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ABSTRACT

A large volume of low signal-to-noise, multidimensional data is available from the CCD imaging spectrometers
aboard the Chandra X-Ray Observatory and the X-Ray Multimirror Mission (XMM-Newton). To make progress ana-
lyzing this data, it is essential to develop methods to sort, classify, and characterize the vast library of X-ray spectra in
a nonparametric fashion (complementary to current parametric model fits). We have developed a spectral classifi-
cation algorithm that handles large volumes of data and operates independently of the requirement of spectral model
fits.We use provenmultivariate statistical techniques including principal component analysis and an ensemble classifier
consisting of agglomerative hierarchical clustering andK-means clustering applied for the first time for spectral classifi-
cation. The algorithm positions the sources in amultidimensional spectral sequence and then groups the ordered sources
into clusters based on their spectra. These clusters appear more distinct for sources with harder observed spectra. The
apparent diversity of source spectra is reduced to a three-dimensional locus in principal component space, with spectral
outliers falling outside this locus. The algorithm was applied to a sample of 444 strong sources selected from the 1616
X-ray emitting sources detected in deep Chandra imaging spectroscopy of the Orion Nebula Cluster. Classes form se-
quences inNH, AV , and accretion activity indicators, demonstrating that the algorithm efficiently sorts the X-ray sources
into a physically meaningful sequence. The algorithm also isolates important classes of very deeply embedded, active
young stellar objects, and yields trends between X-ray spectral parameters and stellar parameters for the lowest mass,
pre–main-sequence stars.

Subject headinggs: methods: statistical — open clusters and associations: general — stars: early-type —
stars: pre–main-sequence — X-rays: stars

Online material: color figure, machine-readable table

1. INTRODUCTION

Chandra X-Ray Observatory (Weisskopf et al. 2002) stud-
ies often involve X-ray source populations with hundreds or thou-
sands of members. Significant Chandra surveys to date include
deep Galactic (Brandt & Hasinger 2005) and Galactic center
(Muno et al. 2003, 2006) surveys, the Chandra Multiwave-
length Project (ChaMP; Kim et al. 2004), and nearby galaxies
(Kilgard et al. 2001). In addition, the XMM-Newton European
Photon Imaging Camera (EPIC) catalog5 already contains over
100,000 sources.

A substantial fraction of observing time has been devoted to the
study of rich young stellar clusters. These observations have built
on results from the earlier Einstein Observatory, Röntgensatellit
(ROSAT ), andAdvanced Satellite for Cosmology andAstrophysics
(ASCA)missions, demonstrating that strongX-ray emission is a de-
fining characteristic of pre–main-sequence (PMS) stars (Feigelson
&Montmerle 1999). Automated spectral classification and analy-
sis is needed to sort and classify the vast database of X-ray spectra
that have been collected by theCCD imaging spectrometers aboard
Chandra andXMM-Newton, to characterizeX-ray spectra in a non-
parametric fashion (complementary to current parametric model

fits), and to discriminate spectroscopically between various known
classes of emission (stellar coronal emission, accretion, winds,
shock fronts, and extragalactic contaminants).

A typical Chandra charge-coupled device (CCD) observation
of a young stellar cluster results in detection of X-ray emission
from tens to hundreds of very young stars. The foremost example
of such an observation is the Chandra Orion Ultradeep Proj-
ect (COUP; Getman et al. 2005b), an �838 ks exposure of the
Orion Nebula Cluster (ONC) obtained over a nearly continu-
ous period of 13.2 days in 2003 January (Fig. 1). The COUP data
set represents the most sensitive and comprehensive descrip-
tion of X-ray emission from a PMS star cluster (Getman et al.
2005a; Feigelson et al. 2007). Chandra has resolved more than
1600 X-ray emitting sources in the COUP image of the ONC
(Fig. 1), ranging from X-ray sources associated with the massive
Trapezium stars (Stelzer et al. 2005), to a Herbig-Haro object at
the tip of a collimated outflow (Grosso et al. 2006), to the low-
mass stars embedded within externally illuminated structures that
are presumably planet-forming circumstellar disks (Kastner et al.
2005).

A new set of problems has been uncovered by the X-ray im-
aging observations of young stellar clusters. Among the challenges
and puzzles are the following:

1. Only weak trends have been found when attempting to cor-
relate model parameters derived from spectral fitting of individual
sources with stellar properties (e.g., X-ray luminosity and X-ray
temperature with stellar photospheric temperature; Preibisch et al.
2005).

2. The relationship between PMS accretion and X-ray emis-
sion is not simple. X-ray luminosities of accretors are systemati-
cally lower than those of nonaccretors (Preibisch et al. 2005), and
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short-lived optical variations suggestive of accretional events do
not seem to be accompanied by X-ray variations (Stassun et al.
2006). But accretors show soft excesses and spectral line signa-
tures suggestive of emission in an accretion column rather than a
coronal magnetic loop (Kastner et al. 2002; Telleschi et al. 2007),
and strongly enhanced hard X-ray emission can accompany sus-
tained accretion bursts (Kastner et al. 2004, 2006).

3. Avery wide range of temporal behavior has been observed,
ranging from rotationalmodulation to short, episodic X-ray bursts,
to explosive X-ray flares with decays of many hours interfilled by
hard quasi-constant emission attributed to smaller flares (Flaccomio
et al. 2005; Wolk et al. 2005; Favata et al. 2005).

4. Approximately 18% of the 1616 detected X-ray sources in
and around theONC have no visible or infrared (IR) counterparts;
many of these are background (extragalactic) sources (Getman et al.
2005a), but some are very deeply embedded protostars (Grosso
et al. 2005).

