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ABSTRACT

Motivation: The computational evaluation of candidate genes for her-

editary disorders is a non-trivial task. Several excellent methods for

disease-gene prediction have been developed in the past 2 decades,

exploiting widely differing data sources to infer disease-relevant func-

tional relationships between candidate genes and disorders. We have

shown recently that spatially mapped, i.e. 3D, gene expression data

from the mouse brain can be successfully used to prioritize candidate

genes for human Mendelian disorders of the central nervous system.

Results: We improved our previous work 2-fold: (i) we demonstrate

that condition-independent transcription factor binding affinities of the

candidate genes’ promoters are relevant for disease-gene prediction

and can be integrated with our previous approach to significantly en-

hance its predictive power; and (ii) we define a novel similarity meas-

ure—termed Relative Intensity Overlap—for both 3D gene expression

patterns and binding affinity profiles that better exploits their

disease-relevant information content. Finally, we present novel

disease-gene predictions for eight loci associated with different syn-

dromes of unknown molecular basis that are characterized by mental

retardation.

Contact: r.piro@dkfz.de or rmpiro@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on August 31, 2012; revised on December 14, 2012;

accepted on December 19, 2012

1 INTRODUCTION

Although experimental methodologies for the identification of

disease-causing mutations have significantly improved—in par-

ticular by the recently introduced next-generation sequencing

techniques—computational approaches to an in silico evaluation

of candidate genes remain an important aid for the identification

of genes involved in human hereditary disorders (Kann, 2010;

Piro et al., 2011; Piro and Di Cunto, 2012). A large variety of

computational methods have been developed for this purpose,

exploiting various data sources ranging from MEDLINE ab-

stracts, functional gene annotation, protein–protein interactions

and high-throughput gene expression data to intrinsic gene or

protein properties (such as coding sequence length, number of

introns, conservation and so forth). For more information on

available disease-gene prediction tools and methods, we refer

to some recent reviews (Kann, 2010; Piro and Di Cunto, 2012).
To a large extent, cellular homeostasis depends on coordinated

gene expression, both in space and time. Gene expression deter-

mines where and when the molecular function of a gene product

is exerted. For this reason, gene expression patterns have been

successfully exploited by several computational disease-gene pre-

diction methods (Kann, 2010; Piro and Di Cunto, 2012).
In our previous work (Piro et al., 2010), we have shown that

the high-resolution 3D gene expression patterns provided by the

Allen Institute’s Mouse Brain Atlas (MBA) (Lein et al., 2007)

can be used to successfully prioritize not only candidate genes for

mouse phenotypes but also for human Mendelian disorders of

the central nervous system (CNS). Briefly, we prioritized the

candidate genes from a mapped ‘orphan’ locus of a disease

phenotype with unknown molecular basis by comparing their

3D gene expression patterns to those of a set of ‘reference

genes’, known to be involved in similar disease phenotypes.
The condition and sample dependency of gene expression pro-

files constitutes a desired feature for the prediction of functional

relationships between genes. A complementary view, and hence

additional clues to gene functions, may instead be provided by

condition-independent regulatory information, obtained from

promoter analysis (Werner, 2003). Classically, position frequency

matrices (PFMs) or their associated position weight matrices

(PWMs) that describe transcription factor (TF) binding sites are

used to scan promoters for short, often degenerate, regulatory

elements. In many cases, genome-wide PWM scans require strin-

gent criteria to limit the false-discovery rate and to yield an ac-

ceptable specificity. This can lead to reduced sensitivity and likely

misses low-affinity binding sites (Hannenhalli, 2008), which have

been shown to be abundant and functional in vivo (Tanay, 2006).

An alternative approach builds on the notion of an overall

likelihood that a promoter is bound by a given TF, without

requiring the identification of one or more well-defined regula-

tory elements (Foat et al., 2006; Molineris et al., 2011; Ward and

Bussemaker, 2008), thus better reflecting the thermodynamic

nature of TF binding (Segal et al., 2008). For this purpose, a

total binding affinity (TBA) for the TF’s PFM can be calculated

over the entire promoter, taking into account the collective*To whom correspondence should be addressed.
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contribution of (potential) high- and low-affinity binding sites,

without strictly drawing a line between binding and non-binding

sites. In a recent study, we showed TBA to be predictive of TF-

binding events, as revealed by ChIP/chip and ChIP/seq experi-

ments (Molineris et al., 2011).
Here, we introduce the notion of TF binding co-affinity of a

pair of genes that we compute from the genes’ TBA profiles

composed of their binding affinities for a core set of TFs. We

show that these co-affinities can decipher the disease relevance of

candidate genes for human hereditary disorders and further im-

prove the predictive power by developing a new similarity meas-

ure termed Relative Intensity Overlap (RIO). We combine this

approach with the prioritization based on spatially mapped, i.e.

3D, gene expression, applying it to several disorders of unknown

molecular basis characterized by mental retardation (MR).

