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ABSTRACT

Motivation: Repeat proteins form a distinct class of structures where

folding is greatly simplified. Several classes have been defined, with

solenoid repeats of periodicity between ca. 5 and 40 being the most

challenging to detect. Such proteins evolve quickly and their period-

icity may be rapidly hidden at sequence level. From a structural point

of view, finding solenoids may be complicated by the presence of

insertions or multiple domains. To the best of our knowledge, no auto-

mated methods are available to characterize solenoid repeats from

structure.

Results: Here we introduce RAPHAEL, a novel method for the detec-

tion of solenoids in protein structures. It reliably solves three problems

of increasing difficulty: (1) recognition of solenoid domains, (2) deter-

mination of their periodicity and (3) assignment of insertions.

RAPHAEL uses a geometric approach mimicking manual classifica-

tion, producing several numeric parameters that are optimized for

maximum performance. The resulting method is very accurate, with

89.5% of solenoid proteins and 97.2% of non-solenoid proteins cor-

rectly classified. RAPHAEL periodicities have a Spearman correlation

coefficient of 0.877 against the manually established ones. A baseline

algorithm for insertion detection in identified solenoids has a Q2 value

of 79.8%, suggesting room for further improvement. RAPHAEL finds

1931 highly confident repeat structures not previously annotated as

solenoids in the Protein Data Bank records.

Availability: The RAPHAEL web server is available with additional data

at http://protein.bio.unipd.it/raphael/
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1 INTRODUCTION

Protein repeats contain tandem arrays of smaller structural

motifs where, unlike most globular domains, folding is reduced

to simple coiling and long-range interactions are greatly reduced

(Andrade et al., 2001; Kajava, 2011; Kobe and Kajava, 2000).

Repetitive proteins evolve quicker due to the intrinsically

error-prone process connected with the formation of repeating

sequences (Buard and Vergnaud, 1994). Fourteen percent of all

known protein sequences are strictly periodic and it was hypothe-

sized that repeating sequences occur more frequently in eukary-

otic proteins (Marcotte et al., 1999). Repeating sequences were

estimated to occur in around one in three human proteins

(Jorda and Kajava, 2010; Kajava, 2011).
Classification of repeating proteins is usually achieved in terms

of repeat unit length (Kajava, 2001, 2011). The length of the

repeating unit can be as small as one or two residues for different

types of crystallites of unlimited size. At the other extreme are

repeating units of entire domains (beads on a string) with a typ-

ical repeating unit of over 50 residues. The middle ground com-

prises solenoid repeats with units of 5–40 residues. These are

elongated structures containing �-helices and/or �-strands with

a large distance between the N and C termini (Kobe and Kajava,

2000). There has been increasing interest in solenoid proteins

over the years, especially their relevance in health (de Wit

et al., 2011; Kajava et al., 2006) and for protein engineering

applications (Main et al., 2005; Stefan et al., 2011). Solenoid

proteins have also been shown to fold sequentially, one unit at

a time, suggesting that the sequence contains all necessary infor-

mation to determine the local fold (Kajander et al., 2005).

Understanding solenoid function and evolution passes through

their classification from sequence and structural information,

which are two different problems. Solenoid sequences evolve

quickly while maintaining their fold, thereby hampering detec-

tion (Andrade et al., 2001). Several sequence-based methods pre-

dicting tandem repeats from self-alignments have been developed

over the years, including RADAR (Heger and Holm, 2000),

TRUST (Szklarczyk and Heringa, 2004) and HHrepID

(Biegert and Soding, 2008). Our previous work REPETITA

uses a fast Fourier transform to specifically detect solenoids

(Marsella et al., 2009). In all cases there is still room for improve-

ment, with the best methods still missing out many solenoids,

especially with insertions. Generally speaking, solenoid repeats

tend to be easy to spot through visual inspection in a molecular

viewer. However, the manual search of hundreds or thousands of

structures to determine if they are solenoid repeats or not is ex-

tremely time-consuming and inefficient. Moreover, the definition

of repeat length, i.e. repeating blocks containing similar residue

numbers, and detection of breaks in the periodicity require

objective measures.
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Available structural databases such as Protein Data Bank

