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Abstract. In this paper, the effect of post synthesis annealing treatments on a Fe(Se,Te) 

polycrystalline material is evaluated and discussed. The samples have been obtained via 

melting route. The material has been subjected to a high-temperature annealing treatment, 

carried out for 45 h at 680 °C. The role of the cooling step was investigated comparing samples 

obtained after a controlled cooling or after quenching in liquid nitrogen. From a morpho-

structural point of view, the annealing treatment improves homogeneity, with respect to 

pristine samples, and influences secondary phase precipitate morphology. Regarding 

superconducting properties, a key role of the cooling procedure is assessed: controlled cooling 

leads in fact to a significant improvement of high field behaviour with respect to the melted 

material, while quenched samples are characterized by a worsening of the superconducting 

properties. Despite the overall worsening, however, the quenched samples show evidence of 

the presence of superconducting phases characterized by a remarkably high critical temperature 

(Tc > 18 K), observed for these materials only in films or under pressure. 

1.  Introduction 

The discovery of high temperature superconductivity in iron based compounds [1] has led to 

significant efforts in the synthesis of these compounds, thanks to the large critical fields and high 

critical currents that this class of materials exhibits [2,3]. Several groups of Iron Based Superconductor 

(IBSC) compounds have been discovered: these materials share a common structural element, namely 

a layer composed by a square lattice of Fe in tetrahedral coordination with pnictides (P, As) or 

chalcogen (S, Se, Te) atoms. The different structures are then originated intercalating atoms, ions or 

molecules between the layers. 

The Fe(Se,Te) system, the foremost exponent of “11” family [6,7], characterized by a simple 

structure among IBSC and lower toxicity with respect to As-containing compounds, is considered 

interesting for low-temperature/high-field applications thanks to its high critical fields and critical 

current densities. The properties of Fe(Se,Te) superconducting materials have been evaluated by 

several groups, targeting polycrystalline materials, films and single crystals [7]. However, both Fe-Se 

and Fe-Te system are characterized by complex phase diagrams [8,9] and no ternary phase diagram 

has been assessed. To complicate the matter, beside the Se:Te ratio, superconducting properties of 

Fe(Se,Te) system have been linked interstitial iron atoms in the tetragonal lattice [10], a lattice defect 
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that stabilizes tetragonal phase for high Te content. These two issues lead to a difficult interpretation 

of results reported in literature for similar compositions processed through different methods [7]. The 

uncertainties are furthermore enhanced by the reports of multiple phases [11–15] or chemical 

inhomogeneities [16–18] reported for single crystals, supposed to play a role on superconducting 

properties [19,20].  

In this context, the role of the cooling from high temperature, in particular, and its influence on 

morpho-structural and physical properties can be elusive [21]. In our recent work, we observed that 

synthesis of Fe(Se,Te) through melting routes leads to the presence of multi-phase Se-rich precipitates 

in a superconducting tetragonal matrix independently of the cooling rate [22]. A subsequent long-term 

high temperature (680 °C) annealing of melted samples does not lead to the decrease or vanishing of 

these precipitates, suggesting their stability at 680 °C [23].  

In this paper, the effect of a shorter post synthesis annealing treatments on the materials properties 

is evaluated and discussed, and the role of the cooling step on morpho-structural and physical 

properties is investigated and assessed. Bulk solid samples have been obtained through a melting route 

and have been characterized by means of X-Ray diffraction and electron microscopy analysis. 

Superconducting properties have been evaluated by means of electrical and magnetic measurements.  

2.  Experimental 

Polycrystalline Fe(Se,Te) samples were obtained by a melting method as in [23]. Briefly, powder 

mixtures with Fe:Se:Te=1:0.5:0.5 at% (Fe from Sigma Aldrich, >99%, Se from Sigma Aldrich, 

99.99% and Te from Sigma Aldrich, 99.8%) were compressed into pellets and sealed in vacuum in 

quartz vials. The vials were heated up to 1000 °C (1 °C/min) for 4 h and successively cooled to room 

temperature (5 °C/min cooling rate). After the synthesis step, the vials were heated at 680 °C for 45 h. 