2 METHODS

2.1 Disease phenotypes and gene–disease associations

Information on human Mendelian disease phenotypes was obtained from

the Online Mendelian Inheritance in Man (OMIM) database (Amberger

et al., 2009) on August 15, 2011, limited to those that contain the term

‘central nervous system’ in their clinical synopsis section and have at least

one mapped disease locus. Note that this selection criterion does not

exclude other organs and tissues from being affected, i.e. symptoms

need not be limited to the CNS. A total of 867 OMIM phenotype entries

with known molecular basis (OMIM symbol: #) were downloaded.

Associated disease-related genes were determined by merging information

from the OMIM Morbidmap and Entrez Gene (Sayers et al., 2012)

(mim2gene), yielding 948 CNS-related gene–phenotype (g–p) pairs.

Additionally, we obtained all phenotype entries for various syndromes

with an unknown molecular basis (OMIM symbol: %) that contain the

term ‘mental retardation’ (MR) in their title field and have been mapped

to a disease locus containing a set of candidate genes.

As our aim was to predict the most likely candidates for mapped

‘orphan’ loci from OMIM phenotype entries with so far unknown mole-

cular basis, in which no genes are known to be involved, we used disease-

associated genes from similar phenotype entries as reference genes for the

prediction procedure described later in the text. For this purpose, we

measured the pairwise similarity of OMIM phenotypes using

MimMiner, essentially as described by van Driel et al. (2006).

MimMiner scores are normalized and range from 0 (unrelated) to 1

(highly related or identical). Instead of the minimum score of 0.4 pro-

posed by van Driel et al. to define phenotype similarity, we applied a

more stringent threshold of 0.5 to focus on more relevant reference genes.

For the ex novo candidate gene prioritizations that we present here, we

restricted our analysis to eight representative orphan disease loci for both

X-linked and autosomal MR that had at least two reference genes from

similar phenotypes and at least 20 candidate genes for which both gene

expression and affinity data were available (see later in the text).

2.2 3D gene expression data

3D gene expression profiles for the MBA (Lein et al., 2007) were down-

loaded on February 2, 2011 using the application programming interface

provided by the Allen Institute’s website at http://mouse.brain-map.org/.

Only sagittal image series with antisense probes for genes with defined

Entrez gene IDs were considered. In case of multiple image series per

gene, only the most recent series was used. The downloaded expression

patterns provide expression levels for the entire brain, smoothed over

evenly spaced voxels (cubes) with a side length of 200 �m.

As we applied the mouse expression data for prioritizing human dis-

ease genes, we mapped expression profiles from the mouse brain to

human Entrez gene IDs using unambiguous mappings from NCBI’s

HomoloGene (build 65) (Sayers et al., 2012), yielding 14 590 human

Entrez gene IDs with an associated expression pattern from the mouse

brain. From these, we excluded 68 genes that had no corresponding TBA

profiles (see later in the text).

3D expression patterns from the MBA consist only of non-negative

values (�0) that we normalized as follows: for each profile, we first sorted

all positive expression levels (40) in increasing order and then set the

95th percentile to a value of 0.95 (to avoid taking outliers into account

for normalization). All other expression values were scaled linearly by the

same factor. Expression levels that exceeded 1 after scaling were inter-

preted as potential outliers and limited to equal 1.

2.3 Brain region-specific gene expression

To evaluate the performance of different correlation measures in cluster-

ing spatial expression profiles, we used sets of genes that exhibit region-

specific expression in the mouse brain. Of the top 100 genes for each of 12

brain regions, defined by Lein et al. (2007), we retained only those that

could be unambiguously mapped to human genes (see earlier in the text),

obtaining between 77 and 92 (on average 84) genes per region.

We then used a rank-based procedure to construct ranked co-expres-

sion groups (RCGs; Miozzi et al., 2008) for all 14 522 genes, each being

composed of the gene that defines the RCG plus the k genes with the most

correlated 3D gene expression profiles (where correlation is defined by one

of the tested similarity measures). Varying k from 1 to 100, we scanned the

RCGs for gene pairs from the 12 brain region-specific gene sets.

2.4 Total binding affinity and co-affinity

As described in our recent study on the evolution of promoter–TF affi-

nity, for each human transcription start site, we consider the region span-

ning 1500bp upstream to 500bp downstream as promoter, but the

approach is robust with respect to the choice of promoter size

(Molineris et al., 2011).

Following Foat et al. (2006), we define the TBA arw of a promoter r

for a transcription factor, represented by its position frequency matrix

(PFM) w, as:

arw ¼ log
XL�l
i¼1

max
Yl
j¼1

Pðwj, riþjÞ

Pðb, riþjÞ
,
Yl
j¼1

Pðwl�jþ1, r
0
iþjÞ

Pðb, riþjÞ

 !
ð1Þ

where L is the length of the promoter, l is the length of the PFM, ri is the

nucleotide at position i of the promoter and r0i is the nucleotide at the

same position on the opposite strand.

The probability Pðwj, riþjÞ to observe a given nucleotide riþj at promo-

ter position iþ j also at position j of the PFM w is computed as the

PFM’s frequency count of the nucleotide at wj, divided by the total

frequency count for all four nucleotides at wj. In the case of a frequency

count of zero, we add a pseudocount of 1. Pðwj, riþjÞ is corrected for the

background probability Pðb, riþjÞ of riþj, computed as the nucleotide

frequency for the whole intergenic part of the human genome.