(PDB) (Berman et al., 2007) and CATH (Pearl et al., 2003)

store solenoid structures but do not provide feasible means for

extracting them. Tools for discriminating protein repeat struc-

tures from globular proteins are rare in the literature. DAVROS

(Murray et al., 2002, 2004) is perhaps the first method developed

for this purpose. Unfortunately, it is no longer maintained.

ProSTRIP (Sabarinathan et al., 2010) is designed to find all simi-

lar structural repeats. It requires the selection of the repeat length

and alignments from a set of alternatives, making it impractical

for large-scale analysis. The Propeat database was designed by

extracting recurring protein sub-structures, including internal re-

peats, but most of the structures contain only two repeating units

(Shih and Hwang, 2004). A similar self-alignment approach is

used by Swelfe to detect internal repeats in structures (Abraham

et al., 2008). When developing REPETITA, we had to manually

derive a dataset of 105 solenoids (Marsella et al., 2009). Other

sequence repeat prediction methods had similar problems in

defining the dataset, e.g. in HHrepID the authors resort to struc-

tural self-alignment due to the lack of available tools for un-

biased detection of solenoid repeats from structure (Biegert

and Soding, 2008).
This study aims to detect solenoid repeat structures using dis-

tance and periodic features extracted from the structural coord-

inates. The algorithm is efficient, has high discrimination power,

can determine the repeat unit length and can find insertions that

break the periodicity temporarily. The consequences of the algo-

rithm are vast and here we tackle the large-scale extraction of

repeats from CATH and the PDB. In addition to the novel data

produced, a server is available (URL: http://protein.bio.unipd.it/

raphael/) which can determine how periodic a structure is, the

repeat length, periodicity and insertion plots.

2 METHODS

Periodicity and distance measures are both important factors when con-

sidering a particular protein visually. The aim of our algorithm is to

mimic the intuitive definition used by a manual curator, extracting

these two factors from the three-dimensional coordinates of the structure.

A set of parameters and filters are then derived to capture the essence of

periodic spatial patterns. It should be noted that while signal processing

methods such as fast Fourier transform can be used for repeat proteins,

our previous experience suggests that they do not excel on biological data

with intermittent insertions (Marsella et al., 2009).

2.1 Periodicity

For each C-alpha coordinate (i.e. x, y and z), a profile/wave is generated,

filtering by averaging the profile twice over a window for each coordinate

profile. The first pass window size is 6 and the second pass window size

is 3. Figure 1b shows an example of a coordinate profile derived from

C-alpha coordinates. In order to avoid bias due to the initial orientation

of the structure, the protein is anchored at a reference point by random

translation and rotation. Anchoring is performed 200 times in order to

build stable periodicity values, thus producing 3� 200 profiles (i.e. 200

for each coordinate profile). A period is defined as the distance between

consecutive local maxima on the profile curve (consecutive minima are

also considered); Figure 1b. In order to score the periodicity, two obser-

vations are made: (1) frequent adjacent periods, termed window score,

indicate solenoid proteins and (2) frequent periods separated by rarely

occurring periods, termed bridge score, indicate solenoid proteins.

Let �i¼maxiþ 1�maxi 8i¼ 1, . . . ,M� 1 be the period calculated be-

tween adjacent local maxima on the coordinate profile (similarly for

minima) where M is the total number of local maxima. A labeled se-

quence is constructed from the sequence of periods �i, . . . , �M�1 where

�i 2N . A period �i is labeled with k2N where k is the position of the first

occurrence, i.e. �i2 [�k�T, �kþT], when scanning the periods fromN- to

C-terminus. T is the acceptable difference in residues between two periods

that allows assignment of the same label. Otherwise a new label is at-

tached. This labeling procedure results in a sequence of labels

Li , . . . ,LM� 1 representing periodicities found in the structure, which is

the only information supplied to the window and bridge scoring functions

described below. We found that T¼ 5 produces optimal results, see

Figure 1c for an example of period sequence and the corresponding

label sequence.

