, M73, M123, M138, M141, M167, respectively); lanes 11, 12, A. verrucaria (isolates M149, M155, respectively); and lane 13, water control. (C) P. herbarum, with the primer pair Pleo F/ Pleo R. Lanes 1 to 5: P. herbarum (isolates IP4, IP5, P164, P66, respectively); lanes 6, 7, A. alternata (isolates A38, A15, respectively); lane 8, C. spicifera (isolate B170); lane 9, water control. (D) P. herbarum, with the primers pair Pleo F1/Pleo R1. Lanes 1 to 5, P. herbarum (isolates IP4, IP5, P164, P66, respectively); lane 6, A. alternata (isolate A38); lane 7, water control. M: molecular weight markers (100-bp intervals).

178x73mm (300 x 300 DPI)

Figure 5. (A) Specificity of the primer pair RGII F/RGII R used for detection of S. cucurbitacearum in group RGII. Lanes 1 to 10, S. cucurbitacearum (isolates D33, D29, D21, D5, D42, D49, D45, D12, DBF1, DBF2, DBF3, respectively); lane 11, Phoma sp. (isolate Ph39); lane 12, A. alternata (isolate A15); lane 13, C. spicifera (isolate C170); lane 14, water controls. (B) Specificity of the primer pair AAF2/AAR3 for detection of A. alternate. Lanes 1 to 11, A. alternata (isolates A38, A15, A17, A5, A59, IA1, IA3, IA7 IA10, IA2, IA5, respectively); lane 12, S. vesicarium (isolate P66); lane 13, water control. (C) Specificity of the primer pair Bipol-1F/Bipol-1R for detection of C. spicifera. Lanes 1 to 6, C. spicifera (isolates B172, B170, IB41, IB2, IB3, IB4, respectively); lane 7, F. solani (isolate F174); lane 8, water control. (D) Specificity of the primer pair TEF-Fs4 F/TEF-Fs4 R for detection of F. solani. Lanes 1 to 4, F. solani (isolates F174, F82, F30, F142, respectively); lane 5, F. oxysporum (isolate F19); lane 6, S. cucurbitacearum (isolate D33); lane 7, S. vesicarium (isolate P66); lane 8, water control. (E) Specificity of the primer pair FC-1/FC-2 for detection of F. oxysporum. Lanes 1 to 3, F. oxysporum (isolates F59, F16, F19, respectively); lane 4, F. solani (isolate F174); lane 5, S. cucurbitacearum (isolate D33); lane 7, S.

Paramyrothecium roridum (isolate M123); lane 8, water control. Lane M: molecular weight markers (100-bp intervals).

177x100mm (300 x 300 DPI)

Supplementary Table S1. GenBank accession numbers of the six fungal genera used to determine the conserved sequence from the ITS region
 that allows specific identification.

3

Species	NBCI sequence code	Host	Locality	GenBank
				accession number
Paramyrothecium roridum	LG7	Wood	India	KC414758.1
	KUAB1MRCD	Cynodon dactylon	India	KF171528.1
	MA-83	Soybean	Brazil	JF724154.1
	ITS4	Valerianella olitoria	Italy	KT354921.1
	LH-5	-	China	HQ433334.1
	A553	Pogostemon cablin	China	KJ813720.1
	MTM-522	Hydrangea	USA	HM215150.1
	CBS 331.51	Foeniculum vulgare	The Netherlands	HQ115647.1
	MRtp-049	Dendrobium officinale	China	KU257608.1
	MRtp-013	Dendrobium officinale	China	KU257606.1
	MRtp-012	Dendrobium officinale	China	KU257605.1
	MRtp-023	Dendrobium officinale	China	KT928648.1
	MRtp-055	Dendrobium officinale	China	KU257609.1
	MRtp-047	Dendrobium officinale	China	KU257607.1
	TVD_Fungal-Culture147	Tomato	-	KF494145.1
	MA-20	Soybean	Brazil	JF724152.1