For genes with multiple promoters r (i.e. multiple transcription start

sites), we set the gene’s TBA agw for a given PFM w (i.e. a given tran-

scription factor or transcription factor family) to the maximum value

obtained for its individual promoters rk, i.e.

agw ¼ maxðar1w, . . . , arnðgÞwÞ ð2Þ

where nðgÞ is the number of promoters r of gene g. This is biologically

reasonable because a single promoter of the gene is in principle sufficient

to drive its expression (although the promoter may allow to produce only

some of the possible isoforms of the gene).
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As affinities from different PFMs are in most cases not directly com-

parable [because of widely differing lengths l and nucleotide frequencies

PðwjÞ�;we finally apply a z-transformation to the TBA scores agw, such

that each gene g’s TBA is represented by the direction and number of

standard deviations it differs from the mean TBA �aw for the given PFM w.

We computed TBAs of 130 non-redundant vertebrate PFMs deposited

in the Jaspar Core database (Bryne et al., 2008) for 37 231 human pro-

moters defined by transcription start sites from RefSeq (Pruitt et al.,

2007). We could map the RefSeq IDs to 22 120 Entrez gene IDs (using

only unambiguous mappings). Consequently, each gene g can be

described by a TBA profile ~ag ¼ ðagw1
, agw2

, . . . , agw130
Þ composed of its

(z-transformed) affinities for the transcription factors represented by the

PFMs [Equations (1) and (2)]. However, we limit the evaluation presented

here to those 14 522 genes, i.e. TBA profiles, for which MBA profiles are

also available (see earlier in the text).

Similar to the co-expression between two genes that can be estimated

from their gene expression profiles, we define the co-affinity of two genes

as the similarity of their TBA profiles (with different possible measures of

similarity). To this notion of co-affinity, we can apply the same candidate

gene prioritization and leave-one-out cross validation (LOOCV) proce-

dures defined for gene expression (see later in the text).

2.5 Relative intensity overlap

We define the RIO of two 3D gene expression profiles a and b (that can

be thought of as 3D images) as follows:

RIOða, bÞ ¼

P
xyz
ðIaxyz � I

b
xyzÞ

P
xyz

maxðjIaxyzj, jI
b
xyzjÞ

� �2 ð3Þ

where Iaxyz and Ibxyz are intensities, i.e. expression levels, at voxel xyz

for genes a and b, respectively, and sums
P

xyz

� �
are calculated over

all voxels.

Interpretation: The RIO measures the overlap of two (normalized) 3D

gene expression profiles by multiplying them with each other and sum-

ming the contributions of the single voxels to an overall score. This score

is then normalized through division by the maximum possible overlap

that would be obtained if both profiles had for each voxel the higher

expression level of the two. This way, a maximum contribution to the

score can be obtained for Iaxyz ¼ Ibxyz ¼ 1, whereas voxels with low expres-

sion values (Iaxyz ¼ Ibxyz � 0) will neither give significant contributions nor

are explicitly penalized. Voxels with maximally discordant expression

(e.g. Iaxyz ¼ 1 and Ibxyz ¼ 0), instead, will yield no contribution but max-

imum penalization [maximum summand for the denominator in

Equation (3)].

Analogously, we define the RIO of two TBA profiles m and n as in

Equation (3), using as intensities the (z-transformed) TBAs amw and anw
and summing over the PFMs w instead of summing over voxels.

Note that RIOs can range from 0 to 1 if the intensities are non-negative

quantities (as is the case for the MBA expression data) or from �1 to 1 if

the intensities can include negative values (as is the case for the z-trans-

formed TBAs) because in the latter case, discordant intensities can yield

negative contributions (if, e.g. amw4 0 and anw5 0).

2.6 Candidate gene prioritization

For both MBA and TBA profiles, we use the candidate gene prioritiza-

tion method, outlined in Figure 1, that we defined in our previous study

for 3D gene expression profiles (Piro et al., 2010).

Briefly, for each reference gene r 2 Rp, selected for a given OMIM

disease phenotype p (via MimMiner; see earlier in the text), all other

genes are ranked according to the similarity of their MBA or TBA pro-

files, respectively, to obtain one genome-wide, ranked co-expression or

co-affinity list for each r (columns in Fig. 1). For this purpose, profile

similarity can be defined in various ways, for example, by the Pearson

correlation coefficient [PCC; used in Piro et al. (2010) for the MBA data]

or the RIO that we propose here (see earlier in the text).

The given set of candidate genes Cp (e.g. candidates from an orphan

disease locus) has now to be prioritized, i.e. ranked, according to their

likelihood of being involved in p. We apply the following procedure: the

rank/position kðc, rÞ of each candidate gene c 2 Cp within each of the

ranked profile similarity lists (columns) of the reference genes r is deter-

mined, and a relative rank kðc, rÞ=kmax computed, where kmax is the total

number of genes in the ranked lists. Subsequently, each candidate gene is

assigned an overall score sc, determined as the product of its relative

ranks within the reference genes’ co-expression or co-affinity lists,

sc ¼
Y
r2Rp

kðc, rÞ

kmax
ð4Þ

and candidates are sorted, i.e. prioritized, according to their increasing

overall score, thus giving precedence to lower scores (as lower scores

indicate better rankings in the single profile similarity lists and, therefore,

a higher probability of being functionally related to the reference genes).

