
Vol. 22 no. 14 2006, pages e58–e65

doi:10.1093/bioinformatics/btl212BIOINFORMATICS

AClAP, Autonomous hierarchical agglomerative Cluster Analysis

based protocol to partition conformational datasets
Giovanni Bottegoni1, Walter Rocchia2, Maurizio Recanatini1 and Andrea Cavalli1,�
1Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
and 2NEST CNR-INFH, Scuola Normale Superiore of Pisa, Piazza dei Cavalieri, 7, I-56126, Pisa, Italy

ABSTRACT

Motivation: Sampling the conformational space is a fundamental

step for both ligand- and structure-based drug design. However, the

rational organization of different molecular conformations still remains

a challenge. In fact, for drug design applications, the sampling process

provides a redundant conformation set whose thorough analysis can

be intensive, or even prohibitive. We propose a statistical approach

based on cluster analysis aimed at rationalizing the output of methods

such as Monte Carlo, genetic, and reconstruction algorithms. Although

somesoftware already implements clustering procedures, at present, a

universally accepted protocol is still missing.

Results: We integrated hierarchical agglomerative cluster analysis

with a clusterability assessment method and a user independent

cutting rule, to form a global protocol that we implemented in a

MATLAB metalanguage program (AClAP). We tested it on the confor-

mational space of a quite diverse set of drugs generated via Metropolis

Monte Carlo simulation, and on the poses we obtained by reiterated

docking runs performed by four widespread programs. In our tests,

AClAP proved to remarkably reduce the dimensionality of the original

datasets at a negligible computational cost. Moreover, when applied

to the outcomes of many docking programs together, it was able to

point to the crystallographic pose.

Availability: AClAP is available at the ‘‘AClAP’’ section of the website

http://www.scfarm.unibo.it.

Contact: E-mail: andrea.cavalli@unibo.it.

Supplementary Information: The complete series of AClAP results

is available in the ‘‘services’’ section of the website http://www.scfarm.

unibo.it.

1 INTRODUCTION

The physicochemical and biological properties of a molecule

critically depend upon conformations the molecule can adopt.

Therefore, carrying out exhaustive and meaningful conformational

analysis is pivotal for deeply investigating any molecular feature.

For instance, any three-dimensional ligand-based approach in drug

design can’t help using a complete analysis of the conformational

space. Monte Carlo simulation is just one of the methods available

to achieve this sampling (Chang, et al., 1989). In a Monte Carlo

study, the conformational space of a molecule is sampled by

randomly changing dihedral angle rotations or atom Cartesian coor-

dinates. If the currently drawn sample is lower in energy than its

predecessor, then it is retained as a starting point for the successive

iteration. Conversely, when the new conformation is higher in

energy, it can be retained according to two alternative criteria:

either its energy belongs to a predefined window or the ‘‘move’’

can be accepted with a probability related to the Boltzmann factor,

following the Metropolis method (Metropolis, et al., 1953).

Two fields that make a great use of conformational sampling

are docking and virtual screening, both of them holding a prominent

position in the modern structure-based drug design (Taylor, et al.,
2002). In a limited computational time, they have to face a hard

two-fold problem: generating a sensible conformational ensemble

and then ranking its members. Besides Monte Carlo sampling,

the ligand conformational space can be explored by genetic and

incremental algorithms.

Apparently, sampling is an easier job to do than scoring. In fact,

reiterated docking runs usually provide at least one pose close to the

crystallographic one. In contrast, due to different heuristics and

approximation levels, scoring functions do not always succeed in

including the crystallographic pose among the most favorable ones.

On top of it, it is not unusual to see quite different rankings by some

among the most widespread docking tools. In general, it cannot be

said that one method outperforms the others, since different target

and compound classes can lead to different performances. A number

of different possibilities rather than a single binding mode can be

obtained also as a result of reiterated runs of the same algorithm,

when it adopts a random based approach. Due to the computational

cost of the sampling process and of the evaluation of the binding

free energy, it would be definitely useful to have a restricted, but still

representative, set of conformations to be processed with more

thorough techniques.

Cluster Analysis (CA) is a discipline that encompasses a

number of different algorithms to partition samples in homogeneous

classes without any a priori knowledge. It is already used to analyze

the large amount of data generated by molecular modeling

software, such as the outcomes of conformational analysis and

docking outputs (Chema, et al., 2004).