The identification of X-ray spectral classes would greatly fa-
cilitate progress on these and other problems. For example, an au-
tomated spectral classification tool may aid in finding additional
PMS accretors within this large volume of data for further study.
To take advantage of the vast collection of high spatial resolution
CCD spectral data now being acquired by Chandra requires the
use of objective,model-independentmethods for spectral grouping
of X-ray sources in young star clusters, as opposed to fitting phys-
ical models to individual source spectra. The latter approach is es-
sential for understanding the physics underlying individual, bright
X-ray sources; however, it is an inefficient method for analyzing
and classifying sources detected in the large data sets generated
by observations of rich stellar clusters. Furthermore, once grouped
spectrally, sources within the same spectral group may be suffi-
ciently similar as to be treated identically (and perhaps analyzed
en masse) for the purpose of further spectral analysis employing
physical models.

The use of statistical clustering techniques and pattern recogni-
tion on spectral data is not new to astronomy. The literature in op-
tical spectroscopy is diverse, including recent efforts of mainly
supervised approaches using axis-parallel decision trees (Ball et al.
2006), mixture models (Bazell &Miller 2005), mixture models
combined with neural networks (Qin et al. 2003), and indepen-

dent component analysis (Lu et al. 2006). In addition,many studies,
too numerous to list here, utilize neural networks orBayesian clas-
sifiers for object classification.
McGlynn et al. (2004) developed an X-ray source classifier

called ClassX that works with ROSAT data. The classifier is a su-
pervisedmethod that requires labeled data frommultiple databases.
It categorizes sources according to their physical basis into one
of six categories: stars, galaxies, white dwarfs, X-ray binaries, ac-
tive galactic nuclei, and clusters of galaxies. ClassX has also been
usedwith SloanDigital SkySurvey (SDSS) data after the classifier
was suitably trained on SDSS objects whose nature was precisely
known (Suchkov et al. 2005).
Examination of the X-ray spectral properties of a group of

sources via analysis of X-ray hardness ratios (HRs) is common
practice inX-ray astronomy. Awide variety of instrument-specific
definitions of HRs exist; multiple definitions can exist even for a
given telescope-detector combination.More importantly, the band
definitions underlyingHRs are generally developedwithout regard
to optimizing the selection of spectral bins or to applying non-
uniform weighting to spectral bins within these (somewhat arbi-
trarily) defined bands. Amultivariate statistical technique, principal
component analysis (PCA; Jolliffe 1986; Jackson 1991), may ef-
fectively provide a means to automatically define optimal spectral
band definitions from the data itself, rather than imposing bands
or colors on the data.
We are exploring combinations of PCA and unsupervised clas-

sification schemes to sort and groupX-ray sources based solely on
their spectral attributes. Our technique (Hojnacki 2005) employs
PCA to reduce dimensionality of spectral bands for subsequent
classification. PCA has been applied to optical spectra for galaxy
classification (e.g., Connolly et al. 1995; Bromley et al. 1998;
Folkes et al. 1999) and optical and UV spectra for quasar classi-
fication (e.g., Boroson & Green 1992; Yip et al. 2004; Suzuki
2006). In the only previous model-independent X-ray spectral
classification study that employed PCA, Collura et al. (1995) suc-
cessfully demonstrated a method to group X-ray sources detected
with theEinsteinObservatory ImagingProportionalCounter (IPC).
Their method distinguishes between stellar sources and extraga-
lactic sources, despite the severely limited spectral and spatial reso-
lution and energy rangeof theEinstein IPC relative to contemporary
X-ray CCD detectors.
We describe a novel X-ray source classification method devel-

oped for application to CCD spectra and originally applied to
Chandra archival data (Hojnacki & Kastner 2004). In contrast to
previous methods (e.g., ClassX), our method is an unsupervised
technique that uses only rawX-ray CCD spectral data to find nat-
ural spectral groupings.Ourmethod provides the ability to sort and
classify X-ray sources in rich fields without a priori information as
to their nature, thereby guiding and/or fine-tuning downstream
automated fitting of physical source models. In addition, we pres-
ent a study of the X-ray, optical, and IR properties of the X-ray
spectral classes identified in the COUP subsample, the results of
which will aid in deriving the nature of populations of X-ray
sources in other PMS clusters. The method has been applied to
young stellar objects with the goal of a deeper understanding of
X-ray emission from PMS stars, but is not limited to this par-
ticular application.
Section 2 outlines the preparation of the COUP data. Section 3

describes the source classification algorithm. Additional detailed
information for these two sections is contained inHojnacki (2005).
Results of running the algorithm on the COUP data set are pre-
sented in x 4, followed by an analysis and discussion of the results
in x 5. We present a summary in x 6.

Fig. 1.—Chandra image of the ONC from the COUP observation (Getman
et al. 2005b). More than 1600 X-ray emitting sources have been detected in
this image. [See the electronic edition of the Journal for a color version of this
figure.]
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2. DATA PREPARATION

Data from the COUP (Getman et al. 2005b) observations
(ObsIDs 4395, 3744, 4373, 4374, 4396, and 3498) of the ONC
were used as the input data set for development of theX-ray source
classification algorithm. The 838 ks total exposure consists of six
consecutive exposures. A gap of 29 ks exists between exposures
due to removal of the Advanced CCD Imaging Spectrometer
(ACIS) from the Chandra boresight during five passages through
the Van Allen belts during this period.

Getman et al. (2005b) describe in detail the fundamental data
reduction performed on the 1616 source COUP data set. This data
reduction included extracting valid events, detecting sources, flag-
ging potential source detection problems and/or artifacts, and de-
riving source X-ray properties from fits of one- or two-component
thermal plasma models with intervening absorption.