For more details, see Piro et al. (2010).

2.7 Leave-one-out cross validation

To demonstrate the validity of our approach—including the new similar-

ity measure and the prediction based on affinity profiles—we performed

large-scale LOOCVs for all known gene–disease phenotype associations

(g–p pairs) regarding CNS-related Mendelian disorders from OMIM (see

earlier in the text). For each g–p pair, we removed all gene–disease asso-

ciations of p and constructed an ‘artificial locus’ containing the disease-

related gene g itself plus the N closest genes on both sides of the chromo-

some (for N ¼ 50, N ¼ 100, N ¼ 200 and N ¼ 400), hence, simulating an

orphan locus of at most 2Nþ 1 genes (or less for g close to a chromo-

some terminal) linked to an OMIM phenotype of unknown molecular

basis. Then, we prioritized the candidates from the artificial loci and

verified the absolute rank (Rg) and relative rank Rrel
g (¼rank Rg divided

by the number of candidates) of the true disease-related gene g within the

prioritized candidate list.

The analysis was limited to gene–phenotype pairs whose correspond-

ing artificial loci contain at least 50 ‘effective’ candidate genes for which

both MBA and TBA profiles are available—one of which was required to

be g itself—as only these can be evaluated and thus prioritized. For a

lower number of effective candidate genes, an undesired bias would tend

to automatically place the true phenotype-causing gene g in high ranks

Rg. See Table 1 for the number of gene–phenotype pairs that could be

evaluated.

2.8 Integration of candidate rankings

To obtain overall rankings for a given set of candidate genes, we first

compute distinct candidate rankings for the MBA-based and the TBA-

based approach, respectively, as illustrated in Figure 1. For each candi-

date gene c, we determine its (predicted) ranks RM
c and RT

c from the two

ranked candidate lists (M¼MBA, T¼TBA). Using an adaptation of the

generalized noisy-OR gate defined by Dı́ez (1993), we compute the con-

ditional probability that c ’s true rank R�c is 1 (i.e. c is the true disease

gene) as

PðR�c ¼ 1jRM
c ,RT

c Þ ¼ PðR�c ¼ 1jRM
c Þ � PðR

�
c ¼ 1jRT

c Þ ð5Þ

i.e. the probability that c is the true disease gene conditionally on having

been ranked at position RM
c for the MBA, multiplied by the probability

that it is the true disease gene given that it has been ranked at positionRT
c

for the TBA. We determine the probability PðR�c ¼ 1jRD
c Þ for each single

dataset D 2 ðM,TÞ empirically from the leave-one-out performance over

all evaluated gene–phenotype pairs ðg, pÞ as

R.M.Piro et al.
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Table 1. Results of the LOOCV

Sim. N Cp g–p pairs Ranked first Ranked 1st–3rd Ranked 1st–10th Ranked�10%

Obs. E. P-value Obs. E. P-value Obs. E. P-value Obs. E. P-value

(a) —TBA; RIO versus PCC
PCC 50 73.4 756 17 10 3.23e-02 52 31 2.20e-04 138 103 2.01e-04 103 76 8.17e-04
PCC 100 136.3 805 9 6 1.42e-01 33 18 6.08e-04 87 59 2.15e-04 112 81 2.41e-04
PCC 200 253.3 808 3 3 6.19e-01 17 10 1.80e-02 60 32 3.34e-06 111 81 4.19e-04
PCC 400 439.3 808 3 2 2.80e-01 11 6 2.52e-02 41 18 2.69e-06 118 81 2.26e-05
RIO 50 73.4 756 25a 10 5.62e-05 58a 31 4.48e-06 175a 103 7.76e-13 125a 76 1.54e-08
RIO 100 136.3 805 19a 6 1.15e-05 37a 18 3.05e-05 116a 59 3.34e-12 136a 81 1.06e-09
RIO 200 253.3 808 13a 3 2.70e-05 21a 10 8.46e-04 69a 32 3.23e-09 146a 81 2.01e-12
RIO 400 439.3 808 10a 2 2.16e-05 16a 6 1.90e-04 46a 18 2.69e-08 151a 81 5.81e-14

(b)—MBA; RIO versus PCC
PCC 50 73.4 756 22 10 8.53e-04 59 31 2.19e-06 157 103 3.73e-08 119 76 4.82e-07
PCC 100 136.3 805 16 6 3.81e-04 39 18 5.81e-06 97 59 1.25e-06 123 81 1.63e-06
PCC 200 253.3 808 9 3 5.40e-03 26 10 6.81e-06 62 32 8.01e-07 126 81 4.40e-07
PCC 400 439.3 808 8 2 6.19e-04 17 6 5.93e-05 38 18 3.20e-05 131 81 2.90e-08
RIO 50 73.4 756 29a 10 8.62e-07 58 31 4.48e-06 156 103 6.30e-08 119 76 4.82e-07
RIO 100 136.3 805 18a 6 3.91e-05 39 18 5.81e-06 102a 59 6.23e-08 121 81 4.41e-06
RIO 200 253.3 808 13a 3 2.70e-05 26 10 6.81e-06 58 32 1.30e-05 125 81 7.42e-07
RIO 400 439.3 808 9a 2 1.22e-04 13 6 4.38e-03 41a 18 2.69e-06 129 81 8.93e-08

