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Abstract. We investigate, both theoretically and numerically, light confine-
ment in dielectric structures with a transverse refractive index distribution pe-
riodically modulated in the longitudinal coordinate. We demonstrate that light
can be guided even in the balanced limit when the average refractive index con-
trast vanishes in the direction of propagation, a dynamic trapping phenomenon
analogous to the Kapitza effect in quantum mechanics. Finally, with reference
to segmented waveguides with an unbalanced index modulation, we address the
interplay of dynamic and static confinements.
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1. Introduction

Periodic structures are essential in photonics, as they support various phenomena that are useful
in controlling and managing light signals and beams. The periodic modulation of the refractive
index in the propagation direction allows the realization of, for instance, filters and coatings,
diffractive and coupling gratings, distributed feedback reflectors and resonators, and quasi-phase
matching for parametric generation [1–5]. An index periodicity in the transverse plane is at the
basis of waveguide arrays for discrete diffraction [6]; periodic arrangements in two or three
dimensions entail the realization of photonic crystals [7].

In this paper, we focus on refractive index structures featuring a bell-shaped profile in
the transverse plane and periodically modulated along the direction z of light propagation.
A longitudinal modulation on light propagation was previously addressed in the case of
waveguide arrays with reference to the linear refractive index [8] and the nonlinearity
[9, 10]; experiments were reported on nonlinear inhibition of tunneling [11] as well as on
quasi-Bloch oscillations [12]. Regarding single-waveguide structures, similar geometries were
studied in the context of segmented waveguides, that is, light-confining sections alternating
along z with transversely homogeneous portions where light could diffract [2, 13–16]. It
was demonstrated that, in most cases, segmented waveguides can be modeled and operate as
continuous waveguides with a transverse index profile given by the spatial averaging along the
modulated direction z [17].

The aim of the work hereby is to extend and generalize the treatment of z-periodic
optical waveguides to those with a zero mean longitudinal modulation, that is, an index
modulation of alternating signs along ẑ. In the case of zero mean contrast, one would intuitively
expect light to diffract owing to the alternation of index wells (focusing regions) and of
index barriers (defocusing regions) of finite transverse extent. However, in the context of
quantum mechanics, it is understood that the fast-scale particle motion driven by a rapidly
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oscillating potential (in time) gives rise to an additional time-independent effective potential
that can, in turn, induce a slow-scale dynamics of the particle [18]. This effect, known as
the Kapitza effect from the original work of the Russian Nobel laureate on a mechanic
pendulum [19], was exploited by the Nobel laureate Paul [20] to realize particle traps. Since
paraxial light propagation in the harmonic regime and the motion of quantum particles are
both governed by the Schrödinger equation with the spatial coordinate z taking the role of an
equivalent time [21], the analogy between optical propagation and the Kapitza effect in quantum
mechanics suggests the insurgence of an effective refractive index distribution even in zero-
mean-contrast periodically segmented waveguides, a distribution uniform along z and possibly
able to transversely trap light. If an oscillating potential in quantum mechanics gives rise to a
steady effective potential proportional to the square of the gradient of the periodic modulation
[18, 22], in optics a bell-shaped transverse distribution of a z periodic refractive index results in
a double-humped trapping well. Optical analogies of the Kapitza effect have been theoretically
discussed, limited to waveguide arrays [23] or transversely invariant dielectric stacks [24]. In the
first case, discrete diffraction is inhibited by a longitudinal modulation of the coupling strength
between standard waveguides [23]. In the second, a (rather large) periodic modulation of the
dielectric susceptibility can suppress diffraction of transverse-magnetic waves by minimizing
the longitudinal field component [24]. At variance with these previous reports, the approach we
discuss here entails light trapping solely via a photonic equivalent of the Kapitza effect: wave
confinement is polarization independent and scales fully with wavelength.

We consider transversely limited (waveguide-like) index structures periodically modulated
and balanced along z, i.e. with a vanishing mean index contrast in the propagation direction.
Initially we treat the problem analytically and later verify our theoretical results using the beam
propagation method (BPM), the latter also allowing us to assess the validity of the effective
potential approximation. Finally, we extend our study to unbalanced periodic waveguides with
a nonzero mean index contrast, addressing the interplay between static confinement due to the
average distribution (bell shaped in the transverse plane) and dynamic Kapitza-like confinement
stemming from the modulation.

2. Theoretical background

For the sake of simplicity we refer to planar guided-wave structures, i.e. (1+1)D geometries.
Under the paraxial approximation, lightwave propagation is governed by the Schrödinger-like
equation

2ik0n0
@ A
@z

+
@2 A
@x2

+ 2n0k2
01n(x, z)A = 0, (1)

where A is the field envelope, n0 is the unperturbed refractive index, k0 is the vacuum
wavenumber and 1n is the index profile in the transverse space, i.e. along x . The use of
equation (1) to describe light dynamics implies discarding the back-reflected wave components
(i.e. propagating along �ẑ), always present in a periodic structure owing to longitudinal index
variations. Such approximation is usually valid unless Bragg resonances occur [13].