A subset of the COUP sources detected and analyzed byGetman
et al. (2005b) was selected for use in developing and testing the
algorithm described here. Specifically, sources in the COUP data
set that were flagged as a double source, a pileup source, and/or
in a source extraction region crossing a bright source readout trail
were eliminated from the sample. Sourceswith less than 300 counts
were also eliminated, to restrict the sample to those with higher
signal-to-noise CCD spectra. This resulted in a sample of 444
sources for which high-quality ACIS spectra could be drawn from
the COUP data set. Photon counts due to local background were
subtracted from the spectrum for each source. Figure 2 shows the
brightness distribution of the subset of 444 COUP sources.

With the expectation that most sources of interest to our re-
search (i.e., young stars) will exhibit emission-line spectra char-
acteristic of ionized plasma, the 0.4–8.2 keVspectrawere rebinned
into a number of non-overlapping spectral bands (see Appendix).
Band locations and widths were defined based on hardware con-
straints, being careful not to bisect key emission features. Finally,
the source spectra were normalized to the maximum number of
counts obtained for the brightest source within the sample.

3. X-RAY SOURCE CLASSIFICATION ALGORITHM

Once the spectra were binned intoX-ray bands and normalized,
the algorithm was run without the use of models or a priori infor-
mation. The source classification algorithm consists of the follow-
ing steps: PCA, agglomerative hierarchical clustering (Johnson &
Wichern 2002), andK-means clustering (Johnson&Wichern 2002).

3.1. Spectral Dimension Reduction

A nonlinear monotone transformation (Kruskal 1964) was per-
formed on the input data to reduce nonlinearities and thereby pre-
pare the data for the subsequent dimension reduction. PCAwas
then used to reduce the dimensionality in the data set by identify-
ing X-ray spectral bands that are most discriminatory based on
their contribution to the variance over the entire data set. This new,
smaller set of uncorrelated variables is called the principal com-
ponents (PCs), which together explain all or nearly all of the total
variance in the data set. Each principal component is described
by a linear combination of the original input variables, called an
eigenvector. The variance accounted for by a component is called
an eigenvalue. Clusters that are evident in PC space can indicate
distinct subgroups within the data set.

Several stopping rules were applied to determine the number of
principal components to retain for the clustering analysis (Hojnacki
2005). We applied Levene’s statistical significance test for homo-
geneity of the eigenvalues (Levene 1960), Horn’s stopping rule
(Horn 1965), Jolliffe’s broken stick stopping rule (Jolliffe 1986),
the average root rule (Jackson 1991), and the scree test (Cattell

1966). These tests indicated that out of the 42 principal compo-
nents, two to four principal components are sufficient to represent
the variability in the data set. Hence, we chose four principal com-
ponents to retain for the ensuing clustering steps. The variance ex-
plained by these four components is 62.3%, 30.7%, 2.2%, and
1.9%, representing 97.1%of the total variance in the data set. Plots
of the eigenvectors that correspond to these first four components
are shown in Figure 3. The x-axis of the eigenvector plots corre-
sponds to the 42X-ray spectral bands (see Appendix). The y-axis
corresponds to the eigenvector coefficient (arbitrary units). Note
that the sign of the eigenvectors is arbitrary.

As can be seen in Figure 3, the first eigenvector peaks sharply
at �1 keV and becomes negative for energies >1.5 keV. Hence,
large positive values of PC1 could be interpreted as indicative of
sources with the softest X-ray spectra, while large negative values
of PC1 would correspond to the hardest sources. The peak in the
second eigenvector is broader and is shifted to a slightly higher en-
ergy than that of the first eigenvector (�1.5 keV); the value of this
eigenvector also remains nearly zero (less negative than PC1) for
energies >2.5 keV. Hence, large values of PC2 are indicative of
sources with intermediate spectral hardness. The sources with the
hardest observed spectra will have negative values of PC1.

The plots of the third and fourth eigenvectors indicate that large
values of PCs 3 and 4 could be indicators of sources that have both
soft and hard X-ray components. The hard X-ray component indi-
cated by larger values of PC4 is broader and of higher energy than
that of PC3.

3.2. Source Clustering

Two unsupervised classification methods—agglomerative hier-
archical clustering and K-means clustering—were applied follow-
ing PCA in an attempt to determine a ‘‘natural’’ partitioning of the
data set into a number of relatively homogeneous groups (or
‘‘classes’’) of X-ray sources. An agglomerative hierarchical clus-
tering method based on Euclidean distance and complete linkage
(Johnson&Wichern 2002)was used on the first four principal com-
ponents generated from the X-ray source spectra. The Euclidean
distance valueswere calculated for each intermediate amalgamation
step between successive mergers of the groups. To determine the
final number of groups, the pattern of changes in the distance value
was examined to find a large jump in the metric between amal-
gamations. The number of groups in the final clustering must be
logical for the data set. For example, if the partitioning results in
a large number of groups relative to the number of sources, then
many groupswill likely be small and indistinct. If too few groups
are chosen, then the groupsmay be very large and inhomogeneous
(Collura et al. 1995). The resulting dendrogram indicates where

Fig. 2.—Distribution of net counts for the 444 source sample.
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and how the source sample was broken into groups. For our 444
source COUP subsample, this procedure yielded 17 groups in the
final partition.

The class assignments resulting from the hierarchical cluster-
ing were used as the initial partition for the K-means cluster-

ing. Each source was examined and assigned to the group with
the nearest centroid (multidimensional mean) in PCA space. In
some cases, this resulted in a source being reassigned to a new
group, after which the centroids were recalculated for the group
receiving the reassigned source and for the group losing the source.
This process was repeated until no further reassignments took
place.