(c)—Integrated approach (TBAþMBA); RIO
RIO 50 73.4 756 38 10 9.78e-12 97 31 3.33e-23 230 103 2.20e-33 174 76 6.31e-26
RIO 100 136.3 805 16 6 3.81e-04 58 18 7.85e-15 166 59 6.18e-34 206 81 5.63e-37
RIO 200 253.3 808 20 3 1.70e-10 50 10 8.09e-21 140 32 8.48e-49 262 81 2.03e-68
RIO 400 439.3 808 16 2 1.16e-10 43 6 1.89e-24 124 18 1.70e-62 315 81 1.81e-105

LOOCV results obtained with the PCC and the RIO as similarity measure (Sim.) for (a) TBA-based predictions and (b) MBA-based predictions. (c) Results obtained for the

integrated approach (TBAþMBA). N represents the size of the artificial loci having a maximum of 2Nþ 1 genes. The average numbers of effective candidates Cp with both

TBA and MBA profiles and the numbers of evaluated g–p pairs are shown. The observed (Obs.) and expected (E.) numbers of g–p pairs, for which the true phenotype-causing

gene g ranks first, among the top three, among the top 10 and within the best 10% of the prioritized list, are reported along with the corresponding P-values (one-tailed

Fisher’s exact test).

Grey background highlights the results obtained with our previous method (upper box) and the new integrated approach (lower box). Bold face font highlights the

improvements for this comparison (improvement for all results but one; none worsened).
aResults for which the RIO outperforms the PCC.

Fig. 1. Schematic representation of the disease-gene prioritization procedure, exemplified with two of the hypothetical candidate genes ci and four

reference genes ri associated to a phenotype p. The procedure is first applied individually to MBA profiles and TBA profiles, and the resulting prioritized

candidate lists are integrated into an overall ranking. The locus containing the candidate genes Cp, the disease phenotype p and the expression and

affinity profiles are considered as given [adapted from Piro et al. (2010)]

Disease-gene discovery
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PðR�c ¼ 1jRD
c Þ ¼

��fðg, pÞ��RD
g ¼ R

D
c g
��þ 1��fðg, pÞg�� ð6Þ

corresponding to the fraction of evaluated gene–phenotype pairs for

which the true disease gene g ranked RD
c , like the candidate gene c. To

prevent probabilities from becoming nil, we add a pseudocount of one.

Finally, we determine an integrated candidate gene list by prioritizing

the candidates c according to their decreasing probability [Equation (5)]

of being the true disease gene. For disambiguation, candidate genes with

equal probabilities PðR�c ¼ 1jRM
c ,RT

c Þ are further prioritized according

to their ranks RM
c and RT

c for the individual datasets (TBA or MBA),

giving precedence to candidates with better single rankings.

3 RESULTS

3.1 Promoter–TF binding affinities are predictive

We performed LOOCVs over all known CNS-related gene–dis-

ease associations to verify whether TBA profiles can actually aid

in prioritizing candidate genes from known disease loci. At the

same time, we asked whether the frequently used PCC or our
new similarity measure, the RIO, would better suit this task. For

this purpose, we constructed artificial candidate loci of various

sizes around each known disease gene and compared the candi-

dates’ TBA profiles with those of related reference genes, using
either PCC or RIO as similarity measure.

As demonstrated in Table 1a, TBA profiles are indeed predic-

tive and can be used to successfully prioritize candidate genes.
Furthermore, our new similarity measure RIO outperforms the

PCC for all locus sizes and for all evaluated categories of disease-

gene rankings (first, top three, top 10 and best 10%). The

number of disease genes correctly being ranked first, for exam-

ple, is increased by 47–333% depending on the locus size.
Likewise, RIO outperforms both the Spearman rank correlation

(SRC) and the cosine-similarity (COS), as shown in

Supplementary Table S1a. Thus, for comparing binding affinity

profiles, we chose to use our new similarity measure.

3.2 RIO for predictions based on 3D gene expression

The measurement of profile similarity is of major interest also

when applying 3D gene expression patterns to evaluate which

candidate genes are more likely to be functionally associated with

a given disorder. We asked whether RIO outperforms PCC—

used both in our previous work (Piro et al., 2010) and by the
Allen Institute (Lein et al., 2007)—in clustering spatial expression

profiles and predicting likely candidates for CNS-related disor-

ders. In addition, we compared the results with those obtained

for SRC and COS.
To evaluate the performance in clustering spatial expression

profiles, we constructed RCGs (Miozzi et al., 2008) of varying

sizes kþ 1 (k ¼ 1 to 100) for all genes and all four profile simi-
larity measures, and we counted the number of pairs of genes

within these RCGs known to be specifically expressed in the

same brain region (see Section 2). Figure 2 shows that for the

MBA, RIO can consistently better recover region-specific rela-

tionships between gene expression patterns. For RCGs consist-
ing only of each gene plus it’s genome-wide most correlated gene

(k ¼ 1), for example, RIO identifies 233 gene pairs specifically

expressed in the same brain region, whereas PCC, COS and SRC

identify only 199, 180 and 153, respectively.