2.2 Functions

Let C(Li) be the number of times Li appears in the label sequence. The

window score is defined as:

WðLi , LjÞ ¼
2CðLiÞ if ji� jj ¼ 1 and Li ¼ Lj

0 otherwise

�
ð1Þ

The window score is positive only for identical adjacent labels

(i.e. ji� jj ¼ 1), see Figure 2a. Assuming we have two identical labels

Fig. 1. Tagging the periods for the x-coordinate of Leucine-rich effector

protein YopM-a from Yersinia pestis (PDB code 1JL5). (a) The structure

is shown colored from N-terminus (blue) to C-terminus (red). (b) The

period as calculated from two consecutive local maxima on the averaged

x-coordinate profile. (c) The period sequence for the profile from (b) with

the tagged label sequence below it. Notice how similar periods are as-

signed to the same tag. As this is clearly a solenoid protein, there are

many identical tag labels adjacent to each other
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separated by an insertion of other labels, the bridge score penalizes the

periods between them as follows:

BðLi , LjÞ ¼
2CðLiÞ �

Pj
j4k CðLjÞ if Li ¼ Lj

0 otherwise

�
ð2Þ

Figure 2b shows an example of the bridge score labeled sequence. The

total periodic score for one coordinate and one random rotation and

translation is:

Totalscore ¼
pW� þ ð1� pÞB�

N
ð3Þ

where W* and B* are the final window and bridge scores (respectively)

when processing the entire labeled sequence and N is the sequence length.

Using a linear grid search on the training set, P¼ 0.49 was found to be

the optimal balance parameter. The total score for the entire protein is the

average of the three coordinate profiles and the 200 random rotations and

translations.

2.3 Parameters and optimization

The variance among all the periods found within a structure should in-

tuitively be another important factor for discriminating solenoids. Let

P ¼ �x1j, �
y
1j, �

z
1, . . . , �xRj, �

y
Rj, �

z
Rj

n o
be the set of periods for residue j for

all R rotations and translations along each coordinate frame x, y and z.

On this set, let Fkj be the frequency of period k found in P for residue j.

We define the period matrix PM to be a 2D matrix of dimension 60*N

with elements Fkj, 8k¼ 0, . . . , 60 and j¼ 0, . . . ,N–1, where N is the

length of the protein and j is the index over residues. The cutoff was

chosen to be the maximum allowed period since repeating units rarely

exceed 60 residues for solenoid structures. Figure 3 shows the period

matrix for a typical solenoid and non-solenoid protein. In order to meas-

ure the variation of periodicity within the entire protein, the standard

deviation over all residues is calculated as:

SD ¼
XN�1

j¼0

X60

k¼0
ðFavg

j � F
kj
Þ ð4Þ

where Favg
j is average frequency of column j in the period matrix. To

complete the periodic information, we use the average period. Before

calculating the average, set P is filtered by removing all outliers such

that each period must be part of the interval [Pavg
� �(P)/2,

Pavg
þ �(P)/2], where Pavg and �(P) are the average and standard devi-

ation of all periods in P. This value is used to determine the solenoid

periodicity length (termed P* throughout the remaining sections).

Some observations about distance may be made through visual inspec-

tion of solenoid proteins: (1) solenoids, are usually elongated, (2) contact-

ing residues in solenoids should have low sequence separation relative to

globular proteins and (3) there should be regularity in sequence among

the contacting residues (conversely, there should be large variance for

non-solenoids). Two residues are in contact if the distance between the

C-alpha coordinates of both residues is less than a pre-defined threshold.

