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ABSTRACT

Motivation: The analysis of high-resolution proton nuclear magnetic
resonance (NMR) spectrometry can assist human experts to
implicate metabolites expressed by diseased biofluids. Here, we
explore an intermediate representation, between spectral trace and
classifier, able to furnish a communicative interface between expert
and machine. This representation permits equivalent, or better,
classification accuracies than either principal component analysis
(PCA) or multi-dimensional scaling (MDS). In the training phase, the
peaks in each trace are detected and clustered in order to compile
a common dictionary, which could be visualized and adjusted by an
expert. The dictionary is used to characterize each trace with a fixed-
length feature vector, termed Bag of Peaks, ready to be classified
with classical supervised methods.
Results: Our small-scale study, concerning Type I diabetes
in Sardinian children, provides a preliminary indication of the
effectiveness of the Bag of Peaks approach over standard PCA
and MDS. Consistently, higher classification accuracies are obtained
once a sufficient number of peaks (>10) are included in the dictionary.
A large-scale simulation of noisy spectra further confirms this
advantage. Finally, suggestions for metabolite-peak loci that may be
implicated in the disease are obtained by applying standard feature
selection techniques.
Availability: Matlab code to compute the Bag of Peaks
representation may be found at http://economia.uniss.it/docenti/
bicego/BagOfPeaks/BagOfPeaks.zip
Contact: gjb@crs4.it

1 INTRODUCTION
Distinguishing diseased from healthy subjects presents a recurrent
challenge in biomedical data analysis (Lindon et al., 2007), when
typically spectrometric samples are available via nuclear magnetic
resonance (NMR) or mass spectrometry (MS). By providing an
intermediate representation it may be possible to better assist the
expert’s interpretation of data produced by such devices. This article
applies this idea to data acquired by high-resolution proton NMR
spectrometry, proposing an intermediate representation based on
peaks.
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Grazie, 15 - 37134 Verona, Italy.
‡Present address: Vincenzo Migaleddu - Imaging s.rl. Viale Caprera n. 3/A,
07100 Sassari, Italy.

NMR spectrometry (Ernst et al., 1990) represents an useful tool
for clinical diagnosis and toxicology investigation, since it indicates
the metabolic composition of biofluids, such as blood plasma or
urine. The standard spectrometer produces a highly detailed single-
variable trace over a large range of ‘chemical shifts’, derived as
a digital transformation of the spectrum of radio-frequency free
induction decays (FIDs). Depending on the chemical environment
of their source nuclei different metabolic species result in different
peaks, or groups of peaks. Thus, hundreds of chemical compounds
may be revealed by a single act of measurement. Ideally, each peak
could be automatically identified with a single species, the area
under its curve computed and thus the relative concentration of
each species estimated. In practice, peaks often deviate from their
true spectral loci due to pH or ionic interactions, or due to minor
variations in the preparation or acquisition processes. Therefore,
simply locating peaks and looking up the corresponding metabolic
species may not be sufficient for the correct interpretation and
analysis of the data (even if commercial databases —e.g. Amix—
now model variations due to pH changes). In fact, the interpretation
may be confounded by non-pH effects, or by the fact that peaks
are of finite spread and may overlap. Low amplitude peaks may
be entirely lost, whilst more prominent metabolites can still be
extracted. Between those two extremes there is a ‘grey region’,
containing partially deformed and shifted peaks. The challenge is
therefore to assist the expert in their interpretation, in order to
analyse non-obvious metabolites yet not implicated in a particular
pathology, or toxin. Indeed, at any peak locus there may be many
plausible candidates, and distinguishing between them requires
expert knowledge of the biofluid.

2 SYSTEM AND METHODS

2.1 Automated approaches to assist the expert observer
Automated analyses generally assist the expert observer in two distinct
ways: (i) by transforming the data in order to visualize meaningful patterns
and (ii) by reducing the amount of the data that needs to be subsequently
examined. Although these are often combined as a single algorithmic process
it can be useful to consider their effectiveness individually. For example, for
visualization purposes it is effective to apply chemometric preprocessing
techniques in order to calibrate and normalize the signal. This may permit an
appropriate visual comparison of features across different NMR traces. On
the other hand, dimensionality reduction techniques—such as a principal
component analysis (PCA)—may exploit the structure of the dataset in
order to project each trace on to a point lying in a low-dimensional feature
space (Keun, 2006). In such space, distinctive clusters may emerge. In fact, it
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is common practice to plot the traces in a 2D or 3D space (retaining only the
first few principal components), in order to visualize and identify meaningful
classes (e.g. ‘healthy’, ‘diseased’). Nevertheless, such a complementary
scenario between data-reduction and visualization seldom persists in a
realistic study, where the classes tend to overlap.

