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Abstract
Motivation: New in silico tools to predict biological affinities for input structures are presented. The tools 
are implemented in the DRUDIT (DRUgs DIscovery Tools) web service. The DRUDIT biological finder 
module is based on molecular descriptors that are calculated by the MOLDESTO (MOLecular 
DEScriptors TOol) software module developed by the same authors, which is able to calculate more than 
one thousand molecular descriptors. At this stage, DRUDIT includes 250 biological targets, but new 
external targets can be added. This feature extends the application scope of DRUDIT to several fields. 
Moreover, two more functions are implemented: the Multi-Target and On/Off-Target tasks. These tools 
applied to input structures allow for predicting the polypharmacology and evaluating the collateral 
effects. 
Results: The applications described in the paper show that DRUDIT is able to predict a single biological 
target, to identify similarities among biological targets, and to discriminate different target isoforms. The 
main advantages of DRUDIT for the scientific community lie in its ease of use by worldwide scientists 
and the possibility to be used also without specific, and often expensive, hardware and software. In fact, it 
is fully accessible through the WWW from any device to perform calculations. Just a click or a tap can 
start tasks to predict biological properties for new compounds or repurpose drugs, lead compounds, or 
unsuccessful compounds. To date, DRUDIT is supported by 4 servers each able to execute 8 jobs 
simultaneously.
Availability: The web service is accessible at the www.drudit.com URL and its use is free of charge.
Contact: antonino.lauria@unipa.it 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
In the last decades the in silico approach to design and optimization of 

lead compounds, such as a new drugs, and even for repurposing old 
drugs (i.e., repositioning) or unsuccessful lead compounds, has attracted 
the interest of the scientific community.

Even if this approach has been adopted in a wide number of medicinal 
chemistry studies and it is rather consolidated, to date the robustness of 
in silico methods is still a crucial issue. The high complexity of both the 

intracellular and the extracellular environment in animal tissues requires 
that multiple parameters and their interaction be considered. These are 
the minimum conditions to predict biological activity with acceptable 
reliability. In previous studies we devised different in silico protocols to 
predict the biological properties of several molecules. There are different 
methods reported in literature that propose tools based on descriptors of 
biological targets (González-Díaz,H. et al., 2011), or that encode the 
experimental conditions in transformed molecular descriptors, or even 
that mixed ligand and target information into new descriptors (Ferreira 
da Costa, J. et al., 2018). Our approaches are based only on molecular 
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descriptors of ligands, without using descriptors based on the 
experimental conditions. This allows to perform analysis with no request 
of experimental data and to run calculations efficiently. Among them, in 
2011, the Virtual Lock and Key (VLAK) protocol was proposed as a 
theoretical method to foresee the biological target of input molecules 
exploiting the in silico adaption of the well-known Fisher model (Lauria 
et al., 2011). In that protocol, molecular descriptors were used to 
building a template simulating a biological-target “lock”. A subsequent 
matching between molecular structures and the virtual biological locks 
gave an account of their binding properties. 

The above-mentioned chemoinformatic means are ligand-based types 
and, for this reason, they considerably reduce the computation time with 
respect to structure-based studies or the cases in which it is necessary to 
analyze a huge number of structures. 

The protocols that can be applied, through this approach, span from 
the simple and traditional in silico screening on single target to the more 
sophisticate and fashionable on-target/off-target and multitarget 
approaches (Lauria et al., 2016). These methods are developed in the 
present work through the Biotarget Predictor Module, implemented in 
the new DRUDIT (DRUg DIscovery Tools, https://www.drudit.com) 

web service. The main features of DRUDIT are its ease of use, 
accessibility to researchers worldwide (by personal computers, tablets, or 
smartphones) and the possibility to perform in silico biological 
evaluations by common personal devices (e.g., personal computers, 
tablets, or smartphones) instead of expensive hardware and software. 
The motto that can be found in the web home page is “just a click or a 
touch and we make your compound a lead compound”. The proposed 
tools are based on molecular descriptors and represent the evolution of 
the previous methods (Lauria et al., 2011, Lauria et al., 2014) with online 
availability. The MOLecular DEScriptor TOol (MOLDESTO) that we 
implemented in DRUDIT is able to calculate more than one thousand 
molecular descriptors (Supplementary material, S1).