We take the index well to be factorizable, i.e. 1n(x, z) = f (z)U (x) and the ansatz

A(x, z) = �(x, z) eik0U (x)
R z

z0
f (z0) dz0

. (2)
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We normalize to unity the maximum absolute value of f (z). By substituting equation (2) into
equation (1) we obtain [18]

2ik0n0
@�

@z
+

@2�

@x2
+ 2ik0 g(z)

✓
@U
@x

@�

@x
+

1
2

@2U
@x2

�

◆
� k2

0 g2(z)
✓

@U
@x

◆2

� = 0, (3)

where we introduce g(z) = R z
z0

f (z0) dz0. By dealing with a periodic f (z) = f (z + 3), we can

expand it in a Fourier series, f (z) =P1
l=�1 fl exp (2⇡ ilz/3). We assume f = 1

3

R 3

0 f (z) dz =
f0 = 0, i.e. f (z) with a zero mean. It is straightforward to get g(z) = G(z) � G(z0), where
G(z) = 3

2⇡ i

P1
l=�1

fl
l exp (2⇡ ilz/3). We note that g = 0 only if G(z0) = 0. Applying the

Fourier transform operator to equation (3), since the spectra of both g(z) and its square g2(z)
consist of series of Dirac functions, equation (3) relates the spectrum �̃(�) = R

� exp (i�z) dz to
its replicas centered in �m = 2⇡m/3 (m 2 Z). If the width 1� of �̃ is smaller than �1, sideband
copies of �̃ do not interact with the baseband (more precisely their overlap is negligible because
�̃ is necessarily nonzero for all the spatial frequencies �). To derive a quantitative condition, we
choose a bell-shaped profile for field �. After approximating the wavefunction with a Gaussian
of waist w0, the anti-aliasing condition reads

w0 >
3

⇡
. (4)

Equation (4) can be intuitively interpreted in terms of alternating focusing/defocusing regions:
narrow wavepackets (beams) undergo strong spreading when f (z) < 0; when light reaches the
next focusing region along z, the beam width is too large and lensing is insufficient to trap and
confine the field. When equation (4) is satisfied, the application of the extra condition g = 0 to
equation (3) yields

2ik0n0
@�

@z
+

@2�

@x2
� k2

0g2(z)
✓

@U
@x

◆2

� = 0. (5)

The term �g2(z)
�

@U
@x

�2
plays the role of an effective index difference 1neff. The condition

g = 0, easily satisfied by a proper choice of z0, is required to zero the contribution from the
third term in equation (3) (the role of the initial phase of the potential is well addressed in [25]).
In physical terms, we expect that the quasi-modes of equation (1), if they exist, feature phase
fronts with a periodically varying curvature (see equation (2)), as determined by the focusing or
defocusing character of the local index profile [17]. Equation (5) predicts that an effective index
distribution

1neff = � 32

4⇡ 2

 1X

l=�1

fl f�l

l2

!✓
@U
@x

◆2

(6)

acts on the wavepacket. According to equation (6) the effective photonic potential is
proportional to the square of the modulation period 3. Thus, for short 3, the longitudinal index
variations are too fast and light is not affected by the modulation. When 3 gets longer the
dynamic effects increase indefinitely, clearly an unphysical result: in fact, equation (6) is valid
only if condition (4) is satisfied. Summarizing, we expect dynamic (Kapitza-like) trapping to be
maximum for a finite value of the modulation period 3max.
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Figure 1. (a) Plot of f (z) versus the normalized propagation coordinate z/3
for a flat-top modulation. (b) Behavior of g2 (given by equation (8)) for f (z)
as plotted in (a) versus d/3; solid and dashed lines correspond to the series
computed up to l = 50 and 1, respectively.

2.1. Dependence of the photonic Kapitza effect on the modulation profile

Equation (6) states the dependence of the effective potential 1neff on the longitudinal
modulation f (z) via the Fourier coefficients fl . To address such dependence, we first consider
the simplest case of a sinusoidal modulation f (z). Equation (6) yields

g2 = 32

8⇡ 2
, (7)

and it is also z0 = 3/4 in order to ensure G(z0) = 0. Next, we consider a flat-top modulation,
featuring two segments of length d with opposite amplitudes per period (see figure 1(a)). We
obtain

g2 = 232

⇡ 4

1X

l=1

1
l4

sin2

✓
⇡l
2

◆
sin2

✓
⇡ld
3

◆
. (8)

When d = 3/2, the modulating function f (z) is a square wave; then equation (8) becomes
g2 = �

232/⇡ 4
�P1

m=0 1/(2m + 1)4. The behavior of g2 is plotted in figure 1. The last step is
finding out how the initial section z0 depends on d and 3. By setting G(z0 = 0) we get

z0 = 3 � d
2

+ m
3

2
(m 2 Z). (9)

2.2. Physics of the effective index profile

The appearance of the effective index contrast 1neff can be physically understood from the
superposition principle, in analogy to classical confinement being explained as a transverse
phase modulation due to an inhomogeneous refractive index. Taking the ansatz

A = c eik(z)x ei
R z

0 E dz0
(10)

with c an arbitrary constant, expanding 1n in a power series truncated to the linear term (i.e.
1n(x, z) = 1n0(z) + 1n1(z)x), and substituting (10) into equation (1) we get

k(z) = k0

Z z

0
1n1(z0) dz0, (11)
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E(z) = k2(z)
2k0n0