2.2 Algorithmic approaches that capture expertise
Techniques like PCA appear as an attractive starting point because results
may immediately be obtained and visualized. Nevertheless, even if widely
applied, PCA-centric techniques may be not the best choice for NMR traces
for two reasons. First, their basic assumption scarcely holds: statistical
variation is not dominated by additive Gaussian noise in amplitude but rather
by unpredictable horizontal, left–right shifts in spectral loci of peak features.
Second, and most important, such techniques are problematic (due to their
intrinsic unsupervised nature): the expert is kept out of the analysis until
processing is complete, which could possibly lead to inaccurate or arbitrary
decisions. Similar criticisms may apply to other techniques widely employed
in this field [see Lindon et al. (2001) for a review]: algorithmic refinements
of PCA (e.g. Nipals, Press and VariMax), non-linear mappings, hierarchical
cluster analysis—where data are visualized as a dendrogram rather than a
scatter plot—and others.

Thus, it makes sense to provide the expert with an intermediate
representation of data, which permits him to interact with the data at
an intermediate stage in the computation. Such intermediate knowledge
represents a supplement of the standard training set that is required by any
supervised classifier, and contains data samples classified by the supervising
expert (typically with the aid of an objective medical examination of chosen
patients).

2.3 Intermediate representation based on visible peaks
When examining NMR traces an expert tends to reason on the basis of visible
peaks, not troughs or indistinct undulations. Therefore, it seems reasonable
to use peaks to define an intermediate representation. Similar considerations
have been given in the MS case (Tibshirani et al., 2004), even if their
application differs in several significant details.

Our starting observation is that not only large amplitude peaks have a role,
but any peak with a well-defined structure—namely any peak having at least
one visible flank (i.e. a monotonic fall-off of signal beneath the half-height of
the peak). Theory indicates that in ideal spectral isolations each peak should
follow a Lorentzian profile; nevertheless, our tests show that, in practice,
well-defined peaks can be satisfactorily approximated by fitting the simpler
Gaussian function across their visible extent. Moreover, we noted that the
theoretical-predicted precise binomial relationships between peak structures
(including doublets and triplets) were seldom observed in practice. Thus, it
makes sense to model peaks individually before reasoning with them, rather
than trying to fit elaborate multi-peak physics-based models directly to the
traces data—as some Bayesian approaches might prescribe (Bretthorst et al.,
2005). Thus, in our approach the intermediate representation of each trace
is based on the set of its well-defined peaks. Once approximated with the
Gaussian model, each peak is represented by the following parameters:

• p—the spectral locus of the maximum,

• a—the amplitude at maximum,

• w—the width, estimated from available half-height loci and

• bl , br Boolean indicators of left and right flank existence,

where p and w are measured in parts-per-million (p.p.m).
This representation can be computed in a single pass. This strategy is

similar to that adopted by some spectral databases, except that it also
codes for peaks lacking one flank. In such a case w is estimated by
doubling the interval between the peak locus and the remaining half-height
locus. Accepting the shortcoming that such parameters are known with less
certainty permits some partial peaks in spectral ‘grey region’ to continue
to be investigated. The spectral energy of each peak (be it partial, or full)

Fig. 1. Computing the Bag of Peaks.

is quantified using the approximation a.w, which represents the value of
integral beneath the underlying profile, if the peak is indeed a Gaussian.
This representation might also be motivated as a form of adaptive sampling,
such as ‘intelligent bucketing’ (Lefebvre et al., 2004).