4. RESULTS

A score plot of the first two principal components is shown in
Figure 4. Since these two principal components explain most of
the dispersion in the data, the score plot of PC2 versus PC1—
which is somewhat analogous to a color-color diagram for these
spectral data—reveals the most information about the subsequent
clustering that was performed on the results of the PCA (x 3.1).
The plot shows that nearly all of the PMS stars in the input sample
lie in a single spectral sequence, with the notable exception of
classes 1 and 17. However, the higher numbered classes do not ap-
pear to be physically distinct in this 2D score plot. The separation
in the classes is more readily seen when this PC2 versus PC1 plot
is rotated about the PC2 axis (see Fig. 5). There is curvature in the
third dimension (PC3) that can be seen in the sequence of plots in
Figure 5. We analyze this structure further in xx 5.1 and 5.3.
Class sizes range from1 source to 88 sources. Visual inspection

of source spectra as grouped by the algorithm described in x 3
makes apparent that there are strong spectral similarities within a
given class, while fundamental spectral differences can be seen be-
tween classes. The average spectrum for each of the 17 classeswas
calculated to illustrate the overall shapes of theX-ray SEDs of each
class (Fig. 6). The only source in class 17 is readily distinguished
from the other 443 sources by its position near the center of the
horseshoe in the score plot (Fig. 4). This source, COUP 948, has
a double-peaked SED (see Fig. 7) that is unique among the sample
of 444 sources considered here (see x 5.3.3).
It is apparent fromFigure 6 that the progression of classes mov-

ing clockwise around the horseshoe-shaped curve in the score plot

Fig. 4.—Plot of the first two principal components with the source classes shown. The class numbers increase clockwise around the horseshoe-shaped curve. Nearly
all of the X-ray sources in the input sample lie in a single spectral sequence. Class 17 consists of one outlier.

Fig. 3.—Eigenvector plots for the four principal components. The x-axis cor-
responds to the 42 X-ray spectral bands. The y-axis is the eigenvector coefficient.
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(Fig. 4) forms a sequence of decreasing spectral hardness. The
lowest numbered classes contain sourceswith the hardest observed
spectra. These classes are also more easily separated visually in
this plot of only the first two principal components.

Closer examination of Figures 4 and 6makes apparent that the
three principal regions of the horseshoe in the PC2 versus PC1
score plot correspond to three fundamentally different groups of
X-ray SEDs that are present in the 444 source COUP sample stud-
ied here. Classes 1–6 form a sequence of very hard spectra with
decreasingly prominent Fe line emission in the 6.4–6.7 keV re-
gion as onemoves ‘‘up’’ (increasing PC2) the left side of the horse-
shoe. These Fe line complexes are especially strong and broad in
the average spectrumof class 1 and, to a lesser extent, class 2, both
ofwhich are readily separated from the ‘‘mass’’ of hard sources on
the left side of the score plot. Classes 7–11 display SEDs with
strong peaks at �1.5 keV and prominent high-energy tails. The
softest X-ray spectral classes, 12–16, have SEDs that peak at
�1.0 keV. The strength of this peak relative to the (weak) high-
energy tails in the average spectra of these classes increases as one
moves ‘‘down’’ the right side of the horseshoe in Figure 4.

4.1. Relationship of X-Ray Spectral Classes
to COUP X-Ray Hardness Ratios

A plot of X-ray hardness ratios (HRs) for the 444 source sub-
set is shown in Figure 8. Five subbands were defined for COUP:
0.5–1.7 keV (s1), 0.5–2.0 keV (s2),1.7–2.8 keV (m), 2.0–8.0 keV
(h1), and 2.8–8.0 keV (h2) (Getman et al. 2005b). The three COUP
hardness ratios are then defined as HR1 ¼ (h1 � s2)/(h1 þ s2),
HR2 ¼ (m� s1)/(mþ s1), and HR3 ¼ (h2 � m)/(h2 þ m). HR1
represents a broadband hardness ratio, while HR2 is used to mea-
sure the softer part of the X-ray spectrum and HR3 the harder part
of the X-ray spectrum (Getman et al. 2005b).

The class sequence identified via the algorithm described in
x 3 appears more or less in the same sequence in the HR3 versus
HR2 diagram of Figure 8, with the sources having the softest ob-
served spectrum (highest numbered classes) found at the lower
left of the Hertzsprung-Russell (H-R) diagram, and the sources
having the hardest observed spectrum found at the upper right.
However, in contrast to the PC2 versus PC1 score plot, no distinct
source clusters are apparent in the HR3 versus HR2 plot, and
source classes that are tightly clustered in the score plot are more
spread out in the HR3 versus HR2 plot. Note in particular that
class 1 sources, which are all found along the upper range of HR3,

display a wide range of HR2, and that the distributions of class 2
and 3 sources merge together in the H-R plot.

5. ANALYSIS

5.1. Simulated versus Observed Data

To aid in the interpretation of the PC2 versus PC1 score plot
(Fig. 4), simulations of X-ray spectral data were performed using
XSPECversion 12.2. Themodel input to the simulations consisted
of thermal plasma emission plus intervening absorption. The ther-
mal plasma temperature kTwasvaried from0.26 to 8.6 keVin steps
of 0.86 keV, and the hydrogen column density, log NH(cm

�2), was
varied from 20.5 to 23.5 in steps of 0.5, resulting in 84 unique
models. The simulated spectra were run through the same spec-
tral classification algorithm applied to the 444 source COUP sub-
sample. The resulting 2D principal component plot showing PC2
versus PC1 is shown in Figure 9, where the simulations are super-
imposed on the distribution of COUP sources. Only 49 of the 84
simulations are shown here for clarity. The simulated sources are
represented as solid diamonds and are labeled with their log NH

values; simulated sources of equal kT are connected by lines.
The distribution of simulated X-ray sources in PC-space repro-

duces the fundamental shape of the horseshoe-like distribution
formed by the COUP subsample. Moving clockwise around the
horseshoe, the simulations form a sequence of monotonically de-
creasing log NH, from 23.5 in the extreme lower left of the score
plot to 20.5 in the lower right. This indicates that the position of
a COUP source on the horseshoe is determined largely by the
degree of its obscuration by intervening cloud or circumstellar
material.