After this period, one of the vials was extracted from the furnace and quenched in liquid nitrogen 

(quenched sample), while the other was cooled with a 5 °C/min ramp (controlled cooling sample).  

X-Ray Diffraction (XRD) analysis was carried out on pulverised samples in a Seifert PAD VI 

instrument equipped with a Cu tube and a graphite monochromator on the diffracted beam. Pseudo-

Voigt functions were used to fit peak profiles [24]. Morphological and compositional analysis was 

carried out on polished sections with a Leo 1525 Scanning Electron Microscope (SEM) equipped with 

Oxford x-act energy dispersive spectroscopy (EDS) system. Superconducting characterization was 

carried out by means of electrical and magnetic measurements. Electrical resistance was measured 

using a standard four contacts method on small disks (Ø≈5 mm, h≈1.2 mm) cut from the solid. 

Magnetic measurements were performed by means of an Oxford Instrument Vibrating Sample 

Magnetometer (VSM) on the same samples. Measurements were carried out with the field applied 

perpendicularly to the disk surface. Direct Current (DC) magnetization was measured in Zero Field 

Cooling (ZFC) and Field Cooling (FC) conditions applying a 0.002 T magnetic field.   

 

3.  Results and discussion 

The results of XRD analysis are reported in Figure 1. Both samples exhibit similar multi-phase 

patterns. Main peaks are ascribable to a β-Fe(Se,Te) tetragonal phase. Minor peaks are ascribable to a 

hexagonal-like phase (e.g. δ-FeSe, Fe7Ch8 or Fe3Ch4 [8,9]), characterized by a shift with respect to 

reference positions most likely due to the presence of the mixed chalcogens in the lattice. It is not 

possible to discriminate between a pure hexagonal NiAs phase or its distorted deriving phases (i.e. 

Fe7Ch8 or Fe3Ch4) commonly observed in Fe-Se and Fe-Te systems due to the high similarity of the 

patterns. Comparing the hexagonal-like phase peaks, a slight difference in the position (see inset c of 

Figure 1) can be observed between the two samples, indicating a small difference in the lattice 

parameters. Furthermore, a higher peak intensity in the quenched pattern is evident, likely ascribable 

to a higher relative content of this phase.  
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Figure 1. (a) XRD patterns of the two samples. Numerical labels indicate reflections ascribable to a β-

Fe(Se,Te) tetragonal phase, while * indicate peaks ascribable to a secondary Fe7Se8-like phase; (b), 

detail of the 001 peak (empty circles) with over imposed pseudo-Voight fit (dashed lines); (c) detail of 

the experimental patterns in the 27-33 ° region, showing the shift of the Fe7Se8-like phase peak. 

Observing in detail the tetragonal phase peaks, a high angle shoulder or in some cases peak 

splitting is observable. This evidence, reported in particular for the 001 reflection in the inset b of 

Figure 1, suggests the presence of multiple tetragonal phases characterized by a different chemical 

composition. Se:Te ratio influences in fact significantly lattice parameter c [6], often taken as 

reference to evaluate chemical composition and homogeneity in these materials [21]. To further 

analyze this result, the 001 peak was fitted with two pseudo-Voigt functions, to consider respectively 

the main peak and the high angle component. The results of the analysis are reported in Table I. Both 

samples are characterized by a similar position of the two peaks, while a significant difference can be 

observed instead in the peak width values. This suggests that both samples are characterized by the 

presence of tetragonal phases with similar average Se:Te ratio, and that these phases are characterized 

by a higher chemical homogeneity in the quenched sample. 

 

Table I: position (2θ) and Half Width at Half Maximum (HWHM) of the β-Fe(Se,Te) 001 reflection 

peaks as obtained by pseudo-Voight fits: 

Sample Peaks 2θ (°) HWHM (°) 

Controlled cooling Main peak 14.71 0.09 

 High angle component 15.22 0.37 

Quench Main peak 14.73 0.06 

 High angle component 15.26 0.07 
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Figure 2. SEM images (back-scattered electrons) of the controlled cooled (a) and of the quenched (b) 

samples polished sections. 