3 ALGORITHM

3.1 Bag of Peaks approach
Bag denotes, here, an orderless collection of local features. The
term has been drawn from the field of linguistics, in which the
‘Bag of Words’ has established itself as a practical intermediate
representation (e.g. Cristianini et al., 2002; Joachims, 1998; Lodhi
et al., 2001). Where linguists characterize a document on the
basis of the occurrences of a certain set of words in its text, we
may characterize a NMR trace on the basis of the occurrences of
particular peaks. As with words and documents, we may compile
a dictionary of the peaks intended to be representative of those
found in a collection of traces. That dictionary, computed off-line,
forms the basis by which a representation is obtained, and on which
supervised classification is carried out. We call this approach ‘Bag of
Peaks’, following others, working in image or object classification
who coined the terms ‘Bags of Keypoints’ and ‘Bags of Features’
(e.g. Csurka et al., 2004; Lazebnik et al., 2006; Zhang et al., 2007).
As detailed in the following section, the main novelty for NMR
traces is that the feature vectors are not populated by histogram
values, but by accumulating the integral under each peak. Figure 1
sketches the computational stages involved, as detailed below.

3.2 Building the peak dictionary
A natural way to build the dictionary is by clustering peaks, supplied
in a training set selected by the expert. We achieve this on the
basis of similarity of peak locus, p, as we describe below. It is well
known that no single best technique for clustering exists (Hartigan,
1975; Jain et al., 1999), but their suitability generally depends on
type of data, prior knowledge and dimensionality. Here, we adopt
a simple yet effective technique, very similar to the Single Linkage
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Tree algorithm (Hartigan, 1975). Although somewhat limited with
respect to other clustering techniques, this approach permits—as we
require—an interpretable interaction by the expert. Later, we show
it performs fairly well against other clustering techniques.

In our clustering technique, a single threshold θ controls the
process of clustering. The dictionary entries (clusters) emerge as
a product of the following method:

(1) Start with a dictionary D containing a single peak (chosen at
random).

(2) For each peak pi in the training set find, in the dictionary D,
its closest neighbour:

pmin =arg min
p′∈D

||pi −p′||

where ||x|| is L1 norm (adopted for simplicity).

(3) Let dmin be the interval between loci pi and pmin, namely
dmin =||pi −pmin||. If dmin >θ then add a new entry to the
dictionary:

D=D∪pi.

(4) Otherwise the dictionary entry pmin is updated with the value
of pi, such that it maintains the average value (mean or
median) of all the peaks so far in that cluster.

At this point our intermediate representation permits an interaction,
revealing all its value. The expert can visually inspect the dictionary
and compare it with some of the original traces, or with profiles
drawn from a metabolite database. For that purpose, it is useful to
project each entry of the dictionary on to a spectral plot. If this plot
appears to omit important entries the expert might then vary the
value of θ , or change the composition of the training set. Finally, if
the expert considers it necessary, he can always edit the dictionary
to impose a priori knowledge of the biofluid—e.g. he may decide to
split a single entry into two, or to create a new entry nearby. This
is analogous to a linguist distinguishing two distinct meanings of
a word (like ‘like’). The incremental nature of the above method
means that, in many circumstances, the dictionary may be rapidly
recompiled.

The threshold θ may be chosen by using an assistant algorithm,
which employs clustering validation indexes (Jain and Dubes, 1988)
to select the appropriate value. The goal is to choose the clustering
(i.e. the dictionary), which provides groups which are compact
(minimizing scatter within each cluster) and best separated. Different
dictionaries are generated in turn by varying θ . The one minimizing
the Davies–Bouldin index (Davies and Bouldin, 1979) was chosen.
For a given clustering C(θ ), such index is defined as:

DB(C(θ ))= 1

K

K∑
k=1

Rk K is the number of clusters (1)

where

Rk =max
j �=k

{
Sk +Sj

dij

}
(2)

Si is the scatter (or dispersion) within the cluster i, and dij is the
scatter (or distance) between cluster i and cluster j.

3.3 Bag of Peaks descriptors
The resultant dictionary serves as the basis to compute the feature
vector used to characterize every trace in the dataset. This descriptor,

which we call ‘Bag of Peaks’, is computed for all training samples
(in the training phase), and for each testing trace (in the testing
phase).

Recall, the original Bag of Words approach aims to characterize
a document with a vector that stores the word-count, for each
dictionary entry. Here, instead of simply counting the number
of peaks corresponding to a dictionary entry, the corresponding
intensities are accumulated. This is achieved as follows:

1. Initialize to zero an accumulator value for each dictionary
entry: ∀k,Ak =0.

2. For each peak Pi in the trace, find (as before) its nearest
dictionary entry dPk , and add to its accumulator the energy
under that peak Ak =Ak +(a.w)i.