To measure the distance in 3D space between the N- and C-terminus, the

following distance is used:

MD ¼ min½dði, jÞ� 8i � 40, j � N� 40 ð5Þ

where d(i,j) is the distance between C-alpha atoms of residue i and j andN

is the length of the protein. MD calculates the minimum distance between

the first 40 residues and the last 40 residues. This value should give a good

measure of protein elongation. Next, the number of contacting residues at

a sequence separation455 are calculated as follows:

NC ¼

PN�1
i¼0

PN�1
i�554j4iþ55 Cij

N
ð6Þ

whereCij¼ 1 if the distance between i and j is56 Å, a value chosen because

it closely resembles the hydrogen bond distance. The sequence separation

cutoff at 55 was chosen since solenoid unit length rarely exceeds this value

for solenoids and contacts between repeating units can therefore be

counted by NC. In contrast, long-range contacts are often present in

globular protein structures (Kajander et al., 2005; Main et al., 2003).

Finally, the regularity of contacting residues in the sequence is mea-

sured by the variance of the residue-wise contact order (RWCO) (Kinjo

and Nishikawa, 2005), which for residue i is defined as:

RWCOi ¼
1

N

XN�1

i�34 j4 iþ3
ji� jjCij ð7Þ

Fig. 3. The period matrix for (a) solenoid protein YopM-a leucine-rich

effector protein from Yersinia pestis (PDB code 1JL5, as in Fig. 1) and (b)

sulfhydryl protease from the latex of the papaya fruit (PDB code 9PAP).

Notice the variation of period frequency for 9PAP while 1JL5 periodicity

appears regular

Fig. 2. Example for the window and bridge scores. The positions being

considered are shown bold faced in red and underlined. (a) The window

score considers identical neighboring labels toward the total score.

(b) The bridge score looks for identical labels separated by an insertion,

here i¼ 4 and j¼ 7. See text for details
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where Cij¼ 1 if the distance between i and j is515 Å. This cutoff was

chosen to relax the distance strength and thus allow a sufficient count at

all sequence separations. RWCOi is the sum of sequence separations be-

tween the ith residue 8i¼ 0, . . . ,N� 1 and all contacting residues. The

variance of this property will give a measure of how regular the sequence

separation is for contacting residues. Let RWCOavg be the average and

�(RWCO) be the standard deviation of RWCO. The final value used for

discrimination of solenoids is the standard deviation of the set defined by:

fRWCO : RWCOi 2 ½RWCOavg
� 0:6�ðRWCOÞ;RWCOavg

þ 0:6�ðRWCOÞ�g
ð8Þ

This gives a measure of the variance of the sequence separation be-

tween the contacts while ignoring extreme outliers.

The previously described periodic and distance features were combined

using a support vector machine (SVM). The SVM C parameter was set to

0.02 and a simple linear kernel was used. The SVM produces a real

number score with positive values indicating predicted solenoids and

negative values indicating non-solenoids. The more positive the SVM

score, the more solenoid the protein should be.

2.4 Finding insertions

A simple baseline method is used to discriminate non-periodic residues or

insertions in a structure from the core solenoid repeat. The main source of

data is the variation of distances between residue j and j�P* where P* is

the calculated period. For each residue j, we define the minimum periodic

distance toward the N and C termini:

PDN
j ¼ min dðj, j� P� ��Þ½ �

PDC
j ¼ min dðj, jþ P� ��Þ½ �

8� ¼ 1, . . . ,w ð9Þ

d(.,.) is the Euclidean distance between C-alpha atoms on residue pairs.