2 Methods
This section describes the Biotarget Predictor Module, as currently 
available in DRUDIT (the user manual is available on the DRUDIT 
login page, https://www.drudit.com). The tool is meant to predict the 
biological affinity of the given input structure Xi against the biological 
target Ti. Prediction is carried out following the steps depicted in Figure 
1.

Fig. 1. Flowchart of the Biotarget Predictor Module as available in DRUDIT.

The set of known biological target modulators is processed by 
MOLDESTO to build the biological target template. The full set of 
molecular descriptors is calculated, and then from the output matrix 
(modulators versus molecular descriptors) mean (i) and standard 
deviation (i) values for each molecular descriptor are computed. 

The pair of values i and i defines the biological target template Di 
(Figure 1). Independently, the input structures are submitted to 
MOLDESTO to calculate the full set of molecular descriptors. The 
molecular descriptors sequence is matched to the template of the 
biological target as reported below.
The DRUDIT Affinity Score (DAS) of the input structures versus the 
biological targets is then computed according to the choices for the three 
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input parameters N, Z, and G which, respectively, control the number of 
dynamically selected molecular descriptors (N), the maximum allowed 
percentage of unavailable values (zeros) per molecular descriptor (Z), 
and the Gaussian smoothing function (G).
In details, N captures the relevance of each molecular descriptor Di to 
the biological target set. The weight is assigned by considering if the 
descriptor value for a structure, belonging to the biological target set, is 
in the range  ± . In this case the assigned score is 1, 
otherwise is 0. The normalized value of the scores for all the structures 
gives a measure of the importance of the molecular descriptor Di for the 

biological target template. Then, the molecular descriptors Di are ranked 
and the top scored N are considered. Each molecular descriptor Di is 
considered only if available and if the percentage of zero values in its 
evaluation for all the structures of the target is above Z.
The G parameter defines the Gaussian approximation used to score the 
descriptor values. The matching of the molecular descriptor value Di of 
the input structure Xi with the range centered on i(Di) can be chosen as 
“large” (G=a), “medium” (G=b), and “small” (G=c). The assigned 
scores to parameter G are reported in Figure 2.

Fig. 2. Score assignation for G parameter.

The DRUDIT Affinity Score (DAS) is finally assigned by weighting the 
scores (the sum of all values divided by the number of molecular 

descriptors) assigned by the chosen G function only for the molecular 
descriptor selected according to the Z and N parameters (Figure 3).

Fig. 3. Example of DRUDIT Affinity Score (DAS) calculation on a template of 5 molecular descriptors, previously filtered according to the Z and N 
parameters.

The DRUDIT parameters are crucial to address the biological target 
selectivity. In fact, two different actions can be carried out by adjusting 
N and Z, and choosing G. The first one consists in guiding the search in 
the entire biological targets database to obtain broad-spectrum results for 
the input structures. The second one is DRUDIT parameters 
optimization for specific sets of biological targets. The latter action is 
useful when either multi-target or on/off-targets processing is performed 
as explained below.

2.1 Implementation and validation of Biotarget 
Predictor Tools

Currently, the tools include the 250 biological targets (supplementary 
material, S2) that were used to validate the protocol. The structures of 
the modulators for the selected biological targets were downloaded from 
BindingDB (Liu et al. 2007) and filtered as described in the Materials 
and Methods section.

2.2.1 Cross-validation and biological target similarity 
identification

In order to validate the Biotarget Predictor Tools and to search the 
ligand-based biological targets similarity, all the sets of modulators for 
the included biological targets (supplementary material, S3) were 
submitted to the DRUDIT Biotarget Predictor tool to find the average 
DAS for each of them. To optimize the search, all the biological targets 
modulators were calculated by setting the parameters (N, Z, and G) as 
reported in Table 1.

Table 1. Number of biological targets properly assigned by varying 
DRUDIT parameters (N, Z, and G).

G

Z N a b c

50 200 125 120 70
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500 133 121 88

800 99 111 80

200 113 99 65

500 115 119 75100

800 93 95 74

The resulting 18 matrices reported the average DAS values for all the 
biological targets versus the biological target templates. The average 
DAS calculated for each biological target template was considered for 
each set of DRUDIT parameters. The selection was carried out by 
identifying the set of DRUDIT parameters for which the number of 
correctly assigned biological targets was higher (Table 1, Z=50, N=500, 
G=a).