The bag of peaks descriptor of a trace j is, therefore, the vector
[A1,...,AK ]T (where K is the number of the dictionary entries). Each
trace is, therefore, projected in a low (K)-dimensional space (K-
dimensional), where the classification task may be performed using
any standard technique. The experiment below indicates this space
to be highly discriminant, when using simple or complex classifiers.

Note, with this descriptor each trace is represented only by
those peaks that occur in the dictionary, and by their respective
accumulator values Ak . This thus encodes which important peaks
are present and approximates their magnitude.

Finally, it is worth noticing that the accumulation mechanism
emphasizes the importance of the choice of the dictionary length:
too small a number of entries in the dictionary may imply that many
distinct peaks are summarized by a single dictionary entry, which
differs from standard NMR analysis (where each peak is analyzed
individually). On the other hand, too large a number of entries may
lead to a rather poor descriptor, having abandoned the original spirit
of the Bag of Words.

4 IMPLEMENTATION
The proposed approach has been tested in a classification task
involving 35 Sardinian under 10-year-old children. The goal was
to classify the NMR traces derived from their urine samples in
two classes (children having or not Type I diabetes). Each sample
was analysed by an AVANCE 600MHz spectrometer (Bruker Milan,
Italy) at 300K operating at 600.13 MHz in 1H observation mode. To
each 400 µl sample aliquot was added 200 µl of sodium phosphate
buffer (0.2 M Na2HPO4 in H2O and 0.2 M NaH2PO4 in 80:20
H2O:D2O, pH 7.4) containing 1 mM sodium trimethylsilyl [2,2,3,3-
2H4] propionate (TSP) and 3 mM sodium azide. We used the Eutech
Cyberscan 6000 pH meter to measure the pH variations of samples.
In order to standardize the experimental conditions the pH of the
samples was corrected to a value of 7.4 (DCI or NaOD). Samples
were centrifuged at about 1800 g for 5 min to eliminate solid debris.
NMR acquisition was performed using the first increment of a
NOESY sequence with irradiation of the water frequency during the
mixing time and relaxation delay, and adopting 128 FIDs, of 64 K
data points, over a spectral width of 12376 Hz. All spectra were
manually phased; moreover the linear baseline was corrected using
the COMET standard (Lindon et al., 2003) routine within TOPSPIN
2.0 (Brucker, Germany) (Schorn, 2002). On receipt of the data, we
trimmed each trace to the operating range [−0.2,10] p.p.m.
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Following the procedure described in Section 2.3, we extracted
the intermediate peak representation in a single computational pass.
Next, a basic Q/A step excluded any trace not having (i) a symmetric
profile at the zero p.p.m. locus, or (ii) a peak in the interval
[3.035,3.055] p.p.m. (the typical location of ‘Creatine–Creatinine
pair’ appearing in urine samples). Three of the 35 traces failed
the test. The remaining 32 traces were then used in a preliminary
evaluation of the Bag of Peaks approach. Each trace was first
normalized such that the highest peak reached unit amplitude at
maximum. Then, only the parameters of the 10 highest peaks were
used to build the dictionary. At this stage we asked our expert to
examine the selected peaks and participate in the construction of the
dictionary. Their task was to ensure that those metabolite peaks that
unmistakably correspond across different traces get assigned to the
same dictionary entry. Clearly, the expert will prioritize the peaks
for which this matters most. One of the key step in the process
of building the dictionary is to set threshold θ , which produces a
particular clustering (and dictionary). By working on this parameter
the expert may adjust the dictionary to his satisfaction. In our
experiment, by a trial and error session our expert arrived at a
value of θ =0.005 which produced a total of 56 dictionary entries.
At this point the expert may manually edit the dictionary or employ
the assistant algorithm detailed above in order to further refine his
choice of θ . In our case, he declined the former and applied the latter
to finalize a dictionary of 33 entries (θ =0.02).

The resulting dictionary served as the basis on which to compute
the Bag of Peaks representation of each trace. The suitability
of the proposed description was tested in different classification
experiments as described below. The first experiment assesses the
performance of the method using the whole dataset, comparing them
with those of alternative feature extraction techniques. The second
identifies the minimum number of peaks needed to discriminate,
thus helping in identifying candidate metabolites. Finally, the third
experiment simulates a large-scale study comparing the Bag of Peaks
approach and the PCA in presence of randomized peak shifts and
missing peaks.