PDN
j and PDC

j are used as a double-pointed probe on the structure

at residue j. First, it is important to determine the representative distance

of a given period since proteins with the similar period do not necessarily

repeat at the same distance. Given a protein of length L, the raw set of

periodic distances D ¼ fPDC
1 , PD

N
1 , . . . , PDC

L , PD
N
L g is reduced to the

subset Df 	 D using the following conditions:

PDN=C
j 5T

PDN=C
j 2 Davg � �ðDÞ=2,Davg þ �ðDÞ=2½ �

ð10Þ

where Davg and �(D) are the average and standard deviation of D, re-

spectively. These conditions ensure the removal of extreme outliers and

large non-meaningful distances (i.e. non chemical bonds). Let mDf

denote the median of the set Df. It is in fact the variation from mDf,

which will measure the potential for non-periodicity. This variance profile

is defined as follows:

VP ¼
XL
j¼1

1 if PDN=C
j 5mDf� �

0 otherwise

�
ð11Þ

when calculating distances boundary conditions, jjþP*��j �L and

jjþP*��j � 1, were implemented. The parameters w, T and � were

determined using a grid search on the training folds of the leave one

out procedure. Values for the parameters were found to range

w2 [9,10], �2 [1.5, 2.0] and T2 [12,15] depending on the training fold.

Intuitively, the idea is to capture the maximum deviation of each residue

from the median periodicity. This is a simple algorithm, which may be

further improved with more parameters and machine learning but should

nevertheless provide a valid baseline for detecting insertions and repeat

boundaries. Throughout this article, we will refer to insertions as

non-repeated residues surrounded by solenoid repeats. Only the final ex-

periment is shown in this article, with results for the two partial optimiza-

tions shown in the Supplementary Material. All thresholds were found by

maximizing Q2 on the training sets.

2.5 Datasets

The training and test sets are based on publicly available data from the

REPETITA article (Marsella et al., 2009). Briefly put, an initial set of 32

solenoid repeat proteins was taken from a previous review (Kobe and

Kajava, 2000) and expanded using TESE (Sirocco and Tosatto, 2008)

to find more protein domains in CATH (Pearl et al., 2003) belonging to

the same solenoid folds as the initial set. Choosing representatives with at

most 35% pairwise sequence identity (i.e. CATH ‘S’ level) yielded a set of

105 solenoid domains. The set of non-solenoid protein domains was gen-

erated with TESE by randomly choosing X-ray structures with different

topologies and no detectable sequence similarity (i.e. CATH ‘T’ level) for

a total of 247 domains. The sets of solenoid and non-solenoid protein

domains were randomly split into training and test sets, with the con-

straint that solenoid structures of low similarity fall in the same partition.

It is worth mentioning that closed repeating structures such as beta-barrels

or propellers are not included in the set and our algorithm does not con-

sider these toroidal structures, but may still find their periodic signal.

In addition to the training and test sets, RAPHAEL was also bench-

marked on CATH and PDB. The ‘S’ and ‘O’ level classifications, with a

maximum sequence identity of 35% and 60% were downloaded from the

CATH website for the current version (v3.4). The PDB was downloaded

as of July 1, 2011. DNA, RNA and protein chains with length530 amino

acids were removed. Each structure was separated into chains and reduced

to 40% sequence identity using CD-HIT (Li and Godzik, 2006) with

options -c 0.4 –n 2, creating a diverse set of 16 226 unique chains.

2.6 Performance measures

Throughout this article, TP, FP, TN and FN are used for true positives,

false positives, true negatives and false negatives, respectively. Sensitivity

and precision values are calculated for both periodic (P, positive class)

and non-periodic residues/structures (N, negative class). The following

measures are used: sensitivity (P)¼TP/(TPþFN), precision (P)¼TP/

(TPþFP), sensitivity (N)¼TN/(TNþFP) and precision (N)¼TN/

(TNþFN). Accuracy is used as synonymous to sensitivity and Q2 is

the fraction of correctly predicted residues, i.e. (TPþTN)/

(TPþFPþTNþFN). The receiver operator characteristic (ROC)

curve describing the overall performance at variable thresholds is plotted

as TP rate versus FP rate.

To compare RAPHAEL to existing methods, we chose the

structure-based method Swelfe (Abraham et al., 2008) and three

sequence-based methods: REPETITA (Marsella et al., 2009), TRUST

(Szklarczyk and Heringa, 2004) and RADAR (Heger and Holm, 2000).