� k01n0(z), (12)

where we choose k(0) = 0 in equation (11). Owing to the periodicity of 1n(z), the field A
will be periodic as well; thus we can set A(3) = A(0) ei'. The phase difference ' accounts for
the Kapitza effect acting on the wavepacket. The solution of equations (11) and (12) and its
substitution in equation (10) provide

' =
Z 3

0
E dz0 =

Z 3

0

✓
k2(z0)
2k0n0

� k01n0(z0)
◆

dz0. (13)

The integral of 1n0 vanishes due to the assumption of a zero mean for f (z). Conversely, the
integral along z of the equivalent kinetic energy k2/(2k0n0) is nonzero, as the light momentum
k is periodically modulated by the local index gradient 1n1 = f (t)@U/@x . Summarizing, for
the phase delay ' over a single period we find the expression

' = k0

2n0

✓
@U
@x

◆2 Z 3

0
g2(z) dz. (14)

Equation (14) predicts the same effective index profile of equation (5). We conclude that the
Kapitza effect is due to the longitudinal modulation of the equivalent kinetic energy induced by
the periodicity [26]; for well-chosen transverse profiles U (x), the transverse phase modulation
can compensate diffraction. Noteworthy, in obtaining equation (14) we consider a periodic
A, the latter assumption clearly invalid for long modulation periods as diffraction can induce
appreciable changes in wave amplitude, consistently with condition (4).

3. Quasi-modes

In this section, we want to examine those cases in which the effective potential can support light
trapping. The easiest configuration corresponds to bell-shaped U (x): for instance, we can take
super-Gaussian functions U (x) = U0 exp (�x2p/w

2p
U ) (p 2 N). In this case, the effective index

1neff takes an inverted W-like transverse profile

1neff = �32 p2U 2
0

⇡2

 1X

l=�1

fl f�l

l2

!
x2(2p�1)

w
4p
U

exp

 

�2x2p

w
2p
U

!

. (15)

The effective refractive index profiles 1neff are drawn in figure 2 for three values of the
parameter p; for large p the super-Gaussian tends to a buried slab-like waveguide. As is well
known, this structure does not support guided modes because the evanescent profiles at |x | ! 1
lead to a leaky behavior even in the central lobe of the guide [27]. Such types of geometries in
optics support leaky quasi-modes (corresponding to metastable states in quantum mechanics),
actually consisting of a superposition of diffractive (free) modes [27].

We can compute the quasi-modes of the structure by using an index profile with the central
lobe only, i.e. retaining the index distribution between the two local minima (see figure 2(b));
on the external regions we set the effective index to its global minimum. This approach works
until the overlap of the calculated mode with the external portions of the effective index well
can be neglected.
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Figure 2. (a) Profile of U (x) versus x and (b) corresponding effective refractive
index contrast 1neff; we normalized the quantities to their maximum absolute
value. The different lines in each panel correspond to p = 1 (blue), p = 4 (black)
and p = 8 (red), respectively.

3.1. Gaussian trap

Let us take p = 1 in equation (15) and a sinusoidal oscillation for f (z). In this case, the
eigenvalue problem stemming from equation (5) can be scaled with respect to the normalized
coordinate x 0 = x/wU . Taking the ansatz �(x, z) = u(x) exp (i1�effz), equation (5) provides

2k0n0w
2
U1�effu = @2u

@x 02 � k2
03

2U 2
0

2⇡2
F(x 0)u, (16)

where F(x 0) = x 02 e�2x 02
rect

⇥
x 0/(2xm)

⇤
+
⇥
H(x 0 � xm) + H(�(x 0 + xm))

⇤
x2

m e�2x2
m, with xm the

position of the local minimum of 1neff for positive x 0 and H the Heaviside step function.
According to equation (16), in the normalized reference system the shape of the mode does

not depend on the width wU of the index profile, if U (x) is Gaussian; moreover, the effective
index variation 1Neff = 1�eff/k0 depends quadratically on wU .

The modal profiles computed via a standard numerical procedure are plotted in figure 3.
As predicted, the larger the modulation period 3, the stronger the transverse confinement. At
the same time, light trapping via the Kapitza effect improves as the depth of the index well U0

increases; unlike in conventional waveguides, the trapping strength is proportional to the square
of U0. The trend of 1Neff versus 3 is graphed in figure 4(a). Firstly, we note that 1Neff is
negative, corresponding to a propagation constant for mode u that is lower than n0k0. Secondly,
1Neff decreases as 3 grows, i.e. as confinement gets stronger. The sign and the trend of 1Neff

are opposite to the case of static confinement, in both continuous and segmented waveguides.
Finally, the absolute value of 1Neff becomes larger as U0 increases. Figure 4(b) shows the

modal width wmode = 2
qR

x2|�|2 dx/
R |�|2 dx versus 3. For short periods the transverse size

goes to infinity due to the absence of a trapping potential, whereas for large 3 the width tends
to the diffraction-limited value �. Equation (16) shows that the focusing strength depends on the
product U03, as confirmed by the numerical results in figures 3 and 4.
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Figure 3. Numerically computed fundamental quasi-modes for p = 1 versus
x/wU when (a) U0 = 0.05, (b) 0.1 and (c) 0.5, respectively. The curves
correspond to period 3 = 100, 50, 30, 20, 10 and 8 µm from the narrowest
to the largest profile; in panels (a) and (b) the results for 3 = 8 and 8, 10 µm
respectively, are not shown as they are larger than 130, the size of our numerical
window in normalized units. Here � = 1 µm.