The importance of log NH to the membership of the source
classes is particularly apparent along the left side of the horseshoe
in this plot. In particular, the only simulations that can reproduce
the position of the distinct grouping that forms class 1 are those for
which log NH ¼ 23:5. It is also evident, however, that the posi-
tions of class 1 sources cannot be reproduced by low-temperature
plasma emission (kT � 0:5 keV).At the other extreme, the higher
numbered classes (14–16) appear to form a sequence of decreas-
ing plasma temperature, indicating that temperature ismore impor-
tant than intervening absorption in determining the positions of
these sources in the PC2 versus PC1 plot. Note that X-ray sources
from the COUP subsample do not fall along the temperature lines
for kT ¼ 0:26 keV in the PC2 versus PC1 plot. This could be in-
terpreted as a lack of such soft X-ray emission from sources in the

Fig. 5.—Sequence of two plots showing rotation of PC2 vs. PC1 plot about the PC2 axis. The curvature and depth in the third dimension (PC3) can be seen in these plots.
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Fig. 6.—Average observed X-ray spectra for 16 of the 17 classes. The class number is shown in the upper right corner of each plot. The trend of decreasing spectral
hardness with increasing class number can be seen in these plots. (See Fig. 7 for class 17.)



ONC. At the same time, few sources lie along the temperature
lines for kT ¼ 8 keV. Indeed, simulations with kT greater than
0.26 keV but less than 4 keV bound the majority of the data set.

Moving clockwise in the PC2 versus PC1 plot (Fig. 9), the
spread in theCOUP subsample in classes 4, 6, 7, and 8 ismimicked
by the model distribution: the model lines ‘‘fan out’’ such that the
lines for kT ¼ 0:86 and 4.3 keVappear to describe the (relatively
wide) spread in the observed distribution at the upper left of the
horseshoe. At this point in the horseshoe, it appears the sources
are characterized by very uniform logNH (�22.5).

5.2. Relationship of X-Ray Spectral Classes
to Fundamental Stellar Parameters

5.2.1. Correlation of X-Ray and Optical Spectral Types

The H-R diagram for the 444 COUP sources studied here is
shown in Figure 10. The sources are color-coded with their X-ray
spectral classes as determined by the X-ray source classification
algorithm. TheLbol, Teff, and spectral type datawere obtained from
Getman et al. (2005b). Figure 10 demonstrates that the vastmajor-
ity of the sources found in the higher numbered classes are optically
identified late-type (K andM) stars. For example, in classes 11–16,
spectral-type data exist for 223 out of 282 sources, and�96% of
these 223 sources are K- and M-type stars.

Furthermore, the six classes in Figures 10b and 10c appear to
occupy slightly different regions in the H-R diagram, showing a
trend of decreasing Teff with increasing X-ray spectral class num-
ber. This is most evident in class 16, where the sources are clumped
in the lower right part of the main sequence. Hence, these diagrams
show a trend of increasing spectral softness with decreasing effec-
tive photospheric temperature for X-ray sources in the COUP sub-
sample. A similar trend is hinted at in Figure 12 of Preibisch et al.
(2005).

5.2.2. X-Ray Sources Associated with A and B Stars

There are six X-ray sources in our COUP data subset that cor-
respond to intermediate-mass (A or B) stars. These sources are
labeled on theH-Rdiagram (Fig. 10)with their COUP source num-
bers. All six of these sources are found in X-ray spectral classes 14,
15, and 16, which are associated with the softest observed X-ray
spectra. Five of these sources, numbered 100, 113, 869, 1360,
and 1415, have been included in a study by Stelzer et al. of the
X-ray properties of O, B, and A stars (Stelzer et al. 2005). For
four of these five sources (100, 113, 1360, and 1415), Stelzer et al.
conclude that the X-rays are being emitted by low-mass compan-
ions to the A-type and B-type stars found in optical spectroscopy.
These conclusions were based primarily on theX-ray luminosities
and variability properties of these sources. For these four sources,

Fig. 7.—Observed X-ray spectrum of COUP 948, the only source in X-ray
spectral class 17.

Fig. 8.—Hardness ratio diagram for the COUP 444 subset, excluding COUP 647 (no HR2 data available).

X-RAY SOURCE CLASSIFICATION ALGORITHM 591



our spectral analysis therefore supports the contention that the
X-rays originate from late-type companions. In the case of COUP
869, Stelzer et al. concluded (based on apparent lack of variabil-
ity) that the X-ray emission originates with the small-scale wind
shocks of the massive B-type star itself. However, our X-ray
spectral classification algorithm places COUP 869 in class 16,
which is dominated by soft-spectra M-type stars, suggesting that
its X-ray emission may also originate with a late-type compan-
ion. The other OB stars in the COUP observation are not part
of our subsample, due to heavy pileup. Analysis of algorithm
results on these and other OB stars will be described in a future
paper.

5.2.3. X-Ray Properties versus Optical /Near-IR Properties

Clustering results were comparedwith known optical and near-
infrared properties of the population of the ONC to assess the al-
gorithm’s ability to identify groups of sources that share common
attributes. Table 1 lists the properties of the 444 COUP sources in
our sample. Data are from Getman et al. (2005b). Table 2 lists the
final number of X-ray sources contained in each of the 17 groups,
as identified by hierarchical clustering and subsequently refined
viaK-means clustering. Properties of the 17X-ray classes are also
shown in Table 2: mean X-ray-determined hydrogen column den-
sity (NH), mean effective photospheric temperature (Teff ), mean
visual extinction (AV ), and mean K-band excess [�(I � K )]. The
final two columns illustrate the fraction of sources with equivalent
width of the k8542 Ca ii infrared triplet lines [EW(Ca ii)] of less
than�18, where a negative equivalent width represents an emis-
sion line. K-band excess has been attributed to existence of a hot
circumstellar disk (Getman et al. 2005b). EW(Ca ii) has been shown
to be correlated with mass accretion rate (Muzerolle et al. 1998;
Getman et al. 2005b)where EW(Ca ii)<�1 is indicative of strong
accretion (Flaccomio et al. 2003). The errors on the mean are also
given in Table 2. These results were compiled from data available
for the X-ray-emitting ONC population (Getman et al. 2005b).
Data for the six A-type and B-type stars were not included in the
mean calculations of optically derived properties (i.e.,Teff ) because