In principle, there does not exist a unique ‘‘correct’’ method to

cluster a dataset, and a large number of variations have been

devised, from which one has to choose the most appropriate one.

As an example, X-cluster, developed in 1994 by Shenkin and

McDonald (Shenkin and McDonald, 1994) and implemented in the

MacroModel software package (Mohamadi, et al., 1990) is one of

the most widely exploited algorithms for organizing the output of

conformational sampling. X-cluster employs a hierarchical agglom-

erative approach with the single linkage rule (see the Algorithm

Description section for further details). As a major drawback for any�To whom correspondence should be addressed.
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automated procedure, X-cluster leaves to the user the choice of the

most suitable clustering level.

In docking and virtual screening simulations, some programs

(such as AutoDock and GOLD) implement CA to better rationalize

their outcomes. In particular, AutoDock sorts conformations by

increasing energy and then implements a nonhierarchical clustering

method with single linkage rule to partition the poses. The cluster-

ing process always starts from the best scoring pose, and, due to the

peculiarity of the single linkage rule, first clusters tend to be the

more numerous. The process is iterated through conformations,

grouping together the elements whose Root Mean Square

Deviations (RMSDs) are within a user-defined threshold value.

In turn, GOLD has a dedicated utility (rms_analysis) to perform

CA on the docked poses with a hierarchical agglomerative approach

based on the complete linkage rule. This is known to be a non

space-conservative linkage criterion that tends to create compact

clusters of similar dimension. Moreover, no cutting rule is

implemented in the CA of the GOLD program.

A suitable CA protocol should be able to provide a functional

classification, i.e., to identify few conformations worthy to be

further studied. Moreover, the protocol should be ‘‘information’’

driven and should not, in general, necessitate of any preexisting

knowledge about the specificities of the target. Recently, we carried

out a comparative study (Bottegoni, et al., 2006) about the use of

different hierarchical agglomerative clustering rules associated

with a user-independent cutting function applied to the outcomes

of four different docking programs. From that study, we learned that

the combination of an a priori clusterability assessment with the

average linkage rule, and with a stopping criterion based on the

Kelley-Gardner-Sutcliffe (KGS) penalty function (Kelley, et al.,
1997) provides a good basis to achieve a sensible partitioning of

conformational datasets.

In this work, we describe the implementation of our novel

protocol in a MATLAB (The MathWorks, Inc.) metalanguage pro-

gram, named AClAP (Autonomous hierarchical agglomerative

Cluster Analysis based Protocol), and we discuss its performance

vs. commonly available CA-based methods. AClAP design benefits

from the understanding we gained from a conformational analysis

we made over a set of ten marketed drugs with the aid of

MacroModel (Mohamadi, et al., 1990) and over the above men-

tioned docking results, which concern a quite diverse set of ligands

co-crystallized with different biological counterparts. Docking

simulations were carried out by means of four programs, namely

Dock (Ewing, et al., 2001), AutoDock (Morris, et al., 1998), GOLD

(Jones, et al., 1997), and FlexX (Rarey, et al., 1996). Moreover, we

statistically analyze the whole set of obtained conformations, and

finally we discuss the behavior of the KGS penalty function.

Summarizing, AClAP turned out to meet all of the criteria

required for a robust clustering protocol at a very limited com-

putational cost. Therefore, we propose it as an innovative and

user-friendly tool, which can be of great help to molecular modelers

dealing with both ligand- and target-based drug design.

2 METHODS

AClAP is an interactive MATLAB metalanguage program that can take data

from the widespread mol2 file format. AClAP can also take in input the

torsion angles either in raw or csv (comma separated values) formats. It is

able to automatically identify the number of poses and the set of nonhydro-

gen atoms.

Each conformation is considered as an observation in a d-dimensional

space, and it is stored in an n by d matrix M, where n is the number of

the sampled conformations and d is the number of degrees of freedom of

the molecule (Figure 1). These latter include dihedral angle values of all

rotatable bonds and the Cartesian coordinates of three atoms (limited to

the clustering of docking poses), which account for global rotation

and translation. Each column of M is z-standardized for subsequent

Fig. 1. Example of construction of matrix M for Pimozide. a) The nonhy-

drogen atom numbering and the acyclic torsion angles are reported. b) Pi-

mozide chemical structure. The parameters reported in the table give rise to n

by d matrix M, where n is the number of the sampled conformations (in the

present example, 121) and d is the number of degrees of freedom of the

molecule (in the present example, the 7 acyclic torsion angles of Pimozide).