4.1 Experiment 1
Four different standard classifiers were used to benchmark the
efficacy of the Bag of Peaks representation; the methodology was
compared with the standard PCA approach (Jollife, 1986), which is
the common baseline choice in the NMR literature (Stoyanova and
Brown, 2001), as well as to the multi-dimensional scaling (MDS—
Cox and Cox, 1994; Kruskal, 1997). MDS is a more sophisticated
dimensional reduction technique often used to obtain an appropriate
representation of the patterns from the given proximity matrix. It
attempts to embed n patterns as points in a d-dimensional space,
while keeping the distances between patterns as similar to the
input dissimilarity matrix as possible. For a given d, the algorithm
minimizes a stress value, which measures the similarity between the
given proximity matrix and the inter-point distances of the output
pattern matrix. Our implementation relies on the PRTOOLS mds.m
function (Duin et al., 2004), with pairwise distances between traces
being computed using the Euclidean distance.

The reductions were performed using the same set of traces that
had earlier passed the Q/A step. PCA was computed in two ways:
first retaining 99.9% of the variance, and second employing the
standard Cattell’s scree test (Cattell, 1966). MDS was optimized

using pseudo-Newton procedure, the dimension of the resulting
space was set to the maximum possible, i.e. N −2, where N is the
number of samples.

Since our N is relatively small from a statistical perspective
we carried our evaluations using the well-known cross-validation
technique called as Leave-One-Out (Theodoridis and Koutroumbas,
1999). This is well suited to small datasets, since it is able to assess
the generalization capability of the classifiers (training and testing
sets are separated), while maintaining a maximally sized training set.
It proceeds as follows: given a dataset of N samples, N −1 of them
are used to train the classifier, employing the one-left-out for the
test. Then, a different sample is left out for testing while training is
performed with the remaining N −1 samples. This is repeated until
all N samples have been left out and tested; the accuracy reported
represents the percentage of correctly classified patterns over all
samples. The four classifiers used ranged from basic to relatively
sophisticated:

• 1-nn: Nearest Neighbour (Fukanaga, 1990). An unknown
object is assigned to the same class of the nearest point in
the training set (nearest neighbour).

• k-nn: k-nearest neighbour rule (Fukanaga, 1990). An
unknown object is assigned to the most populous class in the k
nearest points in the training set. In our case k is estimated on
the training set by minimizing the leave-one-out classification
error.

• loglc: Logistic Linear Classifier (Hastie et al., 2001). This
models the log-odds (logarithm of the ratio of class posterior
probabilities) as linear functions. The weights of the classifier
are optimised by maximum likelihood.

• rbsvm: Radial Basis Support Vector Machine (Schölkopf and
Smola, 2002). This is the ν-SVM rule applied to a Gaussian
kernel. ν is estimated by the leave-one-out nearest neighbour
error on the training set. The scale σ of the Gaussian kernel
is determined in a 20-step optimization based on the 5-fold
cross-validation error estimation.

All the code was written in Matlab, with the support of the PRTOOLS
Matlab toolbox (Duin et al., 2004).

Table 1 shows the results obtained for all four classifiers above
using six different input representations: PCA retaining 99.9%
variance (29 PCs), PCA controlled by the Cattell Scree test (4 PCs),
the MDS (29 dims) and three different versions of our Bag of
Peaks representation. In the first the dictionary was generated by the
incremental Single Linkage Tree algorithm described in Section 3.2
(resulting in 33 peaks), in the second by K-means (28 peaks) and in
the third by the Complete Linkage Tree algorithm (22 peaks) (see

Table 1. Experiment 1: leave-one-out accuracies for the four classifiers and
different input representations: PCA, MDS and Bag of Peaks (BOP)

Representation 1-nn (%) k-nn (%) loglc (%) rbsvm (%)

PCA (99.9% variance) 84 84 47 84
PCA (Scree test) 87 81 87 81
MDS 84 84 59 84
BOP (Single-Link) 94 94 84 94
BOP (K-means) 97 97 59 97
BOP (Complete-Link) 91 91 72 84

261



G.Brelstaff et al.

Hartigan (1975); Jain et al. (1999) for a review of these methods).
In all experiments the number of clusters were computed using the
Davies–Bouldin index.1

Note: (i) For the Bag of Peaks representations the accuracies
obtained are generally higher than those of other representations—
with one exception, which occurs when applying the loglc
classifier. But that classifier might be considered a poor indicator
since it performs worst overall. (ii) The 1-NN classifier is the best,
or equal best consistently over all six representations. Performance
of the other three classifiers varies much with input representation.
(iii) Among the three Bag of Peak representations K-means performs
slightly better but it is not so useful to us since it does not facilitate
user interaction. (iv) To ensure unbiased comparison, in no case was
the dictionary edited.