Figure 4. (a) 1Neff versus 3 and (b) width of the fundamental mode normalized
to wU for U0 = 0.5 (blue line), U0 = 0.1 (black line) and U0 = 0.05 (red lines);
in (a) and (b) the well depth decreases from the bottom to top curves. The dashed
line in (b) represents wmode = wu/2. Here � = 1 µm.

The solutions in figure 3 are calculated neglecting the effects of the lateral lobes shown
in figure 2(b). The mode of a W-shaped guide, however, is inherently leaky; thus we need
to evaluate power losses of the wavepackets in figure 3 as they propagate. To this extent, we
introduce the loss coefficient ↵ via �(x = 0, z) = �(x = 0, z = 0) exp (�↵z) and define the
attenuation length Ldamp of the quasi-mode as 1/↵ [27]. From the governing equation (5),
we define a propagation length znorm = z/w2

U , similar to the normalization employed in
the eigenvalue problem (16). Otherwise stated, if Ldamp = L1 for wU = w1, then it is L2 =
(w2/w1)

2 L1 for w2. Noteworthy, the damping length Ldamp depends quadratically on the waist
(approximately equal to wU in the limit of strong confinement), in analogy to the Rayleigh
distance; hence, the ratio between the diffractive losses due to a periodic index profile and those
due to standard diffraction is constant: in the effective potential approximation the waveguiding
does not depend on the width wU of the index trap. Ldamp can be numerically calculated with
a BPM algorithm, accounting for the whole index landscape. Specifically, we consider at the
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Figure 5. BPM computation of light propagation in the plane (x/wU , z) when
the input field is the eigenmode computed from equation (16); the medium is
assumed to be z-invariant with an effective index profile 1neff. The waveguide
parameters in the top panels are U0 = 0.05 (a), 0.1 (b) and 0.5 (c), with 3 =
50 µm in all of them; at the bottom 3 = 5 (d), 20 (e) and 100 µm (f), with
U0 = 0.5 fixed. (g) Loss coefficient ↵ versus 3, each line corresponding to the
data plotted in figure 4(b). Here � = 1 µm and wU = 10 µm.

input the mode obtained from equation (16); then we solve equation (5) versus z and estimate
the mode attenuation.

The results are shown in figure 5: as expected, the diffraction losses diminish when the
depth U0 of the index well (panels (a)–(c)) or the period 3 increase (panels (d)–(f)). Figure 5(g)
summarizes the results by graphing ↵ versus 3. We note that the same ↵ is obtained for different
U0 if the product 3U0 is conserved, as discussed above; thus, the curve for U0 = 0.1 assumes a
general character. A sharp transition is observed in ↵ when wmode ⇡ wU/2, i.e. the quasi-mode
computed via equation (16) extends beyond the central lobe, in turn forcing non-negligible
coupling to the radiation modes with larger transverse wavevector. This means that our approach
is valid for wmode < wU/2, that is, the region below the dashed line in figure 4(b). This condition
does not yet guarantee light confinement, since equation (4) has not been accounted for. We deal
with it in the next section.

4. Numerical results

Hereby we solve the full equation (1) in order to check the validity of the effective equation (5)
for dynamic light trapping, verifying condition (4).

We consider the propagation of the quasi-modes in figure 3 for a fixed U0 while varying the
trap width wU , i.e. we take quasi-modes belonging to the existence curves in figure 4(b). We first
consider the quasi-modes (top line in figure 4(b)) not satisfying the condition wmode < wU/2 and
thus undergoing large diffraction losses, consistently with figure 5(g). The results in figure 6
demonstrate that diffraction losses cannot be neglected over distances comparable with the
Rayleigh length, because dynamic confinement does not take place, as predicted. At variance
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Figure 6. Intensity evolution in the plane xz (top) and corresponding profile at
the input section z = 0 (solid red line, solution of (16)) and at the output (black
dashed line) (middle); the bottom panels show the field amplitude in x = 0 versus
z, normalized with respect to the initial value in z = 0. The trap width wU is
3 (a), 10 (b), 20 (c) and 40 µm (d), respectively. Here � = 1 µm, 3 = 100 µm
and U0 = 0.05.

with the solutions of equation (5), the light dynamics depends on wU , as indicated by the
fact that Ldampw

�2
U is no longer conserved. The trend of the wavepacket peak versus z for

the narrowest trap (column a, wU = 3 µm) differs qualitatively from the ones (columns b–d)
computed for wider traps. For large wU the intensity distribution can be normalized with respect
to znorm = z/w2

U , analogously to equation (5), as the Rayleigh length is much shorter than the
period 3. The ratio between the Rayleigh length and 3 governs the longitudinal oscillations in
the field peak, as well.

The strong dependence from wU is in agreement with the physical mechanism behind the
Kapitza effect: if diffraction is too strong (small wU ), the light can no longer be confined after
a defocusing section. Mathematically, the spectrum of � is large enough to induce aliasing;
therefore equation (5) is not valid anymore, i.e. condition (4) is broken.