The morphology of the sample sections is depicted in Figure 2. Both samples are characterized by 

the presence of dendritic precipitates of similar shape in a matrix, confirming what previously 

observed in sample obtained by similar melting routes [22,23].  

Observing in detail the precipitate morphology, reported in Figure 3, the images allow to 

distinguish in both sample similar phases: the light grey matrix (A), and a dark (B) and an intermediate 

grey region (C) in the precipitates. The fine morphology of the precipitates is different between the 

two samples: the controlled cooled sample is characterized by the presence of smooth and curved 

lamellae of the alternated B and C phases. The quenched sample precipitates exhibit a dark grey 

defined border region and dark grey needle like structures that respectively surround and intersect the 

intermediate grey region.  

To gain further insight on the observed morphological features, EDS analyses were carried out on 

the different areas, and the results are summarized in Figure 4. As evident by the figure, the three 

different regions are characterized in both samples by similar compositions. Regions A and B possess  

a Fe:Chalcogen ratio ≈1, indicating a tetragonal structure, while region C is characterized by an iron 

deficiency, compatible with a Fe7Ch8 composition. The matrix is rich in tellurium (Se:Te~ 0.8), while 

the precipitates (region B and C) are characterized by a Se enrichment (Se:Te ~2.5).  

The correlation between XRD and SEM/EDS results, to define the samples structure and 

composition, is quite straightforward. The matrix A corresponds to the main tetragonal phase, with B 

regions responsible for the high angle component of the tetragonal phase diffraction peaks. C regions, 

as suggested by its chemical composition, correspond finally to the hexagonal-like phase. 

 



14th European Conference on Applied Superconductivity (EUCAS 2019)

Journal of Physics: Conference Series 1559 (2020) 012053

IOP Publishing

doi:10.1088/1742-6596/1559/1/012053

5

 

 

 

 

 

 

 
Figure 3. SEM images (back scattered electrons) of the details of the precipitates in the (a) controlled 

cooled and (b) quenched samples. A, B and C mark three different regions corresponding to the matrix 

(A) and to the precipitates tetragonal (B) and hexagonal (C) phases respectively.  

 

 
Figure 4. Summary of the results of EDS analyses carried out on the different samples regions (see 

text for details). 
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Figure 5. electrical resistance as a function of the temperature. 

 

The electrical behaviour of the samples is depicted in Figure 5. Both samples are characterized by 

an initial moderate rise of the electrical resistance when cooling down from room temperature, and a 

metallic behaviour (dR/dT>0) at lower temperature, with some differences in the temperature 

corresponding to the maximum of the curves, respectively approximately 150 K and 100 K for the 

controlled cooled and quenched samples. At low temperature, both samples exhibit a superconducting 

transition.  

The detail of the superconducting transition is reported in Figure 6. As evident in Figure 6a, the 

controlled cooled sample is characterized by a linear decrease down to approximately 15 K, followed 

by a sharp decrease of the electrical resistance, with a zero critical temperature of approximately 

13.6 K. The quenched sample instead shows a broad and multi-step superconducting transition. The 

derivative of the electrical resistance is reported in Figure 6b. Comparing the curves, it can be 

observed the sharpness of the controlled cooling sample transition, and the multi-modal nature of the 

transition of the quenched sample. The latter is in fact characterized by a high temperature shoulder 

and a main peak at around 13 K. Considering the high temperature part, the resistance starts to 

decrease at approximately 19 K, and a significative portion of resistance drop is observed already 

above 16 K.  