Since Swelfe returns several alternative predictions, the best was con-

sidered in order to overestimate rather than underestimate its perform-

ance. The results for the sequence-based methods are taken from our

previous publication (Marsella et al., 2009). The comparison should be

considered a baseline only, given that all of these tools (except

REPETITA) are not explicitly designed for solenoid detection.

3 RESULTS

3.1 Solenoid identification

In order to identify possible solenoids, RAPHAEL transforms

the coordinates of the protein structure into a period matrix. An

example for the transformation of a solenoid and a clearly

non-repetitive structure can be seen in Figure 3. The solenoid

structure produces a compressed signal of higher intensity,

which can be used for detection. Several parameters were derived

to take advantage of this information (see Section 2). The per-

formance at discriminating solenoids with the combined SVM

score on the training set is shown in Table 1, while the individual
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parameters are reported in Supplementary Table S1. Although

the window function is the most discriminating feature, the SVM

combination improves performance by ca. 4% for solenoids and

ca. 7% for non-solenoids, suggesting that different information is

captured. Due to the limited number of training data and to be

more statistically robust, we also tested the performance of a

leave one out cross-validation. Here, training is performed with

N-1 protein chains and testing with the remaining chain, while

counting the results for all the testing examples (n¼ 351). This

produces results somewhere between the training and test sets,

with only 7 false solenoids and 11 false non-solenoids for the

entire dataset. Table 1 also shows how a stricter SVM threshold

of 1.0 produces just 1 false solenoid, at the expense of losing 14

solenoids, thereby increasing positive precision to 98.9% com-

pared with 93.1% for an SVM score of 0. In other words, an

SVM threshold of 1.0 corresponds to very confident solenoid

assignments.

A full ROC curve for the leave one out cross-validation is

shown in Figure 4, also comparing with Swelfe and three

sequence-based methods. Swelfe is not specifically designed for

solenoids, but rather tries to detect internal repeats in proteins. It

should also be emphasized that solenoid detection from sequence

is more difficult and hence such methods can be expected to

perform less well. The difference in ROC curve is nevertheless

remarkable, with RAPHAEL detecting three times more solen-

oids than the other methods at low FP rates and the most diffi-

cult solenoid at an FP rate of ca. 20%. Table 2 shows the

distribution of correct and incorrect classifications for leave

one out training split in terms of CATH class. Interestingly,

it is the alpha-beta class which produces the most errors on so-

lenoids (i.e. 7), suggesting that it may be somewhat more difficult

to find solenoids when they have an alpha-beta mix. The datasets

do not take into account Class 4 (few secondary structures) as

either negative or positive examples.

3.2 Periodicity estimation

Once the presence of a solenoid has been established, it is im-

portant to define its periodicity, i.e. the length of the repeating

unit. Supplementary Figure S1 shows a comparison of the per-

iods determined from the period matrix (see Section 2) to a

manual derivation from our previous work (Marsella

et al., 2009). The relationship is clearly linear, with an overall

Spearman correlation coefficient of 0.877 indicating a strong re-

lationship between RAPHAEL and the manually extracted

repeat lengths. Upon inspection, the small number of outliers

exhibit period matrices which are highly variable and contain

insertions and/or deletions. As expected, it is difficult to deter-

mine the repeat length when insertions or deletions are present in

the structure. Looking in more detail at the difficulty level of the

solenoids, the hard (i.e. solenoids containing many insertions)