4.2 Experiment 2
Even at low dimensionality the PCA is considered a useful tool,
because it ranks its components in order of importance: the first
explains most variance, the last the least. A similar characteristic
might be expected for the dictionary used by the Bag of Peaks—
some entries will be more discriminating than others—but how many
dictionary peaks are needed in order to achieve sufficient accuracy?
To this end, we extend the comparison made above, performing an
analysis over an increasing number of dimensions.

First, we describe the feature selection mechanism by which we
choose to rank our dictionary entries. We adopt the forward feature
selection scheme (FFSS) (Bishop, 1995) using the classification
accuracy of each classifier as the optimality criterion—these kinds
of schemes are typically referred to as wrappers (Kohavi and John,
1997). The FFSS starts by considering each feature individually and
selecting the one producing the optimum value for the criterion.
At each successive stage of the algorithm, one additional feature is
added to the set, i.e. the one giving rise to the largest increase in the
optimality criterion. As a result, a collection of sets of features of
growing cardinality are extracted.

Experiment 1 was thus repeated by employing sets of increasing
dimensionality (retaining the first PCA component, the first two
and so on—the same for MDS and our Bag of Peaks). Again, we
compute the leave-one-out accuracies using the same four classifiers
as before. The accuracies of all classifiers are averaged and reported
in Figure 2.

Note that when the dictionary is composed of more than 10 peaks,
the accuracy for the Bag of Peaks grows to be significantly better
than for the PCA and the MDS. Before that it is relatively poor: i.e.
in order to discriminate the algorithm needs a descriptor of sufficient
dimension. Again no expert editing was permitted.

4.3 Experiment 3
Even if a proper preprocessing helps in avoiding errors due to signal
distortion, other types of variations may be present in the signal.
First, the precise trace location of any metabolite peak is typically
confounded by a random left–right shift despite corrective controls
for pH. Our approach, that makes provision for such variation,
ought to out-perform PCA-based approaches that are designed to

1For K-means, this number varies over different runs, depending on the
initialization of the algorithm. The most frequent result employed in these
tests is 28.
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Fig. 3. (A) Original spectrum; (B) spectrum with a shifted peak: the shift-
level γ is 1.

best combat Gaussian amplitude noise. Second, it may be possible
for peaks to appear or disappear in response to uncontrolled aspects
of diet that modify the composition of biofluid. Since we directly
encode peaks, this may perturb our method more than the others.
Clearly, a proper demonstration of these two conditions requires
a large statistical study beyond the scope of this article. In the
anticipation of that study we have simulated two larger datasets
that exhibit both variations described above: random shifts and
missing peaks. We bootstrapped the original training set—in a way
similar to that done in phylogeny (Felsenstein, 1985)—by generating
additional traces obtained by randomly injecting these two kinds of
variation. In the first set, for any trace, NS random peaks are selected
for shifting, taking care of minimizing the discontinuities. The value
of each (randomly left or right) shift is equal to γ w, with γ a positive
scalar parameter. In the second set, for any trace, NR random peaks
are selected and removed. Figures 3 and 4 show two examples of
noisy spectra (only a part of the spectrum is displayed).
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Fig. 4. (A) Original spectrum; (B) Spectrum with a missing peak.

For both cases, from each original spectrum five simulated spectra
were generated (obtaining 160 entries in total). These spectra were
then classified using the best performing classifier in Experiment 1:
1-nn. Note, in order to assess the generalization capability of
the representations in these noisy cases, all training phases were
computed on the original dataset. Indeed, the training phase includes
both the computation of the representation (the PCA space and
the Peak Dictionary2) and the classifiers training. Testing was
then performed with the simulated sets: patterns were projected in
the PCA and Bag of Peak spaces and classifiers then evaluated.
This results in appropriately disjoint training/testing sets. Random
fluctuations in reported accuracies were reduced by simulating
the datasets 30 times using different random peak selections, and
averaging the results.

Results obtained for different values of the noising process
parameters are shown in Table 2. The Bag of Peaks is always more
accurate than the PCA when peaks are shifted (set 1), while there
is no significant difference between the two methods when peaks
are removed (set 2). In set 1, the difference is greatest when 100 or
more peaks are shifted by a random magnitude between 0.5 and 1.5
peak-widths—where accuracy improves by around 10%.