For evaluating RIO’s impact on predicting likely candidates

for CNS-related disorders, we performed additional LOOCVs.

As shown in Table 1b, RIO performs comparably with PCC with

respect to true disease-associated genes that are ranked among

the first three, first 10 or the best 10% of the candidate genes

from artificial loci. Furthermore, when considering disease-genes

that are ranked first among the set of candidates—the ones that

would preferably be evaluated by geneticists on the search for

causes of hereditary disease—RIO clearly outperforms PCC

(increase of 12–44%). In this regard, it also compares favourably

with both SRC and COS, as shown in Supplementary Table S1b.

Therefore, in the following sections, we used our new similarity

measure also for this type of gene expression data.
However, the performance improvement of the RIO depends

on a proper normalization of the 3D gene expression data. For

the LOOCV results for raw MBA profiles along with a discus-

sion, see the Supplementary Information (Supplementary Table

S2 and accompanying text).

3.3 Complementarity of MBA and TBA

As the MBA gene expression data and the TBAs regard two

different species (mouse and human) and consider two largely

different aspects of gene expression (dynamic, tissue- and loca-

tion-specific expression levels versus a static, condition-indepen-

dent predisposition for binding events), we reasoned that a joint

application of both could be beneficial for the purpose of prior-

itizing candidate genes for hereditary disorders.

For the RIO and the smallest artificial loci (N¼ 50), for

example, the disease-associated gene g ranked first or second

for 45 g–p pairs with the MBA-based and for 42 g–p pairs

with the TBA-based approach, respectively, but there was

no overlap at all between these correct predictions (see

Supplementary Table S3). Overall, median Spearman correlation

coefficients of the leave-one-out rankings obtained for MBA and

TBA were close to zero, ranging from 0.031 (for N¼ 50) to 0.044

(for N¼ 400). This indicates that successful predictions of the

MBA-based approach are usually not obtained through the

TBA-based approach and vice versa, providing a strong ratio-

nale for an integration of the two approaches.
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Therefore, we integrated the results obtained for the two indi-
vidual prioritizations using an adaptation of the generalized

noisy-OR gate (see Section 2). We found that their complemen-
tarity considerably increases the predictive power with respect to
our previous work (Piro et al., 2010). This becomes clear when

comparing the results for MBA-based predictions with PCC (grey
box in Table 1b)—reflecting the same method that we used for

our previous study—with those for the new combined approach
(Table 1c). Indeed, for the different locus sizes and evaluation

categories, the number of recovered disease genes increased by
up to 226% (for N¼ 400 and ranking among the top 10).

3.4 Comparison to other prioritization methods

Börnigen et al. (2012) have recently evaluated eight commonly

used candidate gene prioritization methods and obtained realistic
performance estimates for ex novo predictions by applying the

tools to novel gene–disease associations within a few days of
their publication. They obtained areas under the receiver operat-

ing characteristic curves (AUCs) of 0.56–0.86.
In comparison, for our unbiased LOOCV over the largest

artificial loci (N¼ 400), containing the most candidates, we

obtained an AUC of 0.81 (see Supplementary Fig. S1). Only
two of the tools tested by Börnigen et al. (2012), GeneDistiller

(Seelow et al., 2008) and Endeavour (Aerts et al., 2006) obtained
slightly higher AUCs (0.86 and 0.83, respectively). Hence, the

performance of our approach is generally in line with the most
efficient approaches commonly being used.

3.5 Novel predictions for mental retardation

Given the positive outcome of the large-scale LOOCV that simu-

lates the application of our method to OMIM phenotypes of
unknown molecular basis (OMIM symbol: %), we applied the

procedure to the eight partly overlapping orphan loci listed in
Table 2 that are involved in various syndromes (both autosomal

and X-linked) of which MR is an important clinical feature.

4 DISCUSSION

Regulatory information from PWM scans has previously been
used as an additional information source in a number of candidate

gene prioritization methods (Kann, 2010; Piro and Di Cunto,
2012). However, because of the stringent criteria that are often

necessary to decide whether a specific DNA segment is a binding
site, leading to reduced sensitivity and a likely disregard of pos-

sibly functional low-affinity binding sites (Hannenhalli, 2008), it is
unlikely that information from PWM scans alone would be sui-

table for disease-gene discovery. Likewise, the benefit of more
comprehensive TBA profiles is not immediately clear and has

previously not been explored on a large scale.
Although gene function can often be inferred from primary

coding sequences, deciphering functional properties exclusively

from non-coding sequences is much more difficult (Carroll,
2005). For one, co-affinity is static and condition-independent;

hence, it does not directly translate into the co-expression of, say,
two genes in brain tissues. In contrast to gene expression data,

the concept of binding affinity does not implicitly integrate infor-
mation on different types of regulatory control (such as the

methylation state of promoters, nucleosome positioning and

the post-transcriptional downregulation by microRNAs).
Instead, co-affinities, being calculated from promoter sequences
only, are limited to the direct binding of TFs to promoters.