cases have a Spearman correlation coefficient of 0.753 compared

with 0.934 for the easy ones (i.e. solenoids with few or no inser-

tions). Figure 5 shows a comparison of RAPHAEL to Swelfe

and three sequence-based methods in terms of detecting the cor-

rect periodicity. Since the exact period in solenoids with inser-

tions can be somewhat arbitrary, we allow two distinct levels of

correctness. In analogy to our previous work (Marsella et al.,

2009), we consider one residue around the manually curated

periodicity correct for all predictions. For sequence-based meth-

ods, we also consider half or double the structural repeat as

correct within tolerance. As structure-based methods

(RAPHAEL and Swelfe) may be sensitive to insertions, we

allow five residues around the exact period as correct within

tolerance. The effect of the window size on RAPHAEL predic-

tions is shown in Supplementary Figure S2. As can be seen in

Figure 5, RAPHAEL and the more accurate sequence-based

methods have similar performances in recognizing correct peri-

ods. This is somewhat unexpected, but likely due to correct clas-

sification of solenoids without insertions where a clear sequence

signal corresponds to the structural unit.

Fig. 4. ROC curve on the combined training and test set. RAPHAEL

trained using the leave one out split is compared with four other methods.

The curve ends when a method does not produce further output, i.e. be-

lieves to have found all solenoids. Two SVM score thresholds are shown

at 0 (orange circle) and 1 (yellow square), respectively

Table 1. Accuracy on the training set and test set combining all six fea-

tures through an SVM

TP FP TN FN Solenoids Non-solenoids

Training 49 2 117 1 98.0 98.3

Testing 48 6 122 7 87.3 95.3

Leave one out40 94 7 240 11 89.5 97.2

Leave one out41 91 1 246 14 86.7 99.6

Results are shown for the method optimized on the training set (first two rows) and

on the leave one out split (last two row), respectively. The latter are further reported

at an SVM threshold of 0 and 1.

Table 2. Precision as a function of CATH class

Class TP FP TN FN Solenoids Non-solenoids

Mainly � 40 0 59 2 100.0 96.7

Mainly � 31 0 16 9 100.0 64.0

Mixed �–� 23 7 165 0 76.7 100.0

Results calculated on the leave one out split. Precision results on solenoids and

non-solenoids.
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3.3 Insertions

Given the performance in detecting solenoid proteins, the next

question becomes whether the method is able to detect insertions

for these proteins. To test this, every residue in each solenoid
structure was annotated as either repeated or not. The Q2,

sensitivity and precision measures for the dataset are shown in
Table 3. It should be emphasized that we are proposing a simple

baseline algorithm with a few caveats. First of all, several solen-

oid structures are rather degenerate, prompting a somewhat ar-
bitrary distinction between approximately repeated and inserted

residues. Second, RAPHAEL tends to find clear insertions but
finds it difficult to determine less obvious cases, as clear inser-

tions disrupt the regular spatial pattern at the basis of our algo-

rithm. Hence, smaller insertions can be underpredicted, whereas
longer insertions are found but often reported as more disruptive

than necessary. An example can be seen in Figure 6. To the best
of our knowledge, this is the first time that an automatic classi-

fication of structural repeat insertions is attempted in the litera-

ture. It certainly also expands our view on the previously released
REPETITA dataset (Marsella et al., 2009).

3.4 Large-scale extraction of periodicity data

In order to test RAPHAEL, we decided to process large sets such

as the PDB and CATH to generate datasets for future use. For
this large-scale search, we trained the SVM on the combined

datasets (105 solenoids and 247 non-solenoid domains).
RAPHAEL was used to detect solenoids on the entire CATH

database at the S(35) and O(60) levels corresponding, respect-
ively, to 35% and 60% maximum sequence identity. Supplemen-

tary Figure S3 shows the SVM score for all domains at S(35).

Choosing this identity cutoff guarantees that solenoid domains
are diverse at least at the sequence level but it can also be

assumed to be true at the structural level. In total the algorithm
considered 748 domains to be solenoids at this sequence identity

cutoff (Table 4 and Supplementary Fig. S4). Obviously, the

higher the score, the more expressed the periodicity should
become. Upon visual inspection, the better solenoids are repre-

sented by an SVM score41 (221 domains; see inset in Supple-
mentary Fig. S4). In order to find more solenoid domains which

may be useful, we also processed CATH with no sequence pair

sharing 60% sequence identity. Using this less stringent cutoff,
the algorithm detected 1156 CATH domains, with the distri-

bution of SVM scores shown in Supplementary Figure S5.