From the results above, it is straightforward to determine when light guiding via the Kapitza
effect can occur and, if so, its dependence on wU . To this extent, figure 7 plots the existence
curves for the quasi-modes computed from equation (16), allowing us to pinpoint pairs of
parameters 3 and wU that allow Kapitza light confinement. The dashed line is the upper bound
of the validity region for equation (16), as demonstrated by the results in figure 5. We have
to apply equation (4) to assess when the simplified equation (5) is a good approximation for
the original problem (1). In the plane of figure 7, condition (4) reads wmode/wU > 3/(⇡wU ):
light confinement can occur in the region above the line starting from the origin and ending
on the straight line wmode/wU = 0.5, with slope depending on the trap width wU . Dynamic
confinement is expected to occur in a triangular region, polygons ABC or ADC for wU1 or
wU2, respectively (see figure 7). Wider index wells provide a larger parameter region where
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Figure 7. Qualitative assessment of dynamic confinement. The solid lines are the
existence curves in the plane (3, wmode/wU ) as obtained from equation (16) for
three index depths U0, such that U01 > U02 > U03. The dashed line representing
wmode/wU = 0.5 is the upper bound of the validity region of the existence curves.
The dashed-dotted lines represent the anti-aliasing condition (4) for two trap
widths wU1 < wU2, respectively.

dynamic confinement can take place. Moreover, for a given amplitude U0 of the index well,
the range of 3 allowing dynamic confinement can be found by computing the intersection of
the corresponding existence curve with the straight line wmode/wU = 0.5 (i.e. the smallest 3
ensuring confinement) and with the line segment representing condition (4) (i.e. the largest 3
yielding confinement without significant oscillations in radius). With reference to figure 7, let
us take U0 = U02: for wU = wU1 confinement occurs only at point B, whereas for wU = wU2 the
wavepacket gets trapped in all the points belonging to the arc BE.

To validate the approach, we simulated light propagation in a periodic index well while
varying the periodicity of f (z), as well as the width and the peak value of U (x). Typical results
are presented in figure 8. For wU = 10 µm (upper panels) low loss dynamic confinement is
never achieved for a trap depth U0 up to 0.5. In fact, for short periods (figures 8(a) and (c))
the modal width overcomes wU/2 (figure 7); thus the field tails couple energy toward the outer
regions. For larger periods (figures 8(b), (d) and (e)) condition (4) is not valid: wherever the
local index well is defocusing light diffracts outward, forming complicated patterns in (x, z)
and diffusing photons across x . For wU = 40 µm diffraction is reduced and light confinement
via the Kapitza effect takes place for all the used parameters (figures 8(f)–(j)). We note that
for U0 = 0.1, 3 = 50 µm (figure 8(a)) and for U0 = 0.5, 3 = 10 µm (figure 8(c)) the quasi-
mode retains nearly perfectly its shape over several Rayleigh lengths, that is, diffraction losses
are negligible. When the period increases, aliasing comes into play, distorting the modal
profile and generating oscillations in transverse size. Such oscillations are stronger for larger
3 due to the shift (in parameter space (wmode/wU , 3)) toward the instability region (figure 7),
eventually losing confinement, with dynamics analogous to the case wU = 10 µm previously
discussed.

New Journal of Physics 15 (2013) 083013 (http://www.njp.org/)

http://www.njp.org/


12

Figure 8. Intensity evolution in the plane xz (images) and behavior of the peak
|A(x = 0, z)|/|A(x = 0, z = 0)| versus z (panels next to each image) when a
quasi-mode from equation (16) is launched at the input. Light propagation is
calculated for U0 = 0.1, 3 = 50 µm (a), (f), U0 = 0.1, 3 = 100 µm (b), (g),
U0 = 0.5, 3 = 10 µm (c), (h), U0 = 0.5, 3 = 50 µm (d), (i), U0 = 0.5, 3 =
100 µm (e), (j) and wU = 10 µm (a)–(e) and wU = 40 µm (f)–(j), respectively.
Here � = 1 µm.

Table 1. Calculated 3 for various waveguide parameters.
wU (µm)

U0 10 20 30 40 50

0.1 38 51 62 72 81
0.5 16 24 31 37 43

To end this section, we assess the correctness of equation (4) resorting to BPM simulations.
We define the period 3(wU , U0) = ⇡wmode, i.e. the value of 3 satisfying equation (4). In
physical terms, 3 is the largest period ensuring dynamic light trapping when both wU and
U0 are kept fixed; thus, in agreement with equation (6), at 3 light trapping is the strongest. In
addition, we conveniently define 3sup(wU ) as the maximum of 3 for a fixed trap width wu ,
with the extra constraint wmode 6 0.5wU (in figure 7 such a point for wU1 is indicated by B).
The use of equation (4) easily provides 3sup = ⇡

2 wU . A direct comparison between 3 and 3sup

indicates whether the dynamic effect can be achieved for the given pair (U0, wU ): if 3 > 3sup