we believe companion stars are emitting the X-rays associated
with these six A-type and B-type stars.
We see that logNH decreases monotonically from class 1 to

class 16 (Fig. 11). The large log NH characteristic of classes 1–8
is reflected in very small fractions of optical and near-infrared
(ONIR) counterparts. The mean visual extinction correspond-
ingly decreases monotonically for classes 11–16 (Fig. 12). For
classes 12–16, which have relatively large fractions of ONIR
counterparts and softer X-ray emission, both the mean near-
infrared excess and the fraction of sources with EW(Ca ii)<�1
are observed to decrease monotonically (Fig. 12), indicating a
generally decreasing accretion rate. The mean Teff decreases as
the observed X-ray spectra become softer (Fig. 12). This same
result is reflected in the H-R diagrams in Figure 10.
The mean stellar masses decrease with increasing spectral soft-

ness for classes 10–16. However, these masses are determined by
comparing measurements of Teff and luminosity with evolution
models for PMS stars. The mass derived in this manner depends
primarily on Teff, which is highly model-dependent and therefore
potentially uncertain.

5.3. Noteworthy X-Ray Sources Isolated
by the Classification Algorithm

5.3.1. Class 1: Deeply Embedded Protostars

Sources in class 1 are easily identified as a distinct X-ray spec-
tral group by our classification technique (Figs. 4 and 5; Table 2).
All of the class 1 sources lack ONIR counterparts and—although
the classification algorithm is based solely on spectral information
with no input from the temporal domain—all have high-amplitude,
fast-rise X-ray flares (Getman et al. 2005a). Therefore, the objects
in our class 1 are most likely very young protostars deeply em-
bedded in the Orion molecular core.
In addition, all sources in class 1 have an X-ray median energy

(MedE) > 4.6 keV, and the mean MedE for the class is 4.94 keV.
Getman et al. (2007, their Fig. 8) find that all IC 1396N sources
withMedE> 3 keVare protostars. They conclude that whenMedE

Fig. 9.—Simulated spectra with varying kTandNH are overlaid on the plot of PC2 vs. PC1 for the 444 COUP sources. Lines connect simulations calculated for a given
value of kT; the points on the lines represent the locations in PC space of the simulated spectra. Each point is labeled with the value of logNH used in the simulation. The
basic shape of the horseshoe is also produced by the simulated data.
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Fig. 10aFig. 10bFig. 10c

Fig. 10.—(a) H-R diagram of COUP 444 data set, color-coded by X-ray spectral class. The A-type and B-type stars are labeled with their corresponding COUP
source number. (b) The x-axis scale of the H-R diagram for soft X-ray spectral classes 11–13 was restricted to focus on the main group of sources, which are of spectral
types K and M. (c) The x-axis scale of the H-R diagram for the softest X-ray spectral classes, 14–16, was restricted to focus on the main group of sources, which are of
spectral types K and M.

Fig. 10a

Fig. 10b Fig. 10c

TABLE 1

Properties of the 444 COUP Sources

Sequence Number X-Ray Class HR2 HR3

log NH

(cm �2)

kT1
(keV)

kT2
(keV) kT1/kT2

log Teff
(K)

EW(Ca ii)

(8) AV �(I � K )

6...................................... 14 �0.61 �0.46 21.12 0.78 2.32 0.34 3.502 0.0 0.46 0.12

8...................................... 9 0.06 0.22 22.05 15.00 . . . . . . . . . . . . . . . . . .

11.................................... 12 �0.39 �0.18 21.69 0.52 4.13 0.13 3.602 �14.6 0.42 1.37

17.................................... 13 �0.53 �0.27 21.12 2.70 . . . . . . 3.623 1.9 1.58 0.20

20.................................... 15 �0.81 �0.87 21.69 0.62 . . . . . . 3.467 0.0 1.57 �0.35

Note.—Table 1 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.



exceeds�3 keV, the X-ray absorption is dominated by infall from
the protostellar envelope rather than by intervening, ambient mo-
lecular cloudmaterial. A similar conclusion would appear to apply
to class 1 sources.

An analogous sample of deeply embedded, flaring protostars
was selected for study by Tsujimoto et al. (2005). The strong
Fe line emission at 6.4–6.7 keV seen in the class 1 average
spectrum attests to their high X-ray emission temperatures.
Furthermore, the breadth of the 6.4–6.7 keV Fe line complex
in these sources—which is even evident in their class average
spectrum (Fig. 6)—strongly suggests that the line complex in-
cludes a fluorescent, ‘‘cold disk’’ component (Tsujimoto et al.
2005). Five of the sources in our class 1 were not included in
the sample of protostars selected by Tsujimoto et al. (2005)
because these five sources failed their third criterion: in spec-
tral model fitting, the addition of a 6.4 keV Gaussian compo-
nent to the thermal model could not be justified statistically.
The sixth source in our class 1 was not included in their sam-
ple because there were<100 photons in the 6.0–9.0 keV band.
These sources are worthy of additional study as potential ex-

amples of fluorescent Fe line emission from circumstellar
disks.

5.3.2. Evolved PMS Stars on the Far Side of the OMC?

Sources in class 2, which are isolated in Figure 9, show very
largeNH. Only one source in this class has an optical counterpart.