ACIAP, Autonomous hierarchical agglomerative Cluster Analysis
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processing. The M matrix is exploited within the clusterability assessment,

whereas, for CA, the full Cartesian coordinate set is used. In Figure 2, a

typical dialog box of AClAP is shown.

2.1 Clusterability assessment

To assess whether conformations show a natural tendency to group

into clusters, we implemented a modified version of a test originally

developed by Hopkins (Hopkins, 1954): the H� test.

This test is aimed at distinguishing between three main possibilities

for the distribution of the members of the dataset: uniformly scattered,

regularly spaced or naturally grouping. Only in the last case, CA is

really justified. The H� test is implemented as follows: first, a Principal

Component Analysis is performed over the z-standardized matrix M; in

order to lower the dimensionality of the problem, the original dataset is

projected onto the reduced space L induced by the first three principal

components. Then, a small number s of random points in L is generated.

These points are normally distributed, with zero means, and their projection

over each principal component direction has the same standard deviation as

the corresponding principal component of the dataset. In our test, s¼ n/20.

Now, s poses are randomly drawn and for each of them, as well as for

each random point, the minimum distance to the members of the dataset

is calculated, and named Di for the poses, and Vi for the points. This pro-

cedure is repeated n times and the H� value is calculated as the following

average:

H� ¼
Xs
i¼1

Vi

,� Xs
i¼1

Vi þ
Xs
i¼1

Di

�* +
dataset

‚ ð1Þ

Three cases can occur:

0.5�H�� 0.6 the poses are homogenously distributed

H� ! 0 the poses are regularly spaced

H� ! 1 the poses show a natural tendency to cluster

A cluster analysis should be carried out only in the last one. The absence of

regular or repetitive patterns in the outcomes of conformational analysis and

docking simulations makes unlikely the occurrence of the second case.

2.2 Cluster Analysis

AClAP implements a hierarchical agglomerative clustering algorithm.

‘‘Hierarchical’’ means that clusters at a higher level are union of clusters

at lower levels, while ‘‘agglomerative’’ means that clusters never break apart

during the formation process. The global hierarchy can be represented by

means of a dendrogram, a tree showing different clustering levels, spanning

from 1 to n. RMSD is taken as a measure of conformation-to-conformation

distance. Therefore, the clustering algorithm starts with n unary clusters; at

each step, the two closest clusters are merged, until only one cluster

containing all the poses is reached. The way the inter-cluster distance is

evaluated is called linkage rule. In AClAP, we implemented three among the

most widely used linkage rules: single linkage, average linkage, and the

Ward method. Single linkage (Everitt, et al., 2001), also known as nearest-

neighbor distance method, defines distance as the one of the closest pair of

conformations:

DM‚Q ¼ minm2f1‚ ... ‚xMg‚q2f1‚ ... ‚xQgðdm‚qÞ‚ ð2Þ

where uppercase roman letters indicate clusters, d is the RMSD-based con-

formation distance, D is the inter-cluster distance, x is the cardinality of a

cluster.

A well-known drawback of single linkage rule is the so-called ‘‘chaining’’

phenomenon: first clusters naturally tend to incorporate the nearby confor-

mations, therefore forming a ‘‘chain’’; as a consequence, there is a strong

bias towards the first clusters to being more populated than others.

In the average linkage (Everitt, et al., 2001) method, the mean distance

between all pairs of conformations is taken:

DM‚Q ¼ 1

xMxQ

XxM

m¼1

XxQ

q¼1

dm‚q: ð3Þ

According to this definition no conformation/cluster is preferred with

respect to the others, preventing ‘‘chaining’’ effect to occur.

Finally, in AClAP, the Ward method can also be selected. This method

uses a distance definition based on the analysis of variance (Ward and Hook,

1963). It attempts to minimize the Sum of Squares of any two potential

clusters that can be formed at each step. This method tends to create

a consistent number of small clusters. Our previous comparative study

(Bottegoni, et al., 2006) led us to prefer the average linkage rule with respect

to both single linkage and the Ward method.