Analyzing the final matrix of the results obtained with the selected 
DRUDIT parameters (Z=50, N=500, G=a), it was possible, besides 
checking the consistency of DRUDIT in assigning the right biological 
target, to correlate biological targets showing higher similarity. For 
example, from the full matrix (supplementary material, S4) it emerged 
that cross-validation gave the best or the highest scores, in almost all the 
cases, along the diagonal (as expected). A few cases showed that specific 
biological targets are strictly related (for example in supplementary 
material – S4: Ribosomal protein S6 kinase alpha-2, Stearoyl-CoA 
desaturase-1, Tyrosine-protein kinase BTK). This aspect can be 

successfully used in polypharmacology evaluations2 especially when 
these biological targets play in the same cascade/pathways.

It is thus evident that when the cross-averaged DAS differs 
significantly from the mean of all the DAS values of dynamically 
selected molecular descriptors, the biological target can be selectively 
modulated (for example in supplementary material, S4: Cytochrome 
P450 2A6, Hepatitis C virus non-structural 3/4A protein, Carbonic 
Anhydrase II, Metabotropic Glutamate Receptor 5). This gives only an 
account on the features and capabilities of DRUDIT that can be used to 
analyze large amounts of data producing output that can be further 
analyzed by structure- based methods, although, as shown below, these 
not always give the best results.

2.1.2 Validation through external data
A set of 63 known drugs (supplementary material, S5) was submitted 

to the DRUDIT Biological Affinity Tools. The output results are in quite 
good agreement with their known biological activities. The DRUDIT 
parameters were assessed as reported above. The selected drugs are 
known to be modulators of Adenosine Receptors, Aromatase, 
Cannabinoid Receptors, CDKs, Dopamine Receptors, EGFRs, Estrogen 
Receptor, GSK-3, HDACs, p38-MAPK, PI3K, and TGF-beta. The 
optimization of the parameters was thus focused on such biological 
targets. The results are reported in Table 1.

Table 2. DAS calculation on a set of known drugs.

Biological target Modulator DAS
averaged 

DAS
Biological target Modulator DAS

averaged 
DAS

Adenosine 
Receptors

Istradefylline 0.94 0.94 Estrogen Receptors 4-Hydroxytamoxifen 0.995 0.94

Reversine 0.945 Diethylstilbestrol 0.975

SCH58261 0.92 Equol 0.895

Aromatase Aminoglutethimide 0.88 0.90 Estradiol valerate 0.87

Anastrozole 0.87 Estriol 0.915

Letrozole 0.96 Hexestrol 0.975
Cannabinoid 

Receptors
AM251 0.675 0.72 GSK-3 BIO 0.785 0.85

BML-190 0.7 BIO-acetoxime 0.875

Rimonabant 0.775 SB-216763 0.88

CDKs AZD5438 0.815 0.82 HDACs LMK-235 0.93 0.90

BMS-265246 0.82 M344 0.89

ON123300 0.85 RG2833 0.935

PHA-767491 0.79 RGFP966 0.875

PHA-793887 0.795 Pracinostat 0.875

PHA-848125 0.8 Scriptaid 0.875

Ribociclib 0.915 Panobinostat 0.935

SU9516 0.785 p38-MAPK Losmapimod 0.865 0.84

AT7519 0.845 Skepinone-L 0.815
Dopamine 
Receptors

Azaperone 0.975 0.98 SB202190 0.9

Domperidone 0.965 VX-702 0.79
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Droperidol 0.995 PI3K A66 0.83 0.87

Haloperidol 0.985 AZD6482 0.91

Perphenazine 0.965 AZD8835 0.87

EGFRs AZD9291 0.965 0.94 GDC-0032 0.82

CL-387785 0.89 GNE-317 0.845

Erlotinib 0.9 HS-173 0.88

Gefitinib 0.98 Idelalisib 0.905

Icotinib 0.91 YM201636 0.86

PD168393 0.88 TGF-beta Galunisertib 0.92 0.91

Varlitinib 0.94 GW788388 0.915

WZ3146 0.995 SB-505124 0.9

WZ8040 0.985

The results show a robust prediction capability of the protocol. In 
particular, the best performance is obtained for the modulators of 
Adenosine Receptors, Dopamine Receptors, EGFRs, and Estrogen-
progestogen-Receptors, with DAS scores in the range 0.94-0.98. On the 
other hand, the worst results showed DAS values below the threshold of 
0.8. This is the case of cannabinoid receptor ligands, showing an 
averaged DAS of 0.72. The success of the method, as above underlined, 
is strictly dependent on both the quality of the selected dataset and the 
selection of DRUDIT parameters. Thus, in this case, the results can be 
improved by acting on the modulators that were used in building the 
target template, or by working only on a specific target with a more 
focused choice of the input parameters to DRUDIT.