In the case of the controlled cooled sample the superconducting phase responsible of the measured 

electrical transition is the matrix, with the tetragonal phases of region B characterized by a lower Tc 

[23]. The case of the quenched sample seems different: as we observed previously, a high temperature 

quench process causes a worsening of the critical temperature of a melted sample [22], with a zero 

resistance temperature that drops from 14 K to less than 12 K. In the quenched sample we can 

recognize this effect on the matrix. In our previous quench studies, carried out directly on melted 

samples, we couldn’t observe however such a high transition onset: this indicates that the annealing 

treatment plays a key role in this. The presence of high Tc superconducting phases occurs therefore 

when a high degree of homogeneity, induced by the high temperature annealing, is coupled to a rapid 

cooling step.  
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Figure 6. details of the superconducting transition: (a) electrical resistance and (b) resistance 

derivative as a function of temperature. 

Results of the magnetic characterization are reported in Figure 7. In Figure 7a the magnetization 

measured in ZFC and FC conditions is depicted as a function of temperature. It can be observed that 

both samples exhibit a superconducting transition at low temperature. The controlled cooling sample is 

characterized by a dual transition, with a sharp onset at approx. 14 K and a second drop starting at 

approx. 8 K. The quenched sample is characterized by a smooth and broad transition and exhibits a 

smaller shielded volume with respect to the controlled cooling sample. The comparison between the 

curves shows that a slow cooling influences positively the amount of superconducting phase in the 

material. 

The curve of the controlled cooling sample is quite similar to the one previously observed for a 

longer annealing treatment [23], suggesting that the structuration of the two rather distinct 

superconducting phases occurs during the first hours of the annealing treatment. We can assume the 

matrix responsible for the higher temperature superconducting transition, while the lower temperature 

transition is ascribable to the Se-rich tetragonal phase in the precipitates. Regarding the quenched 

sample, instead, a multiple superconducting transition is not observed. This suggests that the amount 

of volume of the superconducting phase responsible for the high onset in the resistive transition is 

quite small.  

In Figure 7b the hysteresis loops measured at 4.2 K are reported. The controlled cooling sample is 

characterized by a wide and open hysteresis, with a clear fish-tail effect showing a second peak in the 

magnetization loop at approx. 8T. The quenched sample, on the contrary, shows a significantly 

narrower curve, with clear evidences of an underlying non superconducting magnetic phase.  
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Figure 7. Results of the magnetic measurements. (a) superconducting transitions and (b) hysteresis 

loops at 4.2 K. 

4.  Conclusions 

Polycrystalline samples of FeSe0.5Te0.5 (overall composition) obtained by melting methods are 

characterized by the presence of multi-phase Se-rich precipitates in a tetragonal Te-rich matrix. 

Morphology and phase composition of the precipitates are greatly influenced by a high temperature 

annealing treatment, and in particular by the final cooling step.  

Samples obtained by a controlled cooling after a 680 °C heat treatment are characterized by the 

presence of smooth lamellae of alternating hexagonal and tetragonal phases, while quenching leads to 

tetragonal-hexagonal core-shell structure with inclusions of tetragonal needle-like features. As a 

further difference, quenching leads to an overall higher amount of hexagonal-like Se-rich secondary 

phase, suggesting that this phase is stable at high temperature and tends to decompose during the 

cooling.  

Regarding superconducting properties, the controlled cooling leads to samples exhibiting sharp 

transitions and wide magnetic hysteresis loops. On the contrary, the quenched sample is characterized 

by broader transitions, narrow hysteresis loops and the significant presence of magnetic non 

superconducting phases. This suggests that the solid state reactions and rearrangements occurring 

during the cooling step are mandatory to achieve good superconducting properties in bulk FeSe0.5Te0.5 

samples.  

Finally, it is worth noting that despite the overall worse superconducting properties of the quenched 

sample with respect to the controlled cooling, the resistive transition of the quenched sample is 

characterized by an extremely high transition onset (Tconset ~ 19 K), commonly observed in Fe(Se,Te) 

materials only for films or under pressure. It could be assumed therefore that the quenching procedure 
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induces stress such to enhance the critical temperature or preserves some particular phase, stable at 

high temperature, characterized by this high critical temperature. 
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