When clustering is finished, the complete dendrogram is obtained and, for

each cluster at each level, the so-called centroid can be calculated. The

centroid is a ‘‘hypothetical’’ conformer whose coordinates are the average

coordinates of all the cluster members. The representative conformer for a

cluster is chosen as the conformation closest to the centroid. If the homo-

geneity requirement for the current cluster is fulfilled, the choice of the

representative conformer is not expected to be critical.

Fig. 2. The dialog box of AClAP.
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2.3 Cutting rule

Once the dendrogram is formed, the crucial decision is to fix the level of

clustering more suitable to represent the conformational space of interest. As

it is natural for a hierarchical agglomerative approach, a tradeoff must be

found between the overall number of clusters and the diversity among the

conformations that belong to each cluster. AClAP adopts the KGS penalty

function. The method is thoroughly described in the paper by Kelley et al.

(1997) and here summarized and discussed (see Results and Discussion for

further details).

An average spread value is calculated for each clustering level of the

dendrogram, for simplicity of representation, it is numbered with respect to

the number of clusters of the level:

AvSw ¼ 1

w

Xw
M¼1

SM‚ ð4Þ

where w is the number of clusters at a fixed clustering level and SM is the

spread of the M-th cluster, defined as follows:

SM ¼ 2

xMðxM � 1Þ
XxM

m¼1

XxM

q¼mþ1

dm‚q: ð5Þ

When all average spread values are collected, they need to be normalized so

that they lie between 1 and n�1. The penalty Pw is therefore calculated as:

Pw ¼
ðn � 2Þ½AvSw � minv2f1‚ ... ‚ng ðAvSvÞ�

Maxv2f1‚ ... ‚ngðAvSvÞ � minv2f1‚ ... ‚ng ðAvSvÞ
þ wþ 1: ð6Þ

As expected, this penalty function is a balance between the cardinality of

the level and the intra-cluster mean distance. The minimum value of the

KGS function can be chosen as an autonomous way (as opposite to a user

driven way) to prune the dendrogram. AClAP also provides a detailed

description of all local minima occurring before the global minimum is

reached; this allows the user to adopt other cutting levels, in the search

of more homogeneous clusters.

2.4 Cluster significance

The Chauvenet criterion is often used to determine whether the population

of a cluster is statistically significant. According to it, a cluster is signifi-

cantly populated if its cardinality is more than twice the standard deviation

apart from the average population value for that level of clustering. Our

rationale for the use of this criterion is to assess whether or not there is

evidence that significantly populated clusters deserve particular attention in

the conformational analysis and docking contexts.

3 RESULTS AND DISCUSSION

AClAP resulted both in an innovative protocol to autonomously

partition conformational datasets, and in a program that accom-

plishes it in a negligible computational time as compared to that

needed to generate the dataset itself. On an Intel PentiumIV

(2.4 GHz) processor with 512 MB of RAM, AClAP performed

CA over 520 conformations of the drug Fexofenadine in

260 sec. In Figure 3, an example of a typical AClAP report is

shown. The program provides the overall number of clusters and

how many of them are non singleton. For each cluster, the centroid

and the representative conformation, as above defined, are calcu-

lated. If a reference conformation, such as a crystallographic pose, is

available, AClAP allows a comparison of all the representative

poses with it (on an RMSD basis).

3.1 KGS penalty function

With standard options, AClAP uses the global minimum of the

penalty function as a cutting criterion of the dendrogram. It is

interesting to comment about the behavior of this function and

about the information it provides. We observe that the function P

is the sum of two terms: there is a constant slope term that accounts

for the increase of the number of clusters and a term that is pro-

portional to AvSw. One property that would be of interest for the

penalty function is a unique minimum. This property would be

guaranteed if the average spreads were monotonically decreasing

and concave functions. To this aim, let’s consider a single step

increment of the average spread, which can be reformulated in

the following way:

ð7Þ

Here, we called A and B the clusters merged at the current clus-

tering step. One can see that the increment is given by the sum of four

terms, the first one is always negative, but supposedly small, and is

related to the average spread of the clusters non involved in the

current step. The second one, again negative, is the average spread

given by the inter-cluster (A and B) conformations. Third and fourth

terms have no fixed sign but it can be assumed that most of the times

they are positive. Given the way the clustering algorithm works,

monotonicity and concavity would be implied by a second term

being always prevalent over the last two. In general, this is not

true. But we gain an interpretation clue from this: any time we

see a definite decreasing behavior of the penalty function; it

Fig. 3. Excerpt from an AClAP report. Columns refer to: cluster number,

cardinality and representative conformation; the distance from this latter to

the centroid; the RMSD from a reference conformation and whether the

cluster is significantly populated.
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means that the clustering process has merged two clusters that were

well separated. In other words, if one is very much concerned about

intra-cluster homogeneity, one has to stop the clustering process at

the first pronounced local minimum (which is the rightmost in the

plot versus w). Going further on means privileging synthetic rep-

resentation with respect to intra-cluster homogeneity (see Figures 4a

and 6a as typical examples of the KGS behavior).

In what follows, we report the observations we were able to

make on the conformational space sampling made both by

Metropolis Monte Carlo simulations, and by four docking tools,

pointing out how and where they could benefit from the new clus-

tering method.

3.2 Monte Carlo conformational analysis

Metropolis Monte Carlo method (T ¼ 300 K) as implemented in

the MacroModel software package was used to perform a confor-

mational analysis on ten marketed drugs. We approximately could

split them in conformationally ‘‘easy’’ and ‘‘hard’’ ones: drugs with

up to seven rotatable bonds for which Monte Carlo search provi-

ded less than 150 conformers were assigned to the ‘‘easy’’ set,

whereas the others (with up to 10 rotatable bonds and more than

150 conformers) were defined as ‘‘hard’’ compounds.

In the following, we compare the clustering outcomes of

AClAP to those of X-cluster (Shenkin and McDonald, 1994),

a commonly used clustering procedure implemented in the

MacroModel software package. X-cluster is a hierarchical agglom-

erative clustering method that adopts the single linkage rule. It

provides the user with the Minimum Separation Ratio (MSR),

which is a function aimed at suggesting a clustering level where

all the clusters are well separated. If the MSR is less than 1,

the partitioning is expected to be poor. In contrast, an MSR

value greater or equal to 2 is an indication of a good partitioning.

The final choice of the clustering level is however left to the user.

Preliminarily to our comparison, we adopted the Corrected

Rand Index (Hubert and Arabie, 1985) in order to evaluate the

similarity of their results. This index is a common measure of

the difference between partitionings of the same data set, and it

ranges between 0, indicating a strong divergence, and 1, indicating

partitioning coincidence.

For the conformationally ‘‘easy’’ drugs of the series, Prazosin,

Amsacrine, Citalopram, Mizolastine, Fentanyl, and Pimozide,

AClAP was able to indicate a functional partitioning, while

X-cluster had success in 5 out of 6 cases. AClAP decided for the

best clustering level according to the minimum of the KGS penalty

function. In Table 1, overall results of AClAP are reported, while

Figure 4 shows the AClAP (Figure 4a) and X-cluster (Figure 4b)

outcomes applied to the 121 conformers of Pimozide, taken as a

representative example for the set of ‘‘easy’’ drugs. Figure 4b

clearly indicates that, in the reported example, MSR was able to

point to a plausible partitioning.

Partitioning obtained by X-cluster applied to conformationally

‘‘easy’’ drugs is summarized in Table 2. In particular, for

Prazosin, Citalopram, and Pimozide, the MSR values pointed uni-

vocally to a cutting level for the hierarchical tree. The partitionings

strongly agree with those obtained by AClAP, the Corrected Rand

Index values being 0.74, 0.79, and 0.79, for the three molecules,

respectively (see the last column of Table 2). Conversely, for

Fentanyl, the MSR value provided no clear indication of a cutting

level. The H� value for Fentanyl provided by AClAP was 0.53 (see

Fig. 4. Cutting rule indicators as implemented in AClAP and X-cluster, they

are applied to a member of the ‘‘easy’’ drug set: Pimozide (121 conformers).

a) The KGS penalty function is plotted vs. the overall cluster number. Stan-

dardly, AClAP adopts the minimum of the KGS penalty function as cutting

level. b) The MSR value is plotted vs. the overall number of clusters. X-cluster

uses the MSR as an indication of different cutting levels. The complete set of

clustering results is available as Supplementary Information. These plots

show that both algorithms point at a well-defined partitioning.