2.2 Multi-Target and On-Target/Off-Targets evaluators
The MultiTarget-Directed Ligand (MTDL) strategy is based on the 

concept that a single molecular entity can be designed to hit multiple 
targets that cooperate in the network of the disease. This paradigm has 
been the focus of increasing research over the last decade (Morphy and 
Rankovic 2009, Rampa et al. 2011, Leòn et al. 2013). On the other hand, 
it was estimated that each existing drug binds, on average, to 6.3 
biological targets (Mestres et al. 2008). Identification of the off-targets 
will provide the molecular basis for a new kind of therapies, but it can 
also lead to better understanding of potential drug side-effects. 
Moreover, it can suggest drug repurposing in the treatment of different 
conditions with respect to those originally intended, leading to possible 
consideration of the studied structures in a polypharmacological drug 
design environment (Martorana et al. 2016).

Additionally, DRUDIT can be used to perform predictions focused on 
multi-target and on/off-target strategies. By flagging the Multi-Target or 
the On/Off-Target button the user can select the biological targets to be 
included in the selected tool. The multi-target and on-target/off-targets 
evaluations assign the affinity score to each input structure through 
weighting functions (see DRUDIT user manual at 
https://www.drudit.com).

3 Results
3.1 Application of Multi-target and On/Off-target tools
DRUDIT Multi and On/Off target tools can be used also to address the 
issue of selectivity in order to investigate drug molecules able to 
discriminate two or more isoforms of several biological targets. To this 
aim we validated the DRUDIT Biological Target Affinity calculator 
against a set of known Non-Steroidal Anti-Inflammatory Drugs 
(NSAIDs).
NSAIDs are the most commonly used molecules for the treatment of 
several inflammatory diseases. The cyclooxygenase enzymes (COXs) are 
the main biological targets of NSAIDs. COXs catalyze the rate-limiting 
step in the production of the soluble inflammatory mediators, i.e. 
prostaglandins. The two isoforms, COX-1 and COX-2, encoded by two 
different genes, are structurally and functionally close, but they vary in 
their expression and distribution (Tazawa et al. 1994). COX-1, 
ubiquitously and constitutively expressed in mammalian tissues, 
including kidney, stomach, and vascular endothelium, is a housekeeping 
enzyme involved in physiological adaptation. In particular, its role in the 
vascular hemostasis and in maintaining the integrity of the 
gastrointestinal epithelium and the normal renal function is known. On 
the contrary, COX-2 isoform is expressed at very low levels in 
physiological conditions but is highly induced by pro-inflammatory 
stimuli. The different distribution and expression of the two COX 
isoforms suggests that a selective inhibition of the COX-2 isoform leads 
to the inhibition of inflammation without interfering with the COX-1 
dependent protective effects in the gastrointestinal tissue, kidney, and in 
blood coagulation (Zarghi and Arfaei 2011).
Within the DRUDIT Biotarget Affinity module, the templates of COX-1 
and COX-2 were built using the set of known modulators, as available in 
bindingDB (Liu et al. 2007). Then, the selected 16 known modulators of 
COX-1 and COX-2 (Figure 4) were submitted to calculation.
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Celecoxib Diclofenac Etodolac Etoricoxib

Fenoprofen Flurbiprofen Ibuprofen Ketoprofen

Ketorolac Meloxicam Nimesulide Piroxicam

Polmacoxib Rofecoxib Tolmetin Valdecoxib

Fig. 4. Selected COXs inhibitors.

Table 3 reports the in silico ligand-based evaluations produced by 
DRUDIT. In particular, calculations were performed using three 
approaches: On/Off-Target mode, where the On-target is COX-1 and 
Off-target is COX-2 (Column 1 in table 3); On/Off-Target mode, where 

the On-target is COX-2 and Off-target COX-1 (Column 2 in table 3); 
multi-target mode where the biological targets are COX-1 and COX-2. 
The scores give the affinity of each drug with respect to the 
combinations reported above (, high affinity/selectivity; , low 
affinity/selectivity). The COX-1/COX-2 column highlights COX-1 
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selectivity whereas the COX-2/COX-1 column the COX-2 selectivity. 
Higher values in the MM column are related to a lower selectivity for the 
analyzed drugs.