Kapitza-like confinement is inhibited by diffraction losses, if 3 < 3sup light trapping can occur.
Table 1 is obtained from the data in figure 4. For wU = 10 and 40 µm, we get 3sup ⇡ 16

and 63 µm, respectively. The theoretical predictions can be compared with the full numerical
simulations in figure 8. We start with the case wU = 10 µm. For U0 = 0.1 (figures 8(a) and (b))
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light is not confined, consistently with table 1. For U0 = 0.5 there are small diffraction losses
for 3 ⇡ 3sup = 16 µm (figure 8(c)): the confinement is borderline as this is the limit condition
3 = 3sup (corresponding to point B in figure 7), where both a strong overlap of the mode
with the edges of the effective index well and aliasing are simultaneously present. Due to
the joint action of the two detrimental effects, the best light localization is reached for 3 ⇡
20 µm 6= 3sup. We now turn to the case wU = 40 µm: looking up table 1, light should not
be guided for U0 = 0.1; in spite of this, figures 8(f) and (g) show a collimated wavepacket
thanks to the large Ldamp compared with the Rayleigh length. For U0 = 0.5 light confinement
should occur, as confirmed by figures 8(h) and (i): further numerical simulations (not shown)
prove that the narrowest quasi-mode, jointly with the smallest oscillations in radius, is excited
for 3 ⇡ 35 µm, in perfect agreement with the theoretical predictions. The numerical results
also demonstrate that transverse confinement occurs even for 3 > 3, but with the quasi-mode
undergoing appreciable periodic variations of its width (see figures 8(i) and (j)). The existence of
trapped breathing waves for 3 > 3 agrees with our theory: smooth transition in the character of
light propagation can be expected when condition (4) is slightly missed, the latter corresponding
to weakly overlapping replicas of �̃.

4.1. Dependence on the index profile U (x)

Up to now in our simulations we have considered a Gaussian U (x), but light trapping via the
Kapitza effect can be assessed for various U (x) using figure 7. A non-Gaussian U (x) implies
different existence curves for the quasi-modes and different diffraction losses ↵ for a given
modal width as well; the latter modify the applicability range of equation (16), rewritten for the
new U (x). Furthermore, if the modal width is fixed, a different U (x) affects the profile u of the
quasi-mode, with small changes in condition (4); considering the numerical results discussed in
section 4, the latter changes are expected to be negligible.

In section 3, we calculated the effective index well for a super-Gaussian U (x) (see
equation (15)), as this ansatz permits us to address the role of the abruptness of U (x)
in the efficiency of dynamic confinement. Substitution of equation (15) into equation (5)
demonstrates that, in complete analogy with the Gaussian case p = 1, for every value of
p light propagation depends on the normalized transverse (longitudinal) coordinate x/wU

(znorm = z/w2
U ). Figure 9(a) shows sample solutions u of the equivalent of equation (16) as

p varies, for fixed 3 and U0 . When p is small, the optical modes resemble a Gaussian function,
whereas for large p they are similar to sinusoidal branches, as in slab waveguides. The latter is
confirmed by figure 9(b) showing the degree of confinement versus 3. In fact, when the modal
width wmode is smaller than wU (i.e. for large 3), trapping improves when p is smaller due
to shrinking of the region with a flat 1neff. In the opposite limit of modal widths comparable
with wU , light confinement improves with p owing to sharper peaks near the edges of 1neff

(from equation (15) the peak of the effective index well is roughly proportional to p2). This
interpretation of the p dependence for dynamic light trapping fully accounts for the behavior
of 1neff in figure 9(c), as well. Figure 9(d) graphs the diffraction losses associated with the
quasi-modes: for a fixed p the coefficient ↵ has the same qualitative behavior of the Gaussian
case p = 1, with ↵ diminishing for larger p.

The degree of confinement of the modes computed in figure 9 was also investigated via
BPM, as shown in figure 10. As p increases, the maximum 3 ensuring trapping becomes larger
(see the amplitude peak versus z in figures 10(a)–(d)): in fact, the higher the p, the flatter the
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Figure 9. (a) Quasi-mode profiles u versus x/wU for 3 = 100 µm and p = 2
(red solid line, narrowest profile), p = 4 (black solid line, intermediate width)
and p = 8 (blue solid line, widest profile); the dashed lines are inverted replicas
of the index wells with depth normalized to 1. (b) Normalized width of the
quasi-mode wmode/wU , (c) changes in effective index 1Neff and (d) diffraction
losses ↵ versus period 3 for p = 2 (red line with symbols), p = 4 (black line
with symbols) and p = 8 (blue line with symbols); the dashed lines correspond
to the widest quasi-mode with negligible losses for a fixed p. In (d) the loss
coefficient was calculated for wU = 5 µm. Here U0 = 0.5 and � = 1 µm in all
the simulations.

existence curve of the modes for large 3 (see figure 9(b)). At the same time, the oscillations
along z get bigger with p, even for 3 = 3, the latter ascribable to a larger spectrum �̃ for a given
width. Moreover, even if the average peak appears nearly unaltered along z, small losses occur
in the defocusing regions. The presence of radiated light can be inferred from the calculated
width of the wavepacket along z (figures 10(e)–(h)), with radiation increasing with p, as well.
Finally, figures 10(i)–(l) display the computed intensity evolution in the plane xz for p = 8 and
four 3. Despite the stronger diffraction losses with respect to the Gaussian case p = 1, light is
still confined for 3 up to 33sup, i.e. the Kapitza effect is effective on a larger interval of 3.

4.2. Dependence on longitudinal modulation f (z)

After investigating the role of the transverse profile U (x) on dynamic confinement, we study
how the Kapitza effect depends on the modulation f (z) for a given periodicity. Equation (6)
states that, once U (x) is fixed, the transverse profile of the confining potential does not change
with f (z), the latter acting on the amplitude of the effective well. In this section, we take a
Gaussian U (x) and consider various f (z).