Table 1. AClAP results for the drug conformations generated via Monte

Carlo simulations. For Fentanyl, H� was 0.53 indicating that CA was not

justified. This rule holds more strictly when docking simulations are con-

cerned, whereas drug conformers might still benefit from a CA. Rot. stands

for rotatable, NS for NonSingleton and Sign. for significantly populated

according to the Chauvenet criterion.

Drug # confs Rot.

bonds

Max

RMSD

H� # clusters NS

clusters

Sign.

clusters

Conformationally ‘‘easy’’ drugs

Prazosin 24 4 3.24 0.83 5 5 1

Amsacrine 33 5 5.20 0.67 12 11 0

Citalopram 37 4 2.80 0.80 19 14 2

Mizolastine 47 5 4.10 0.65 14 13 0

Fentanyl 49 7 4.26 0.53 12 9 0

Pimozide 121 7 7.30 0.62 39 29 1

Conformationally ‘‘hard’’ drugs

Astemizole 235 8 6.44 0.63 24 24 0

Bepridil 285 9 5.90 0.80 40 35 2

Dofetilide 414 10 10.86 0.77 44 30 3

Fexofenadine 520 9 8.59 0.84 74 58 4

Astemizole 235 8 6.44 0.63 24 24 0
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Table 1), suggesting that conformations did not display a natural

tendency to aggregate into groups. It should be mentioned that,

when H� is less than 0.6, unlike structure-based drug design, ligand-

based drug design might still benefit from CA applied to drug

conformers. Consistently, AClAP applied on Fentanyl provided a

quite good partitioning, as reported in Table 1. In the case of another

‘‘easy’’ drug, Amsacrine, a significant MSR value led to a partition

with only two clusters. Conversely, the partition provided by

AClAP afforded 12 clusters. The Corrected Rand Index was

as low as 0.03, indicating that the two partitionings were markedly

different (see Figures 5a and 5b). As it can be seen in Figure 5b,

the internal homogeneity of the partitioning provided by X-cluster

was rather poor. One possible reason could be the chaining

effect induced by the single linkage rule. Finally, in the analysis

of Mizolastine, two clustering levels worthy to be selected

were identified, showing MSR values of 2 and 1.93, respectively

(Mizolastine 1 and Mizolastine 2 in Table 2). The clustering of

Mizolastine 1 (MSR ¼ 2) corresponded to a partition with only

two clusters, lacking internal homogeneity and displaying an evi-

dent chaining effect (data not shown). The second partitioning

(Mizolastine 2, 18 clusters, 14 nonsingletons) provided more homo-

genous clusters and a strong agreement with the partition obtained

by AClAP (Corrected Rand Index ¼ 0.90).

When processing the conformationally ‘‘hard’’ drug set (com-

posed by Astemizole, Bepridil, Dofetilide, and Fexofenadine),

whose conformers were generated via Metropolis Monte Carlo

simulations, X-cluster did not provide any clue about the cutting

level for the conformations, demonstrating that a protocol based

on the single linkage rule in combination with MSR fails when

dealing with conformationally complex molecules. In Figure 6,

as an example, the 520 conformers of Fexofenadine treated with

AClAP (Figure 6a) and X-cluster (Figure 6b) are shown. As

reported in Table 1, in these cases H� test showed a natural grouping

tendency, and AClAP, a protocol based on the average linkage rule

in combination with the KGS penalty function was actually able to

univocally provide a good partitioning for all the drug conformers

(see Figure 6a and Table 1). We can conclude that, for the drugs here

investigated, AClAP definitely outperformed X-cluster.