Table 3. On/Off Target and Multi-Target results.

Drug selectivity
COX-1/ 
COX-2

COX-2/ 
COX-1

MM

Flurbiprofen COX-1 1.80 0.56 0.36
Tolmetin COX-1 1.70 0.59 0.30
Ketorolac COX-1 1.70 0.59 0.29
Ketoprofen low 1.62 0.62 0.33
Fenoprofen low 1.70 0.59 0.32
Diclofenac COX-1 1.66 0.60 0.18
Ibuprofen low 1.36 0.74 -0.16
Nimesulide low 1.22 0.82 -0.07
Etodolac low 1.10 0.91 -0.25
Piroxicam COX-2 1.01 0.99 -0.23
Valdecoxib low 1.06 0.94 -0.07
Rofecoxib COX-2 0.93 1.07 -0.17
Meloxicam COX-2 0.93 1.07 -0.33
Etoricoxib COX-2 0.66 1.51 -0.37
Polmacoxib COX-2 0.66 1.51 -0.44
Celecoxib COX-2 0.56 1.79 -0.52
 score higher than 70%;  score in the 30-70% range;  score lower 
than 30%.

The analysis of the scores produced by DRUDIT is widely in agreement 
with clinical experimental data reported in the literature for the NSAIDs 
(Al-Hourani et al. 2011). The higher on/off scores clearly confirmed the 
affinity of the selected drugs with their own COX isoform. The well-
known COX-2 inhibitors, such as Celecoxib, Polmacoxib, and 
Etoricoxib, are the top scored in COX-2/COX-1 column (1.79, 1.51, and 
1.50 respectively). Also in the cases of the COX-1 drugs Ketorolac, 
Tolmetin, and Flurbiprofen the results reported in the COX-1/COX-2 
column (1.7, 1.7, and 1.8 respectively) are in good agreement with the 
experimental data. 
Moreover, for such drugs, these results are further confirmed by the low 
scores in the MM column. In the case of the non-selective drugs 
Nimesulide and Ibuprofen, the tool was able to successfully predict their 

expected affinity. These results proved the ability of DRUDIT in 
identifying the selective behavior of a set of known or unknown 
molecular structures against a panel of several target isoforms. 
With the aim to compare the DRUDIT Biotarget predictor results with 
those arising from classical structure-based methods in predicting 
selectivity of NSAIDs, the drugs (Figure 4) were processed by Induced 
Fit Docking (IFD). In particular, PDB-IDs 5GMM and 5GMN (Kim et 
al. 2016) were selected, from Protein Data Bank (RCSB Protein Data 
Bank, https://www.rcsb.org/), as 3D structures of COX-1 and COX-2 
isoforms respectively, and were submitted to the IFD protocol as 
described in the Experimental Section. The IFD output results are 
reported in Table 4.

Table 4. Induced Fit Docking results.

Drug
DS

COX-1
DS

COX -2
IFD-Score

COX -1
IFD-Score

COX -2
Etoricoxib -8.06 -7.73 -505.8 -511.7
Valdecoxib -8.72 -9.09 -504.4 -510.3
Fenoprofen -8.22 -7.2 -503.8 -509.1
Tolmetin -8.21 -8.16 -503.2 -509
Piroxicam -7.65 -7.46 -501 -508.8
Nimesulide -7.77 -7.33 -503.4 -508.7
Etodolac -8.66 -8.07 -506 -508.6
Flurbiprofen -7.34 -8.64 -501.1 -507.9
Celecoxib -9.00 -8.04 -502.2 -507.9
Meloxicam -7.53 -6.68 -500.4 -507
Ketorolac -7.81 -7.23 -500.2 -507
Diclofenac -8.32 -7.99 -503.6 -506.9
Ketoprofen -8.55 -7.42 -501.4 -506.6
Rofecoxib -8.08 -6.57 -503.2 -506.4
Ibuprofen -7.67 -7.14 -501.6 -506.3
Polmacoxib -7.96 -8.44 -505.9 -501.8
 score higher than 70%;  score in the 30-70% range;  score lower 
than 30%.