The comparison between different f (z) has to be carried out for a fixed depth U0, the latter
imposed by technological limitations. Comparing, for example, equations (7) (sine modulation)
and (8) for d/3 = 0.5 (square wave) with U0 kept constant, it is clear that the overall amplitude
of 1neff for the square wave is about 16/⇡2 times larger than in the sinusoidal case. Thus, the
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Figure 10. Upper and middle rows: normalized amplitude peak (a)–(d) and
mode width (e)–(h) versus z for p = 1 (a), (e), p = 2 (b), (f), p = 4 (c), (g) and
p = 8 (d), (h), respectively; black and red lines correspond to 3 = 3 and 33sup,
respectively (for the chosen parameters 3 < 3sup is valid). Bottom: contour plots
of light intensity evolution in the plane xz for p = 8 and period 3 equal to 3 (i),
3sup (j), 23sup (k) and 33sup (l), respectively. Here wU = 20 µm, U0 = 0.5 and
� = 1 µm.

quasi-modes are exactly the same if we compare the square wave with U0 = U 0 with a sine wave
featuring U0 = (4/⇡)U 0. Analogous considerations are valid for flat-top modulations when the
role played by the duty cycle d/3 has to be accounted for (see figure 1(b)). BPM simulations
(not shown) indicate that when wavepackets undergo transverse confinement, identical quasi-
modes at the input evolve in a similar manner along z, regardless of the shape of f (z).

To confirm the statements above, we performed numerical simulations as summarized in
figure 11 for various modulations f (z), keeping U (x) constant. From the direct comparison
of figures 11(a)–(c) with figures 11(d)–(f), the dynamics of light propagation with period 3
(see figure 10) indicates a lower 1neff for the sine case than for the square wave case (note that in
figure 11(f) the wavepacket breaks up due to the outstanding narrowness of the quasi-mode). The
comparison between the middle and bottom panels is consistent with the results in figure 1(b),
that is, for d/3 = 0.1 the effective index well is weaker than for d/3 = 0.5. For d/3 = 0.1 the
wavepacket undergoes appreciable diffraction losses for 3 = 30 µm (figure 11(g)), whereas for
3 = 90 µm it is still trapped (figure 11(i)) because condition (4) is satisfied, at variance with
figure 11(f).

4.3. Dependence on input section

As pointed out in section 2.1, the phase fronts of the quasi-modes found via equation (16)
exhibit a periodic curvature versus z (see equation (2)), i.e. the transverse phase is constant only
in specific sections z = const. Otherwise stated, a periodic guide, unlike standard (longitudinally
uniform) structures ensuring static confinement, does not possess longitudinal invariance with
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Figure 11. Comparison between different longitudinal modulations f (z).
Intensity evolution for sinusoidal f (z) (a)–(c), for flat-top f (z) with d/3 = 0.5
(d)–(f) and d/3 = 0.1 (g)–(i), respectively. The period 3 is either 30 µm (a), (d),
(g) or 60 µm (b), (e), (h) or 90 µm (c), (f), (i), respectively. Here wU = 20 µm,
U0 = 0.5 and � = 1 µm.

Figure 12. Light propagation for a quasi-mode launched at different z0. Here
wU = 20 µm, 3 = 30 µm, d/3 = 0.3, U0 = 0.5 and � = 1 µm.

respect to z; hence, in order to minimize coupling/insertion losses, the quasi-mode computed
via equation (16) needs be launched in specific z0, the latter depending on the form of the
periodic f (z). For flat-top modulation, we previously demonstrated that equation (9) is valid;
hereby we test the theoretical prediction by means of BPM simulations. The numerical results
for flat-top modulation with d/3 = 0.3 are visible in figure 12. As predicted by equation (9),
optimum input coupling is achieved for z0 = 0.253 and 0.753. For the other values of z0 the
diffraction losses are apparent, together with an appreciable breathing of the modal profile
versus z. Additional simulations (not shown here) for different ratios d/3 as well as in the
sinusoidal case validate our theoretical approach.

New Journal of Physics 15 (2013) 083013 (http://www.njp.org/)

http://www.njp.org/


17

Figure 13. Modal profiles, normalized to their peak, computed via equation (18)
for � = 1 (a), 0.1 (b) and 0.01 (c), respectively. Each line corresponds to a
period 3, given by 1, 20, 40, 60 and 100 µm, from widest to narrowest profiles,
respectively. We note that in the case 3 = 1 µm the Kapitza effect is almost
uninfluent.

5. Interplay of dynamic and static confinement

So far we assumed no static confinement, as we considered periodic index distributions with a
net zero average contrast. In this section we study the interplay between static and dynamic
confinement in unbalanced z-periodic structures. To this extent, in equation (1) we take a
refractive index of the form

1n(x, z) = ⇥
� + f (z)

⇤
U (x), (17)

where the average of f (z) is still zero. The real coefficient � weighs static versus dynamic index
wells. We stress that equation (17) is not the most general, as we assume the same transverse
profile (U (x)) for both the static and the periodic components of 1n; nevertheless, this
does not hamper the general conclusions while it models realistic geometries (e.g. segmented
waveguides [13–16]).