3.3 Docking simulations

We studied the conformational sampling done by four among the

most widespread docking programs, namely, Dock, AutoDock,

GOLD, and FlexX, together with the action of our clustering

protocol over their output. We ran the programs over a set of

16 crystallographic complexes belonging to the following protein

families: kinases, hormone receptors, and proteases (both serine and

aspartic proteases). As a figure of merit, we took the RMSD of the

generated poses from the crystallographic one. For a detailed

description of docking simulations and comparative analysis the

reader is referred to the work of Bottegoni et al. (Bottegoni,

et al., 2006). In what follows, we summarize some conclusions

we drew from that experience. The present comments encompass

only 15 cases, since one of the original ones (Propidium

co-crystallized with AChE, PDB code 1N5R) has been demon-

strated to bind to the surface of its biological counterpart in at

least two different modes (Bourne, et al., 2003; Cavalli, et al.,
2004).

About conformational sampling, and having defined a ‘‘good’’

pose as the one which is less than 2.5 s far away (in terms of RMSD

Table 2. X-cluster results for 5 ‘‘easy’’ drugs, whose conformations were

generated via Monte Carlo simulations. X-cluster did not provide any sig-

nificant cutting point for Fentanyl.

Drug #

conformers

MSR #

clusters

NS

Cluster

Corrected

Rand

Index

Prazosin 24 1.90 4 4 0.74

Amsacrine 33 4.42 2 2 0.03

Citalopram 37 19.40 21 16 0.79

Mizolastine 1 47 2.00 2 2 0.15

Mizolastine 2 47 1.93 18 14 0.90

Pimozide 121 2.58 47 33 0.79

Fig. 5. The partitioning of 33 conformers of Amsacrine. a) The partitioning

provided by AClAP. A protocol based on the average linkage rule and the

KGS cutting function generated 12 groups bearing high intra-cluster homo-

geneity. b) The partitioning provided by X-cluster. A protocol based on the

single linkage rule and a user-dependent cutting function generated 2 groups

bearing scarce intra-cluster homogeneity.

ACIAP, Autonomous hierarchical agglomerative Cluster Analysis

e63

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/22/14/e58/227921
by guest
on 29 July 2018



between nonhydrogen atoms) from the crystallographic one, we can

comment as follows:

� at least one among the docking tools was always able to generate

a pose sufficiently close to the experimental one, being of 89%

the average success rate among docking programs; in particular,

AutoDock and GOLD were always able to provide at least one

‘‘good’’ pose, whereas Dock and FlexX had a success rate

of 80% and 73%, respectively;

� however, in terms of conformational sampling, no docking

tool significantly outperformed the others, with a chi-square

value of 0.67, corresponding to a 88% of probability that fluc-

tuations in the results are random.

Comments about clustering features, shown in more detail

in Table 3, follow:

� the best pose was found within a singleton cluster with a very

low frequency, ranging from 0.2% to 0.7%;

� when a single docking tool was used, the assertion that ‘‘good’’

poses are to be found only, or mainly, in the most populated

clusters did not find any clear evidence;

� when a ‘‘holistic’’ approach was adopted, i.e., the clustering

was performed over the poses generated by all of the

docking tools, the probability of finding at least one ‘‘good’’

pose among the representative conformations of the most

populated clusters, whose number was always between 1 and

3, reached roughly 93%;

� in the holistic approach, as compared with the single tool

approach, the presence of ‘‘good’’ poses decreases in

scarcely populated clusters in favor of very highly populated

ones.

A comment is due about the performance of AClAP in the so-

called holistic approach. No scoring process was used to support the

provided results. Nevertheless, their performance can be compared

to that of the widely used consensus scoring method, which well

overcomes the main limitation of scoring functions. Indeed, also in

our investigation, the scoring functions sometimes failed to rank

correctly the best poses: roughly in the 50% of the cases. We found

of particular interest the data shown in the last two columns of

Table 3: they indicate that, at least for the molecules we examined,

there is a high chance to find a ‘‘good’’ pose among the represen-

tative conformations of the most populated clusters. According to

our arrangement procedure in bins, and similarly to what obtained

with the Chauvenet criterion, those conformations are usually less

than two. This procedure seems to point at a few, but still very

promising, candidates that can be successively examined with

more accurate tools, providing a really remarkable dimensionality

reduction.