CLNP RV10 75	Pinus albicaulis	USA	GQ152603.1
JL-3	Tribulus terrestris	China	JX867215.1
UB:2246	Begonia x hiemalis	Brazil	KJ494661.1
DGM01	Hemionitis arifolia	China	JF343832.1
CM 2246	Begonia elatior	Brazil	KJ776790.1
YPE-SH9	Dendrobium candidum	China	KM986033.1
myr5	Anubias barteri	China	KJ572115.1
DUCC4002	Anthurium	Korea	KC581914.1
CD08072303	Phaseolus vulgaris	China	GQ381291.1
FQ07090401	Tomato	China	GQ162434.1
XDL07091402	Abutilon megapotamicum	China	KF761294.1
KACC 93161P	Peperomia quadrangularis	Korea	KJ174523.1
myr2-2	Dieffenbachia picta	Taiwan	KC469695.1
HZ07080302	Anthurium	China	KF761292.1
AQN07091401	Petunia hybrida	China	KJ018792.1
CDA725	Coffea canephora	Brazil	KJ815095.1
781	Soybean	Brazil	JF724155.1
CICR	cotton	India	EU927366.1
KKFC408	Eichhornia crassipes	Thailand	AB823655.1
MKSVu119	Cowpea	India	KT819765.1
MKSVu118	Cowpea	India	KT819764.1

Eichhornia crassipes	Thailand	AB823654.1
Eichhornia crassipes	Thailand	AB857223.1
Eichhornia crassipes	Thailand	AB857221.1
Eichhornia crassipes	Thailand	AB857216.1
Eichhornia crassipes	Thailand	AB857217.1
Eichhornia crassipes	Thailand	AB857218.1
Eichhornia crassipes	Thailand	AB823652.1
Eichhornia crassipes	Thailand	AB823651.1
Eichhornia crassipes	Thailand	AB823653.1
Eichhornia crassipes	Thailand	AB857219.1
Eichhornia crassipes	Thailand	AB857220.1
Eichhornia crassipes	Thailand	AB857228.1
Eichhornia crassipes	Thailand	AB857227.1
Eichhornia crassipes	Thailand	AB857226.1
Eichhornia crassipes	Thailand	AB857225.1
Eichhornia crassipes	Thailand	AB857224.1
Eichhornia crassipes	Thailand	AB857229.1
Eichhornia crassipes	Thailand	AB857222.1
Soybean	Brazil	JF724153.1
Melon	Brazil	JF724156.1
Hiemalis begonia	China	KJ018794.1
	Eichhornia crassipes Eichhornia crassipes	Eichhornia crassipesThailandEichhornia crassipesThailand <tr< td=""></tr<>

	-	Salvia sp.	USA	EF151002.1
	-	Tomato	Italy	KR709186.1
	RDCCT07091402	Swedish ivy	China	KP942366.1
	794	Soybean	Brazil	JF724158.1
	802	Soybean	Brazil	JF724150.1
	801	Soybean	Brazil	JF724151.1
	784	Melon	Brazil	JF724157.1
	MTL07081001	Zantedeschia aethiopica	China	KF761293.1
	IMI 394934	Eichhornia crassipes	Nigeria	GQ853401.1
	HXC15051716	Water spinach	China	KU312191.1
	HXC15051715	Water spinach	China	KU312190.1
	HXC15051715	Ipomoea aquatica	China	KT943519.1
	IFB-E091	Artemisia annua	China	GU074399.1
Myrothecium inundatum	IN-5	Acalypha indica	India	HQ165763.1
	A2S4-D45	Soil	Malaysia	KJ767119.1
	77F	Homo sapiens	Vietnam	AB704784.1
	SCSAAF0024	Antipathes dichotoma	China	JQ647903.1
	SCSGAF0095	Melitodes squamata	China	JN851023.1
	A1S2-2	Soil	Malaysia	KJ767118.1
	C45	Soybean	Brazil	JQ936268.1
	C13.1	Soybean	Brazil	JQ936267.1