TABLE 2

ONIR Properties of the 17 X-Ray Classes

hlog NHi hlog Teff i AV h�(I � K )i
EW(Ca ii) < �1

X-Ray Class N

Value

(cm�2) N

Value

(K) N

Value

(mag) N

Value

(mag) N Fraction N

1...................... 7 23.40 � 0.06 7 . . . 0 . . . 0 . . . 0 . . . 0

2...................... 12 22.96 � 0.03 12 3.57: 1 . . . 0 . . . 0 0 1

3...................... 9 22.79 � 0.02 9 . . . 0 . . . 0 . . . 0 . . . 0

4...................... 19 22.66 � 0.01 19 3.59: 3 1.34: 3 1.66: 3 0.25 4

5...................... 2 22.52 � 0.05 2 3.68: 1 3.67: 1 2.61: 1 1.00 1

6...................... 14 22.48 � 0.02 14 . . . 0 . . . 0 . . . 0 . . . 0

7...................... 18 22.46 � 0.02 18 3.70: 1 3.52: 1 0.98: 1 0.00 2

8...................... 21 22.30 � 0.02 21 3.55: 3 1.52: 3 0.30: 2 0.40 5

9...................... 22 22.18 � 0.01 22 3.56 � 0.02 7 1.77 � 0.99 7 1.10: 3 0.20 10

10.................... 37 22.03 � 0.02 37 3.58 � 0.01 21 2.60 � 0.45 20 1.31 � 0.18 18 0.55 22

11.................... 54 21.90 � 0.02 54 3.57 � 0.01 38 2.69 � 0.31 38 0.91 � 0.12 30 0.33 36

12.................... 30 21.66 � 0.03 30 3.59 � 0.01 20 1.57 � 0.29 19 0.80 � 0.14 16 0.41 17

13.................... 30 21.61 � 0.03 30 3.56 � 0.01 22 1.44 � 0.27 22 0.62 � 0.11 18 0.38 21

14.................... 61 21.32 � 0.03 61 3.55 � 0.01 45 1.16 � 0.16 44 0.49 � 0.08 38 0.17 36

15.................... 88 20.79 � 0.05 86 3.52 � 0.01 75 0.65 � 0.11 72 0.25 � 0.07 62 0.11 62

16.................... 19 20.28 � 0.11 19 3.50 � 0.01 14 0.32 � 0.14 16 0.11 � 0.05 12 0.00 13

17.................... 1 20.88: 1 3.56: 1 0.34 1 . . . 0 1.00 1

Notes.—N = number of sources. The six A-type and B-type stars in the COUP 444 source sample have not been included in mean calculations based on optically
derived properties.

Fig. 11.—Mean log hydrogen column density plotted for each class.

Fig. 12.—Mean visual extinction, mean near-IR K-band excess, the fraction of
sources with EW(Ca ii) < �1, and mean log effective photospheric temperature
plotted by class, for classes with corresponding data.
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In Figure 9, class 2 is bounded by simulations with kT ¼ 0:52
and 0.86, the same range characterizing classes 15 and 16. There-
fore, class 2 may consist of an intrinsically soft population (kT �
0:5 keV), comparable to the X-ray sources in classes 15 and 16.
The principal difference between sources in these classes ap-
pears to be NH, suggesting that class 2 objects are similar to ob-
jects in classes 15 and 16—that is, fairly evolved K- and M-type
PMS stars—but that class 2 stars are located on the far side of the
Orion molecular cloud. The only source in class 2 with an opti-
cal counterpart is COUP 1139, an M-type star, supporting this
interpretation.

A similar interpretation may hold for sources in classes 3–7,
which also show large NH. When the horseshoe-shaped curve
is rotated and viewed in the third dimension (see final panel of
Fig. 5), there is some overlap between sources in these lower
numbered classes and sources in the higher numbered classes 14
and 15. Indeed, there are four sources in class 4 that have optical
counterparts: two K-type stars and two M-type stars. These four
stars fall outside of the kT ¼ 0:52 0:86 range in Figure 9.

Classes 2–7 lie at the upper right of the HR3 versus HR2 hard-
ness ratio diagram (see Fig. 8). However, this diagrammay bemis-
leading for these heavily absorbedX-ray sources, because theHR2
subband is a measure of softer X-rays and cannot supply any in-
formation for sources with largeNH. Indeed, the possible relation-
ship between classes 2 and 15–16 cannot be inferred from this
‘‘standard’’ hardness ratio diagram. The classification algorithm
applied here therefore may represent a unique means to identify
evolved low-mass PMS stars ‘‘hidden behind’’ molecular cloud
cores.

5.3.3. Class 17: The Beehive Proplyd

COUP 948 is isolated by the source classification algorithm.
This extraordinary X-ray source is associated with an unusual op-
tical jet source (the Beehive Proplyd; Bally et al. 2005). TheX-ray
spectrum of COUP 948 (Fig. 7) has distinct hard and soft compo-
nents with the soft component peaking at around 0.85 keVand the
hard component at about 3.5 keV. This unusual, double-peaked
X-ray spectral energy distribution is indicative of a combination
of strong shocks in the jet collimation region and a variable, mag-
netically active X-ray source (Kastner et al. 2005). Several PMS
stars in the Taurus region display a similar phenomenon (Güdel
et al. 2007).

Although theX-ray source associatedwith the Beehive Proplyd
is isolated in both the hardness ratio diagram (Fig. 8) and the
principal component plot (Fig. 4), its unusual nature is much
more apparent using our method, since its position in the horse-
shoe plot is significantly offset from the locus of sources in all
three dimensions. This holds promise for the discovery of ad-
ditional examples of such hybrid X-ray spectra lurking among
the thousands of PMS stars detected thus far by Chandra and
XMM-Newton.