Second, even a successful binding event must not necessarily
alter transcription rates if, for example, required co-factors are
lacking in a specific tissue. Indeed, Gao et al. (2004) suggest that

as much as 42% of TF binding may be non-functional in yeast.
Finally, binding affinity profiles constitute a description of a

cis-regulatory sequence, in this case, the promoter, involved in

the regulatory control of a gene (Molineris et al., 2011). But
given the incompleteness of the TBA profiles we considered
(composed of a core set of 130 PWMs; see Section 2) or, more

general, the incompleteness of our knowledge regarding func-
tional TF binding, a successful application of this kind of infor-
mation to disease-gene prediction was not necessarily guaranteed

(for a more detailed discussion, see Supplementary Text S1).
Nonetheless, in this study, we could show that regulatory infor-

mation alone, in the form of TBA-based co-affinities, can indeed
prioritize candidate genes for hereditary disorders. Further

improvements of the predictive power were obtained by the appli-
cation of a new similarity measure, RIO, and by integration with
our previous approachbased on 3Dgene expression patterns (Piro

et al., 2010).We exploited the new integrated approach to identify
promising candidates for several MR syndromes (Table 2).
Strikingly, among the best candidates for most of the orphan

loci, we found genes that have been reported to be implicated in
one or more other MR-related syndromes (Table 2 and
Supplementary Table S5). Notably, several of these MR genes

obtained high ranks, although they were not included in our
original set of known gene–disease associations (and, hence, in
our set of possible reference genes). For example, synaptophysin

(SYP) is involved in MR, X-linked 96 (OMIM ID #300802)
(Tarpey et al., 2009), whose phenotype entry is brief and does
not contain the term ‘central nervous system’ in its clinical

synopsis. Nonetheless, we found the gene among the top 3%
candidates for the largest orphan locus, cubitus valgus with
MR and unusual facies (OMIM %300471), underlining that

our method is indeed capable to identify promising candidate
genes that are not yet known to be linked to MR. Likewise,
ZMYM3, our top candidate for the Prieto X-linked MR syn-

drome (OMIM %309610), is not associated to any CNS-related
phenotype entry in OMIM, although a chromosomal transloca-

tion (X;13) involving ZMYM3 is associated with X-linked MR
(van der Maarel et al., 1996).
Additionally to known MR genes, some of our top ranking

candidates have already been suggested as possibly being

involved in MR syndromes or have been implicated in, or pro-
posed for, other neurological diseases (including neurodegenera-
tive disorders like Alzheimer’s disease; Table 2 and

Supplementary Table S5).
For space reasons, here, we discuss only the top candidates for

alopecia/MR syndrome 1 (APMR1; %203650), originally des-

cribed by Baraitser et al. (1983).
Genetic syndromes characterized by alopecia (hair loss) and

severe MR are rare disorders of largely unknown molecular

basis. In 2006, by studying a large consanguineous family from
Pakistan, John et al. (2006) mapped the APMR1 locus to the 5.4
Mb region on chromosome 3 located between markers D3S1232

and D3S2436. Of the candidates at this locus, they screened for
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mutations in coding exons only the transcription factorETV5, but

no abnormalities were found (John et al., 2006). Interestingly, we

foundETV5 as the second best candidate. However, although it is

in principle possible thatmutations affecting its regulatory regions

may be responsible for the phenotype, this seems unlikely on the

basis of the available functional information. Indeed, ETV5 loss

of function has been shown to affect the maintenance of sperma-

togonial stem cells (Chen et al., 2005) andkidney development (Lu

et al., 2009), whereas ETV5 overexpression has been linked to

ovarian cancer (Llauradó et al., 2012).
Theonly top10 candidate thathas been linked toanMR-related

disorder is MCCC1, mutations of which are known to be res-

ponsible for 3-methylcrotonyl-CoA carboxylase 1 deficiency

(Baumgartner et al., 2001; Gallardo et al., 2001), which is charac-

terized by multiple clinical features, one of which can be

MR(Murayama et al., 1997; Steen et al., 1999).Alopecia, however,

is generallynot a featureof thedisease, althoughapossibleassocia-

tion has been reported in a single case (Leonard et al., 1981).
However, as a particular strength of the predictive method

that we present here is an extrapolation of functional relation-

ships from reference genes to candidate genes that—relying on

gene expression and sequence information alone—do not require

any known functional annotation, less obvious candidates could

nonetheless be associated with the disorder.
The first candidate, CLCN2, encodes a voltage-gated chloride

channel, previously implicated in idiopathic generalized epilepsies

(Haug et al., 2003).DCUN1D1, ranking third, is another interest-

ing candidate because a polymorphism has been identified as a

risk factor in frontotemporal lobar degeneration (Villa et al.,

2009). AlsoDVL3, ranking forth, is of particular interest because

the protein it encodes interacts with Shank, which is involved in

several neuronal disorders including MR (Saupe et al., 2011).