IFD failed in predicting the appropriate isoforms for many structures. 
Only in the case of Etoricoxib (Figure 5, left) and Valdecoxib (Figure 4, 
right) the IFD scores are in agreement with experimental data.

Fig. 5. IFD poses of Etorixoxib (left) and Valdecoxib (right) in the COX-2 binding site.
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These results show that the molecular descriptors approach (DRUDIT), 
in this case of study, was able to identify the selectivity of NSAIDs 
better than the structure-based method (IFD). This can be attributed to 
the fact that the structure-based methods do not take into account 
multiple factors such as pharmacokinetics and pharmacodynamics that 
are notoriously not efficaciously evaluated. DRUDIT instead, relying on 
models built from drugs whose pharmacokinetics and 
pharmacodynamics processes are known, has the ability to overcome 
these issues.

3.2 External Biological Targets implementation
DRUDIT allows the implementation of new biological targets in local 
databases (see DRUDIT user manual, available on the DRUDIT login 
page, https://www.drudit.com). The application on HSP90 is here 
reported. In a previous work (Lauria et al. 2013) we proposed new 
amino-cyanopyridines 1a-k as modulator of HSP90 (Table 5). Thus, here 
we used DRUDIT to evaluate these structures by building a template 
with HSP90 known inhibitors, as available in BindingDB 
(Supplementary Material, S6). The amino-cyanopyridines submitted to 
the HSP90 template gave the results reported in Table 5. These results 
were obtained by setting DRUDIT parameters after the optimization 
process (N= 700; Z= 50; G=b, Supplementary Material, S7).

Table 5. DRUDIT results on amino-cyanopyridines 1 as modulator of 
HSP90.

1a-k
Cmd R1 R2 R3 R4 *Hsp90 binding

(EC50) (nM)
DAS

1a Cl H H H 950 ± 35 0.834
1b H H NMe2 H 371 ± 28 0.832
1c H F H H >104 0.722
1d OMe H H H 634 ± 22 0.844
1e H OMe OMe H 867 ± 27 0.81
1f H H OMe H 541 ± 29 0.848
1g H H OH H >104 0.786
1h OH OMe H H 252 ± 23 0.816
1i H OMe H H >104 0.798
1j H H NEt2 H 783 ± 19 0.824
1k Br H H H >104 0.752

The DRUDIT output is coherent with the experimental data. In fact, the 
most active derivatives are 1b, 1f, 1h, 1e, whereas the least active 
derivatives are 1c, 1g, and 1k. In general, the most active compounds fall 
in the range of the 90% top scores in the full biological targets results 
(Supplementary Material, S7).

4 CONCLUSIONS
DRUDIT implements a protocol as a combination of different algorithms 
working on biological targets databases. The robustness of the 
calculation is deeply related to the quality of the biological data used as a 
training set. The great advantage of the WEB service is its ease of use 
and World Wide Web, 24/7 availability. Every scientist, even with no 

molecular modeling background, can use it through a simple WEB 
browser without investing in demanding hardware and expensive 
software. The theoretical aspects that are focused on biological targets 
can be applied also to other fields. In fact, the “external biological target” 
could belong to any area (either biological or not) for which molecular 
structures are known to be the modulators. The applications reported in 
this work showed that DRUDIT is able not only to evaluate the affinity 
for the input structure against biological targets, but also to approach the 
polypharmacology (Multi-Target mode) and the opposite effects 
(On/Off-Target mode) aspects. Moreover, we demonstrated that the 
Biological Target module is able to predict similarities among biological 
targets. This, in turn, can support predicting the collateral effects or 
identify biological targets set useful in polypharmacology of candidate 
drugs.