6. SUMMARY

We have developed an algorithm and corresponding input var-
iable definition that has the advantage of being nonparametric and
independent of any spectral fitting procedures. The algorithm per-
forms without a priori information concerning the nature of the
sources; it objectively groups X-ray sources based solely on ob-
servables. We have demonstrated that this method finds natural
groupings of X-ray sourceswhen applied to spectra extracted from

observations of rich stellar fields. The apparent diversity of source
spectra is reduced to a three-dimensional locus in principal com-
ponent space,with sources exhibiting unusualX-ray spectra falling
outside this locus.

The plot of the first two principal components (Fig. 4) contains
a horseshoe-shaped curve. In general, the spectral hardness of the
classes decreases,moving clockwise around the horseshoe.Certain
noteworthy outliers are readily identified by our spectral classifi-
cation algorithm in this plot. These results demonstrate that the al-
gorithm can be used to place the sources in order of decreasing
spectral hardness and can be used to identify sources with unusual
spectra.

Trends between X-ray spectral parameters and stellar param-
eters have been found for very low-mass, soft-spectra, young
sources. Specifically, the X-ray spectral classes form sequences
in NH, AV , and accretion indicators, demonstrating that the al-
gorithm effectively sorts young stars into a physically mean-
ingful sequence. Furthermore, these trends demonstrate that
correlations exist between X-ray and ONIR properties of PMS
stars in the ONC. These trends and correlations are of signif-
icance for the study of star formation and X-ray emission in
young stellar clusters. In addition, our algorithm can be used to
efficiently identify very young X-ray sources that lack optical
and near-infrared counterparts, display strong Fe K� line emis-
sion, and display large-amplitude, fast-rise impulsive flares ver-
sus more low-level activity.

The principal components, and therefore the derived classifica-
tion, are dependent on the properties of the input sample. The final
classes presented here are therefore suitable for young stars and
perhaps stellar sources in general, but not for sources with very
different spectra from young stars. However, the method itself
is completely general and future plans include applying it to en-
tirely different input samples, including those fromdifferentwave-
length regimes.

The lack of distinct boundaries between the higher numbered
X-ray spectral classes in thePC2 versusPC1 score plot—i.e., those
at the ‘‘soft’’ end of the horseshoe distribution—suggests that some
of these classes could be merged. However, more spread in these
higher numbered classes can be seen in the rotated principal com-
ponent plot of Figure 5, suggesting that these higher PCs are re-
sponsible for some of the statistical differentiation in these classes.
Additional analysis is being performed to interpret PC3 and PC4
in this context.

We are also analyzing the results of applying the X-ray source
classification algorithm to objects in other star formation regions,
by projection of these additional sources onto the principal com-
ponent space of the COUP subsample and then determining their
class membership probabilities for the existing X-ray spectral
classes. Ongoing work also includes a feasibility study of inclu-
sion of measures of X-ray source variability as additional inputs
to the algorithm.

We thank Ettore Flaccomio, Michael Richmond, and Carl
Salvaggio for their valuable comments. This research is supported
by NASA under AISRP award NNG04GQ07G and Chandra
award AR5-6004X issued by the Chandra X-Ray Observatory
Center, which is operated by the Smithsonian Astrophysical
Observatory for and on behalf of NASA under contract NAS8-
03060.
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APPENDIX

X-RAY SPECTRAL BAND SELECTION

The spectral resolution of the ACIS CCDs at the nominal operating temperature of Chandra (�120�C) and knowledge of the charge
transfer inefficiency (CTI) correction were used in determining the width of the spectral bands. The full width at half-maximum
(FWHM) of the front-illuminated detectors increases with increasing energy, so the spectral bands increase in width accordingly. Finally,
absorption features apparent in the quantum efficiency curves of the ACIS-I CCDs were also considered when selecting ranges for the
spectral bands. The edges of these featureswere avoidedwhen defining the bands, creating the gaps from526 to 544 eVand 1841 to 1851 eV.
These hardware constraints resulted in the division of the X-ray spectrum between 0.4 and 8.2 keV into 42 X-ray spectral bands; these are
given in Table 3. The spectral band edgeswere chosen to the extent possible, given these hardware constraints, to avoid bisecting strong lines
of high-ionization species.

TABLE 3

X-Ray Spectral Bands

Band Number

Low–High

(eV) Ion

E a

(eV)

1........................................ 425–525 N vii 500.345

2........................................ 545–631 O vii 561.117

O vii 568.735

O vii 574.000

3........................................ 632–721 O viii 653.640

O vii 665.676

Fe xviii 703.601

4........................................ 722–815 Fe xvii 725.290

Fe xvii 727.204

Fe xvii 738.948

Fe xviii 767.347

Fe xix 769.681

Fe xviii 771.548

O viii 774.682

Fe xviii 781.320

Fe xviii 783.592

Fe xviii 793.571

Fe xvii 812.499

5........................................ 816–912 O viii 817.050

Fe xix 822.306

Fe xvii 825.866

O viii 836.621

Fe xviii 853.141

Fe xx 869.107

Fe xviii 869.778

Fe xviii 869.778

6........................................ 913–1013 Ne ix 914.961

Fe xix 917.262

Fe xix 918.690

Ne ix 922.106

Fe xxii 972.209

Fe xx 985.970

Fe xxi 1009.407

Fe xvii 1010.888

7........................................ 1014–1115 Fe xxiii 1019.616

Ne x 1021.801

Fe xvii 1022.728

Fe xxii 1053.488

Fe xxiii 1056.540

Ne ix 1074.112

Fe xviii 1075.697

Fe xviii 1094.787

Fe xxiv 1109.480

8........................................ 1116–1220 Fe xxiv 1124.268

Fe xxiii 1125.288

Fe xxiii 1129.183

Fe xix 1146.408

Fe xvii 1151.305

Fe xxiv 1162.858

Fe xxiv 1167.676

Ne x 1211.012
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