By looking at equations (2) and (3), it appears that a static component is equivalent
to introducing in equation (3) new terms proportional to z, thus rendering inappropriate the
approach used for f = 0. We can argue that a static (cw) component introduces an extra phase
modulation across x , which in turn adds to the phase stemming from the Kapitza effect, until the
cw portion of 1n appreciably modifies the field profile over a single period 3. Mathematically,
we compute the modes of the structure via

2k0n01�effu = @2u
@x2

+ k2
0

⇥
2� n0U (x) + 1neff(x)

⇤
u (18)

with 1neff still expressed by equation (6). Hereafter, for conciseness we set U (x) Gaussian with
U0 = 0.5 and wU = 20 µm, and f (z) sinusoidal; thus, equation (15) for p = 1 describing the
effective dynamic potential due to the Kapitza effect is valid.

Figure 13 displays the numerical solutions of (18) for three values of � . When � = 1,
the cw and the periodic components have the same amplitude; thus the index contrast never
goes negative, as in segmented waveguides: according to figure 13(a) the Kapitza effect does
not affect the modal profile. Conversely, for lower � (figures 13(b) and (c)) the Kapitza trapping
becomes relevant: the modal profile u undergoes appreciable variations as the period 3 changes;
in particular it shrinks for large 3 in agreement with equation (6).

Next we analyze the shape and stability of the modes using BPM simulations. We start
with the case � ⌧ 1 , i.e. when the dynamic phase is relevant according to figure 14. We choose
� = 0.01 to maximize the dynamic effects. Since the quasi-modes supported by the Kapitza
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Figure 14. Top row: static (red solid line) and complete (static plus dynamic
effects, dashed black line) potential versus x for � = 0.01. Middle row: intensity
evolution in the plane xz when the input field is a solution of equation (18) for
� = 0.01. Bottom: as in the middle but the mode from equation (18) is computed
neglecting the Kapitza effect. From left to right, 3 is 30, 40, 60 and 80 µm,
respectively. Here wU = 20 µm, U0 = 0.5 and � = 1 µm.

Figure 15. Propagation of quasi-modes for � = 1. The periods 3 are 30 (a),
40 (b), 60 (c), 80 (d), 120 (e) and 150 µm (f), respectively.

effect are not perfectly invariant along z, but undergo oscillations and eventually break up for
large 3 (see figure 8), we compare their evolution when the dynamic phase is included (middle
row in figure 14) and when it is neglected (bottom row in figure 14). The results show clearly that
modes are more localized when the Kapitza effect is accounted for, demonstrating the validity
of equation (18). As we found for � = 0 (see figure 11), no localization occurs for large 3 as
condition (4) is not satisfied.

We now examine the case � = 1. The modes are slightly affected by the Kapitza effect
(figure 13(a)), but we need to check whether they break up for large 3, as occurs for small
or vanishing � . Figure 15 shows the typical behavior for various periods 3. For small 3, the
periodic modulation induces only small oscillations along z; for large enough 3, diffraction
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in the low index regions is no longer compensated by focusing in the high index regions,
resulting in strong coupling to radiation. Noteworthy, for even larger 3 the wavepacket acquires
once again a localized structure, even if undergoing strong oscillations along z due to the
simultaneous excitation of several modes. Further increases in period yield loss of confinement.
This is not observed for small � and can be ascribed to resonance effects between multimodal
interference in the guide and longitudinal modulation of refractive index.

6. Conclusions

We have discussed light propagation in guided-wave dielectric structures subject to a periodic
longitudinal modulation of the refractive index distribution. While existing models of segmented
waveguides state that light propagates according to an average index well along z, yielding no
confinement for a vanishing average index contrast, we found that confinement can take place
even in the balanced case owing to a transverse modulation of the wavevector, similarly to the
Kapitza effect in quantum mechanics. Using BPM simulations we discussed light propagation
versus geometric parameters, including the profile of the index well versus x and the form of
the longitudinal modulation along z. We introduced a graphic method to roughly estimate light
trapping and its range of validity within the Kapitza model. In particular, wide wavepackets
are not confined due to strong coupling with diffractive losses to radiation, whereas very
narrow modes break up due to aliasing phenomena. Remarkably enough, several concepts
stemming from our analysis in optics also apply to quantum mechanics where, to the best of
our knowledge, they are a novelty.

Although the experimental observation and demonstration of the proposed new mechanism
for light trapping might be a challenge (particularly in anisotropic dielectrics), table 1 indicates
that dynamic confinement can be accessed for index changes in the range ±0.1–0.5 in
transverse regions of tens of micrometers. These levels of index contrast could be obtained
in semiconductor heterostructures (e.g. AlGaAs composites [28]), in voltage biased electro-
optic crystals or liquid crystals [29]. In the latter, the refractive index profile could be
easily controlled—both transversely and longitudinally—by applying external electric fields
or defining non-uniform boundary conditions [30–33]. The required periods of the longitudinal
modulation are well within those achievable with lithographic techniques. Finally, we studied
the interplay between dynamic confinement (due to the periodic modulation of the index) and
static confinement (due to a cw index contrast), analyzing the role of their mutual interplay
versus waveguide parameters.

We believe our findings pave the way to a new family of optical waveguides and photonic
devices with exotic features and large tunability; moreover, these results can trigger the
investigation of chaos in wave mechanics. The generalization to nonlinear cases can unveil new
kinds of solitons and solitary waves based on the Kapitza effect.
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