5 DISCUSSION
Although we have promoted the Bag of Peaks approach on the
basis of its interpretability and potential for intermediate expert
interaction, here we have presented results produced in a fully
automated manner, without manual editing of the dictionary or
setting threshold. Even in that absence, the three experiments above
show that the Bag of Peaks fares well with respect to the other
algorithms to which it has been compared.

In the first experiment, concerning our small, but real, dataset of
NMR traces, we have shown that the accuracy of the Bag of Peaks
is consistently better than both the PCA and MDS approaches.

2In order to have a fair comparison, MDS is omitted from the analysis, since
its projection space is computed each time it is used—and not once for all
as in the PCA or Bag of Peaks cases.

Table 2. Simulated datasets with 160 traces each

Set 1

γ =0.1 (%) γ =0.5 (%) γ =1 (%) γ =1.5 (%) γ =2 (%)

NS = 1 +0.08 +0.00 −0.02 +0.19 +0.06
NS = 10 +0.06 +0.65 +0.40 +0.71 +0.77
NS = 50 +1.35 +2.54 +2.71 +2.52 +3.19
NS = 100 +2.42 +4.75 +5.10 +6.15 +5.77
NS = 200 +4.27 +10.10 +9.58 +10.44 +5.88
NS = 300 +7.73 +13.98 +12.08 +9.13 +3.69

Set 2

NR = 1 (%) NR = 5 (%) NR = 10 (%) NR = 15 (%) NR = 20 (%) NR=25 (%)

+0.062 +0.23 −0.08 +0.16 −0.04 +0.02

Advantage percentage accuracy obtained by the Bag of Peaks approach over the PCA
approach (the number of retained components was computed using the Scree Test).
A positive value indicates that Bag of Peaks has better accuracy than PCA. (Set 1)
Simulation with peaks shifting: NS represents the number of random peaks shifted
in each trace, whereas γ scales the overall amplitude of the random shifts; (Set 2)
simulation with peaks removing: NR represents the number of random peaks removed
in each trace.

Moreover, in the second experiment we have shown how to
rank, in the dictionary, the peaks that most influence classification
using the FFSS. This has a direct practical application: identifying
metabolites needed to discriminate a particular disease can become
simply a process of selecting peaks in the dictionary—perhaps
with the aid of a metabolite database. In our application regarding
Type I diabetes in Sardinian children it turned out that the most
discriminating peak loci occur around (in p.p.m.): 1.46, 3.50, 3.26
(Arginine triplet), 3.04 and 3.05 (Creatine Creatinine pair) and peaks
in the range [3.24:3.29]. Here, the error tolerances on individual loci
are bounded by the magnitude of the parameter θ/2=0.01 p.p.m.

Finally, paucity of available traces is a condition that effects many
pilot studies other than ours. Approaches, like the Bag of Peaks, that
facilitate a pragmatic degree of interpretation of the small datasets
collected for budget-limited studies ought to help instruct follow-up
studies. In our experimental session, we tried to enlarge the scope
of the analysis by generating two large sets of 160 artificial traces,
obtained by simulating random peak shifts and peak loss in original
traces. With these datasets, we were able to illustrate (Table 2) further
the advantage of the Bag of Peaks over the standard PCA method.

6 CONCLUSION
In this article, a novel approach for NMR spectra analysis has been
proposed, in which a fixed length descriptor, based on peaks, was
used to characterize a single trace. Such scheme, which we called
Bag of Peaks, represents an interpretable and intermediate descriptor
of NMR traces, allowing the interaction of the expert. Nevertheless,
in the experimental evaluations presented in the article, we preferred
to neglect that advantage, in order to demonstrate its viability
with respect to standard automated methods. Having established
that viability, we intend in subsequent articles to demonstrate what
additional advantage may be obtained by the interactive participation
of human experts, in the way already motivated. Here, we have
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presented results produced in a fully automated manner—without
manual editing of the dictionary or setting threshold. Even in that
absence, the three experiments above show that the Bag of Peaks can
and does perform better than standard PCA—and the MDS-based
approaches. Not only can it produce more accurate classifications,
it also delivers practical suggestions for metabolite peak loci that
may be implicated in the disease under study: here Type I diabetes
in Sardinian children.
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