	F216	Glycine max	Brazil	KM979993.1
	CBS 582.93	-	Spain	AY254152.1
	GHJ-2	-	China	FJ797514.1
	CBS 582.93	-	Germany	AJ302005.1
Myrothecium leucotricha	ZM0902-9	Soil	China	JX077071.1
	ZM0902-23	Soil	China	JX077070.1
	CBS 131.64	-	Germany	AJ302000.1
	BBA 65577	-	Germany	AJ301992.1
Albifimbria verrucaria	23221	Taxus chinensis	China	KF574891.1
	wxm94	Wood	China	HM037988.1
	F0705	Apple	Japan	AB693919.1
	E21	Ferula	China	KF887115.1
	G340	Milk thistle le	-	KM215639.1
	MYRver2	Soil	Italy	GQ131886.1
	ITS6	Spinach	Italy	KT354922.1
	KASHMIR	Pinus sp.	India	KP310497.1
	I-5	Wood	China	KT305924.1
	A-304	Soil	Iran	KC140223.1
	QWKF1	-	China	KJ589551.1
	NRRL 52420	Zea mays	USA	GU183129.1
	Hmp-F73	Hymeniacidon perleve	China	HQ625520.1

F17	Tomato	Egypt	KU681402.1
F12	Pigeon Pea	China	KJ026704.1
PTCC 799	Soil	Iran	KC140228.1
HGUP 0731	Soil	China	KC806230.1
E16	soybean	China	JQ356542.1
VKKSP1	Soil	India	HM358041.1
NIi	-	Malaysia	KM246762.1
A-284	Soil	Iran	KC140222.1
CNXY-007	Houttuynia cordata	China	KF750592.1
AR346	Soil	India	HQ596904.1
A-115	Soil	Iran	KC140221.1
F16	Pigeon Pea	China	KJ026703.1
A-336	Soil	Iran	KC140225.1
NJR102-16	sediment	China	JX077018.1
KAUEF26	Calotropis	Saudi Arabia	HF548712.1
A-70	Soil	Iran	KC140220.1
MYCver2	Soil	Italy	EF017211.1
C-1	Wood	China	KT305923.1
D2	Zingiber officinale	Japan	AB778924.1
XZ04-18-2	Soil	China	JF812340.1
M2	Soil	France	AY303603.1

Myrothecium gramineumCY176-USAHQ608LCJ 177Tree trunkIndiaKF41-A243CottonChinaGQ373Stemphylium vesicarium1664PearJapanLC0561680PearJapanLC056CT09AMS6SAmmi majusJapanAB938FF51Pyrus commuisSouth AfricaKR912FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804	507.1
LCJ 177Tree trunkIndiaKF41A243CottonChinaGQ373Stemphylium vesicarium1664PearJapanLC0561680PearJapanLC056CT09AMS6SAmmi majusJapanAB938FF51Pyrus commuisSouth AfricaKR912FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804	3010.1
A243CottonChinaGQ373Stemphylium vesicarium1664PearJapanLC0561680PearJapanLC056CT09AMS6SAmmi majusJapanAB938FF51Pyrus commuisSouth AfricaKR912FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804	4681
Stemphylium vesicarium1664PearJapanLC0561680PearJapanLC056CT09AMS6SAmmi majusJapanAB938FF51Pyrus commuisSouth AfricaKR912FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804EAWaadWaadKE482	8154.1
1680PearJapanLC056CT09AMS6SAmmi majusJapanAB938FF51Pyrus commuisSouth AfricaKR912FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804FAWaadKtabaKE482	844.1
CT09AMS6SAmmi majusJapanAB938FF51Pyrus commuisSouth AfricaKR912FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804FAWaadKtalaKE482	845.1
FF51Pyrus commuisSouth AfricaKR912FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804EAWandKtaleKE482	8190.1
FF50Pyrus commuisSouth AfricaKR912OT3-175.1Madural cultivarPortugalKT804EAWaadKTalaKE482	2336.1
OT3-175.1 Madural cultivar Portugal KT804	2335.1
	104.1
EA wood Italy KF482	449.1
H09-007 - Spain KC009	768.1
AFTOL-ID 940 - USA DQ491	516.1
ATCC 11681 - USA AF229	479.1
China AF383	967.1
ICMP 5620-77 Carrot UK Y170	68.1
E. G. Simmons 08-069 AF071	345.1
4248 Eucalyptus globulus Spain FR667	974.1
EGS48-095 - New Zealand AY329	9232.1
EGS29-089 - USA AY329	9229.1
EGS36-088 - Australia AY329	9171.1