4 CONCLUSIONS

In this paper, we have described a new clustering protocol as well

as its implementation in a MATLAB program. The new software,

named AClAP, turned out to be well suited to cluster both con-

formations generated via Metropolis Monte Carlo simulations of

drugs, and poses obtained by reiterated docking runs. In a consistent

fashion, AClAP prompts the user to assess the clusterability of a

conformational dataset by means of what we named the H� test. The

subsequent step is a hierarchical agglomerative cluster analysis

based on the average linkage rule. The choice of this rule with

respect to others was already discussed elsewhere (Bottegoni,

et al., 2006), and here reinforced. Once the hierarchical tree is

built, an autonomous method to prune it is needed to define the

best clustering level. Here, we have shown that the KGS penalty

function is an unbiased approach very well suited to achieve that

goal. AClAP outperforms standard CA-based protocols as they are

implemented in the most commonly used docking programs. In

this context, the AClAP method manages to greatly reduce con-

formational space dimensionality, proving to be fruitful, for

instance, for the successive application of computationally intensive

energy estimation techniques to be applied to cluster representa-

tives. On top of it, in what we called the holistic approach, AClAP

allowed us to identify some one among the closest poses to the

experimental one, and placed it within a statistically significant

cluster with a very promising hit rate. Finally, when applied to

the output of Metropolis Monte Carlo searches, AClAP proved

to be more robust than the long-time exploited and commonly

used X-cluster routine. Encouraged by the present results, we pro-

pose AClAP as a new and user-friendly tool to help molecular

modelers facing issues related to both ligand- and target-based

drug design. Our efforts are currently devoted to extend the appli-

Fig. 6. The cutting rule as implemented in AClAP and X-cluster. As an

example of complex, ‘‘hard’’, compound, the CA was performed over

520 conformers of Fexofenadine. a) The KGS penalty function is plotted

vs. the overall number of clusters. Standardly, AClAP adopts the minimum of

the KGS penalty function as cutting level. b) The MSR value is plotted vs. the

overall number of clusters. X-cluster uses the MSR as an indication of pos-

sible cutting levels. These plots show that only the KGS score was able to

point at a well-defined partitioning. The complete set of clustering results is

available as Supplementary Information.
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cability of this approach to rationalize the outcomes of protein-

protein docking.
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Table 3. Distribution of ‘‘good’’ poses with respect to relative cluster cardinality. For each docked molecule, at the clustering level chosen by AClAP, the

clusters are classified in five bins (A to E) according to their cardinality, in ascending order. Then, for each molecule, the relative frequency of the ‘‘good’’ poses,

i.e., those with an RMSD < 2.5 s from the crystallographic one, is calculated. The derived frequencies, at fixed docking program, are then averaged over

the different molecules. In the last row, the outcome of the holistic approach is reported. In parentheses, the bin population with respect to the total cluster

number is shown. As one can see, the ‘‘good’’ poses tend to be distributed among very highly and very scarcely populated clusters, with a prevalence of the

formers. The holistic approach seems to make this prevalence maximally marked.

Class A

(least

populated

clusters) %

Class B % Class C % Class D % Class E

(most

populated

clusters) %

Good poses

in singleton

clusters %

Frequency of

at least one ‘‘good’’

pose in a signif.

populated cluster %.

Frequency that

at least one

representative

pose of a cluster

in E bin is

‘‘good’’ %

Average number

of clusters

in E bin

AutoDock 12.6 (86.6) 9.0 ( 5.7) 6.4 (1.6) 7.6 (1.5) 64.4 ( 4.6) 0.3 80.0 80.0 1.1

FlexX � 33.0 (72.0) 23.8 (14.1) 5.5 (6.2) 0.8 (2.2) 36.9 ( 5.5) 0.2 33.3 40.0 1.3

Dock � 31.2 (83.4) 10.8 ( 4.4) 5.9 (1.1) 2.2 (1.0) 49.9 (10.1) 0.7 53.3 50.0 1.1

GOLD 14.9 (76.1) 7.3 ( 7.1) 18.3 (5.0) 1.8 (0.2) 57.7 (11.6) 0.5 40.0 78.6 1.2

Average 22.9 (79.5) 12.7 ( 7.8) 9.0 (3.5) 3.1 (1.2) 52.2 ( 8.0) 0.4 51.7 62.1 1.2

Holistic 14.3 (94.3) 6.8 (2.3) 11.1 (1.2) 2.3 (0.4) 65.5 ( 1.8) 0.2 100.0 93.3 1.1

�In one case, these programs weren’t able to find any pose closer than 2.5 s to the crystallographic one.
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