5 MATERIALS AND METHODS
5.1 Hardware
The DRUDIT WEB service runs on 4 servers that are automatically 
selected according to the number of jobs and online availability. Each 
server can support up to 10 simultaneous jobs, while the exceeding jobs 
are placed in a queue. Software: DRUDIT consists in several software 
modules implemented in C and JAVA running on MacOS Mojave.
5.2 MOLDESTO:  a new MOLecular DEScriptors TOol
DRUDIT is based on molecular descriptors and represents the evolution 
of previous automated and on-line available tools (Lauria et al. 2011, 
Lauria et al. 2014). The MOLecular DEScriptor TOol (MOLDESTO) 
that we implemented in DRUDIT is a new tool currently able to deal 
with more than one thousand and four hundred molecular descriptors 
(Supplementary Material, S3).
MOLDESTO is able to read common molecules file formats, such as 
SMILES, SDF, Inchi, Mdl, Mol2, to optimize structures, and is provided 
with a caching system to boost the calculation speed of previously 
submitted structures. Input structures can be drawn in the web 
application or uploaded to the server as external files. In either case, 
structures are optimized by MOPAC before being processed by 
MOLDESTO.
5.3 Databases
Binding database (BindingDB): It focuses on Ki, Kd, IC50 and EC50 
values, related to a well-defined protein target. BindingDB contains 
1,142,124 binding data for 7,032 protein targets and 495,498 small 
molecules. In particular 2,291 protein-ligand crystal structures, with 
BindingDB affinity measurements for proteins with 100% sequence 
identity, and 5,816 crystal structures, matching proteins to 85% sequence 
identity, are included in the database. A large amount of these data 
derives from open databases as ChEMBL (Gaulton et al. 2012) and 
PubChem (Wang et al. 2009). DRUDIT includes 250 biological targets 
from BindingDB. Modulators for each target were selected by 
considering the IC50 cut-off of 0.1 M.
5.4 Induced fit docking
Induced fit docking simulation was performed using the IFD application 
as available (Sherman et al. 2006) in the Schrödinger software suite 
(Maestro, version 9.3, Schrödinger, LLC, New York, NY, 2012), which 
was demonstrated to be an accurate and robust method to account for 
both ligand and receptor flexibility (Zhong et al. 2009). The atomic co-
ordinates for the isoforms of COXs were downloaded from the Protein 
Data Bank (PDB id 5GMM and 5GMN, COX1 and COX2 isoforms 
respectively) and submitted to the Protein Preparation Wizard module in 
Schrödinger as follows: adding hydrogen, assigning partial charges 
(using the OPLS-2001 force field) and protonation states. All crystal 
waters were removed.
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The IFD protocol was carried out as follows (Wanga et al. 2008, Luo et 
al. 2013): the ligands were docked into the rigid receptor models with 
scaled-down van der Waals (vdW) radii. The Glide Standard Precision 
(SP) mode (Friesner et al. 2004) was used for the docking, and 20 ligand 
poses were retained for protein structural refinements. The docking 
boxes were defined to include all amino acid residues within the 
dimensions of 25 Å × 25 Å × 25 Å from the center of the original 
ligands; the induced-fit protein–ligand complexes were generated using 
the Prime software (Jacobson et al. 2004). The 20 structures from the 
previous step were submitted to side chain and backbone refinements. 
All residues with at least one atom located within 5.0 Å of each 
corresponding ligand pose were included in the refinement by Prime. All 
the poses generated were then hierarchically classified, refined and 
further minimized into the active site grid before being finally scored 
using the proprietary GlideScore function, defined as: GScore= 
0.065*vdW + 030*Coul + Lipo + Hbond + Metal + BuryP + RotB + 
Site, where: vdW is the van der Waals energy term, Coul is the Coulomb 
energy, Lipo is a Lipophilic contact term which rewards favorable 
hydrophobic interactions, Hbond is a H-bonding term, Metal is a metal-
binding term (where applicable), BuryP is a penalty term applied to 
buried polar groups, RotB is a penalty for freezing rotatable bonds and 
Site is a term used to describe favourable polar interactions in the active 
site.
Finally, IFD score (IFD score = 1.0 Glide_Gscore + 0.05 
Prime_Energy), which accounts for both protein–ligand interaction 
energy and total energy of the system, was calculated and used to rank 
the IFD poses. The more negative is the IFDscore, the more favorable is 
the binding.

SUPPLEMENTARY MATERIAL
S1, molecular descriptors list implemented in MOLDESTO; S2, selected 
biological targets; S3, modulators of the selected targets, in MOL format 
(due to file-size constraints not included as supplementary material files) 
can be downloaded at www.drudit.com/S3.zip; S4, full biological targets 
matrix results; S5, selected known drugs in MOL file format; S6, HSP90 
modulators in MOL file; S7, DAS output for amino-cyanopyridine 
derivatives.
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