	EGS36-138	-	India	AY329169.1
	CT09AMS1S	Ammi majus	Japan	AB938189.1
	CBS 191.86	Medicago sativa	India	KC584239.1
	MH955	Soil	Czech Republic	LN901148.1
	MAFF 306801	Asparagus officinalis	Japan	AB979880.1
	MAFF 305562	Asparagus officinalis	Japan	AB979878.1
	MAFF 241964	Allium tuberosum	Japan	AB979877.1
	EPS26	Pear	Spain	GU065719.1
	EGS 40-038	Medicago sativa	USA	AF442776.1
Stemphylium solani	bgr1	Avicennia marina	China	KJ767499.1
	LS2	Lettuce	Malaysia	KC796636.1
	LS1	Lettuce	Malaysia	KC796635.1
	LT5	Lettuce	Malaysia	KC796634.1
	LT4	Lettuce	Malaysia	KC796633.1
	LT3	Lettuce	Malaysia	KC796632.1
	LT2	Lettuce	Malaysia	KC796631.1
	LT1	Lettuce	Malaysia	KC796630.1
	LM	Lettuce	Malaysia	KC796629.1
	LKR2	Lettuce	Malaysia	KC796628.1
Stemphylium botryosum	CBS 714.68	Medicago sativa	Canada	KC584238.1
Stemphylium paludiscirpi	EGS31-016	-	USA	AY329231.1

Stemphylium eturmiunum	EGS29-099	-	New Zealand	AY329230.1
	Riv-St	Onion	Puerto Rico	DQ323706.1
	EGS29-099	-	New Zealand	AY329230.1
Stemphylium lycopersici	THYB1	Aegiceras corniculatum	China	KU518355.1
	EGS17-137	-	New Caledonia	AY329206.1
Stemphylium majusculum	EGS16-068	-	USA	AY329228.1
Pleospora gigaspora	EGS37-017	-	Switzerland	AY329177.1
Stemphylium triglochinicola	EGS36-118	-	United Kingdom	AY329175.1
Curvularia sesuvii	Bp-zj 03	Sesuvium portulacastrum	China	EF175942.1
Curvularia spicifera	L3	Sugarcane	China	JN695636.1
	L2	Sugarcane	China	JN695635.1
	L1	Sugarcane	China	JN695634.1
	FBA-1	Sorghum bicolor	Turkey	HQ538774.1
	MH12073	Panicum virgatum	USA	HQ015445.1
Curvularia lunata	JGS10	-	China	GU966505.1
	IP 2328.95	-	France	DQ836800.1
	DSM-63137	Crotalaria juncea	Burkina Faso	KF897859.1
	NBAIR-NEF10	Maize	India	KU158873.1
	MP03	Sorghum	India	KT598350.1
Fusarium oxysporum	FusO-JSB63	Cucurbita pepo	India	JQ665266.1
	FO	Squash	New Zealand	AF055220.1

	-	Squash	Spain	AM940070.1
Fusarium solani f. sp. cucurbitae	PCI-511	Zucchini squash	Spain	KF372878.1
	Fsm711	Cucumis melo	Spain	KC711040.1
	Fsm731	Cucumis melo	Spain	KC711041.1
Fusarium solani	-	Squash	Spain	AM940071.1
	FRC#s1195	Pumpkin	USA	DQ094744.1
Stagonosporopsis cucurbitacearum	Di-4 (426)	Watermelon	Tunisia	EF107642.1
	Di-3 (425)	Watermelon	Tunisia	EF107641.1
	NY1	Cucumis melo	USA	AF495850.1
	C76	Cucumis melo	USA	AF495849.1
	T153	-	China	FJ462750.1
	ATCC 16241	Cucumis melo	USA	AF297228.1
	MA71	Mangrove	Thailand	GU592001.1
	FG58	Vitis vinifera	China	EU030365.1
	TMK-4	Muskmelon	China	EF160076.1
	TMK-3	Muskmelon	China	EF160075.1
	ТМК-2	Muskmelon	China	EF160074.1
	TMK-1	Muskmelon	China	EF160073.1

4 CBS: Westerdijk Fungal Biodiversity Institute; UB: University of Brasilia Herbarium; CICR: Crop Improvement Division, Central Institute for

5 Cotton Research; ATCC: The Global Bioresource Center; MAFF: Ministry of Agriculture Forestry and Fisheries.