A list of CATH domains ranked by the solenoid score produced

by the SVM can be found on the RAPHAEL website.
Of course the extracted CATH domains will intersect with the

set used for algorithm construction. Using a 50% sequence iden-

tity cutoff, we identify 696 proteins on S(35) and 1089 on O(60)

which are not homologous to our training data. At the more

stringent SVM score41, the number of newly mined domains

is 172 for S(35) and 245 for O(60). This has to be compared with

the currently available list of 105 solenoid repeats (Marsella

et al., 2009).

In addition to CATH domains, we also processed PDB chains

with RAPHAEL, finding 1131 chains to be considered solenoids

at 40% maximum sequence identity. A more confident set of 551

solenoid chains with SVM score41 was also generated. These

numbers increase to 5419 and 2478 for the full PDB (Table 5).

It is interesting to note how the PDB analysis contains a com-

paratively higher number of confidently predicted solenoid struc-

tures than CATH. This might suggest the existence of solenoid

structures outside the already known CATH superfamilies, al-

though further analysis will have to be carried out to verify this

hypothesis.

To validate the results and verify the extent to which

RAPHAEL detects previously unknown solenoid proteins, we

Fig. 6. Example of insertions found for a �-solenoid. The variance plot

(left) shows the score VP used to determine the location of insertions for

endopolygalacturonase (PDB code 1HG8 chain A). The yellow area in-

dicates the true positions of the periodic residues (periodicity at 0.5, in-

sertion 0).The same structure (right) is colored in red for residues assumed

to be repeated and in blue for insertions. Notice how the algorithm

identifies the core solenoid domain, while mispredicting some C-terminal

residues

Fig. 5. Detection of repeat periodicity for RAPHAEL and four other

methods. See main text for details on the thresholds used to define the

two levels of correctness

Table 3. Performance of simple insertion finding algorithm on leave one

out cross-validation

Measure All Easy Hard

Q2 79.8 83.4 74.1

Sensitivity (P) 95.5 95.7 95.1

Precision (P) 79.5 84.9 69.6

Sensitivity (N) 44.2 40.3 47.4

Precision (N) 81.2 72.7 88.5

The Q2, sensitivity and precision measures are shown after leave one out optimiza-

tion for maximum Q2.
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have calculated the overlap of our predictions with PDB entries

of proteins having the ‘repeat’ (or ‘repeats’) keyword in their

respective header records. The results are drawn as a Venn dia-

gram in Figure 7. It should be noted that PDB entries with the

‘repeat’ keyword contain proteins that are not true solenoid re-

peats, e.g. the repeated spectrin or fibronectin domains.

Nevertheless, RAPHAEL overlaps well with the PDB annota-

tion but provides an even greater amount of novel automatic

annotations. These can be useful for the automatic annotation

of proteins by structural genomics consortia or the PDB itself.

4 CONCLUSIONS

In this article, we have presented a novel method, RAPHAEL,

for the accurate determination of solenoid repeats from PDB

structures. The method quantifies repeat structures by mimicking

visual interpretation by experts through various parameters.

Combination in a SVM provides exceptionally accurate predic-

tions, as tested on a previously published dataset. To the best of

our knowledge, we show for the first time that our method is also

able to broadly recognize insertions and repeat boundaries.

Scanning the entire CATH and PDB databases provides

hundreds or thousands of additional solenoid repeats, with auto-

matic annotation for repeat regions. RAPHAEL was imple-

mented in a new web server-based application for automatic

repeat protein recognition. Due to the importance of repeat pro-

teins in both design and human diseases, we plan to use this

method for systematic large-scale analysis of protein structures,

in order to improve our understanding of these peculiar proteins

and their impact on organism evolution.
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