Table 2. Novel predictions for MR syndromes with unknown molecular basis

OMIM disease phenotype and locus Best candidates

Alopecia-MR syndrome 1 (%203650; 3q26.3–q27.3) 46 candidates 1. CLCN2a 4. DVL3 7. MCCC1b 10. EIF4A2

2. ETV5 5. ABCF3 8. TBCCD1

3. DCUN1D1a 6. PSMD2 9. ST6GAL1

MR, X-linked, syndromic 11 (%300238; Xq26–q27) 59 candidates 1. ZNF280C 4. GRIA3b,c 7. AIFM1a 10. FHL1

2. ARHGEF6b 5. SLC25A14c 8. CD40LG

3. SMARCA1 6. HTATSF1 9. ZIC3c

MR, X-linked, with short stature (%300360; Xq24) 32 candidates 1. UPF3Bb 4. THOC2 7. UBE2Ab 10. SH2D1A

2. CUL4Bb 5. NKRF 8. IL13RA1

3. NKAP 6. LONRF3 9. AKAP14

Cubitus valgus with MR and unusual facies (%300471, chromosome X) 504 candidates 1. SYN1a 6. DCAF12L2 11. ABCD1a 16. PIM2

2. WDR13 7. TCEAL3 12. MED12a,b 17. SYTL5

3. APOO 8. PTCHD1a,b 13. ARMCX6 18. ATP6AP2b

4. HCFC1 9. SH3KBP1c 14. RNF113A 19. TAZ

5. DNASE1L1 10. SLC25A14c 15. SYPb 20. MPP1

Prieto X-linked MR syndrome (%309610; Xp11–q21) 109 candidates 1. ZMYM3b 6. EFNB1 11. SMC1Ab 16. VSIG4

2. KDM5Cb 7. PDZD11 12. OPHN1b 17. EDA2R

3. CITED1 8. RGAG4 13. OTUD6A 18. FOXR2

4. SLC16A2b 9. ITM2A 14. FGD1b 19. FAM123B

5. ITGB1BP2 10. DLG3b 15. GJB1a 20. NLGN3a

Pachygyria with MR, seizures and arachnoid cysts (%600176; 11p15) 187 candidates 1. SMPD1a 6. ART1 11. DEAF1 16. HRASb

2. AP2A2 7. FAM160A2 12. MYOD1 17. TNNI2

3. PHLDA2 8. RASSF7 13. PHRF1 18. TNNT3

4. MICAL2 9. RNH1 14. STIM1 19. OR51I1

5. SBF2 10. RRM1 15. WEE1 20. DKK3

Cerebellar ataxia, MR and dysequilibrium syndrome 2 (%610185; 17p13) 120 candidates 1. CAMKK1 6. TSR1 11. PFN1 16. CTDNEP1

2. ARRB2c 7. C17orf81 12. SLC43A2 17. SLC2A4

3. ABR 8. SGSM2 13. KIF1Cc 18. NEURL4

4. ENO3 9. DHX33 14. GGT6 19. VPS53

5. SMYD4 10. PITPNA 15. RABEP1 20. RPAIN

Kahrizi syndrome (%612713; 4p12-q12) 42 candidates 1. KIT 4. SPINK2 7. SLAIN2 10. GSX2

2. CEP135 5. ZAR1 8. RASL11B

3. FIP1L1 6. CNGA1 9. OCIAD2

Best candidates for orphan loci from OMIM associated with autosomal and X-linked MR phenotypes. Gene map loci are as reported by OMIM, but whenever possible more

accurate chromosomal locations were taken (Supplementary Information and Supplementary Table S4). The number of evaluated candidate genes is reported along with the

10 best ranking candidate genes. For larger loci (with4100 candidates), the top 20 candidates are listed. Known or potential MR genes are highlighted in bold. For associated

disorders and references, see Supplementary Information (Supplementary Table S5). For complete prioritized candidate lists, see Supplementary Information (Supplementary

Tables S6–S13).
aGenes known to be involved in other neurological disorders.
bGenes known to be involved in MR-related syndromes.
cGenes potentially involved in other neurological disorders.
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A final promising candidate may be ADIPOQ (ranking 18th;
Supplementary Table S6), although adiponectin, the protein it
encodes, is thought to be expressed specifically in adipose tissue
(Hu et al., 1996). Nonetheless, recent research indicates that the

secreted protein influences the proliferation of adult hippocampal
neural stem/progenitor cells that express adiponectin receptors 1
and 2 (AdipoR1 and AdipoR2) (Zhang et al., 2011), and adipo-

nectin deficiency could also negatively impact brain microcircula-
tion (Vachharajani et al., 2012).Moreover, a low-protein level and
a mutation of the corresponding gene were found in a patient

affected by Werner syndrome (Hashimoto et al., 2007), which is
characterized, among other features, by prominent hair loss.
We think that these examples show well how the predictions

obtained by our approach could support geneticists to dissect the
molecular basis of many ill-defined human disorders.
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