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ABSTRACT

The transport of energetic particles in a mean magnetic field and the presence of anisotropic magnetic turbulence
are studied numerically, for parameter values relevant to the solar wind. A numerical realization of magnetic
turbulence is set up in which we can vary the type of anisotropy by changing the correlation lengths , , .l l lx y z

We find that for , transport can be non-Gaussian, with superdiffusion along the average magnetic fieldl , l k lx y z

and subdiffusion perpendicular to it. Decreasing the ratio down to�0.3, Gaussian diffusion is obtained,l /lx z

showing that the transport regime depends on the turbulence anisotropy. Implications for energetic particle
propagation in the solar wind and for diffusive shock acceleration are discussed.

Subject headings: diffusion — plasmas — solar wind — turbulence

1. INTRODUCTION

Many studies have addressed the transport of energetic par-
ticles in the heliosphere in the presence of magnetic turbulence,
both from the theoretical (Jokipii 1966; Jokipii & Parker 1969;
Giacalone & Jokipii 1999; Teufel & Schlickeiser 2002; Mat-
thaeus et al. 2003; Shalchi et al. 2004) and from the obser-
vational point of view (Reames 1999; Mazur et al. 2000; Dalla
et al. 2003; Zhang et al. 2003; McKibben 2005), but a full
understanding is still lacking. For instance, the computed values
of the perpendicular diffusion coefficient are 1–2 orders ofk⊥
magnitude smaller than those inferred from the observations
of solar energetic particles (SEPs) at widely separated space-
craft (Ruffolo et al. 2003; McKibben 2005). On the other hand,
large values of are in seeming contrast to the observationsk⊥
of particle dropouts in the 10 keV–1 MeV particle fluxes in
impulsive SEP events (Mazur et al. 2000) and with the finding
of sharp composition boundaries inUlysses data (Zurbuchen
et al. 2000), which indicate a small cross-field transport. Also,
a parallel mean free path of the order of 0.1–0.2 AU is oftenlk

assumed for 10 MeV protons (Bieber et al. 1994), but the time
of arrival of solar particles at 1 AU has often been found to
be consistent with scatter-free propagation (Reames 1999; Dalla
et al. 2003; Zhang et al. 2003), corresponding to AUl ∼ 1k

or more.
These puzzling observational data call for new ideas and

new theoretical tools, like anomalous transport (Zimbardo &
Veltri 1995), non-Markovian phenomena (Ko´ta & Jokipii 2000;
Qin et al. 2002a), different transport regimes inside and in
between coherent magnetic flux tubes (Ruffolo et al. 2003),
and the non-Gaussian nature of turbulent transport (Zimbardo
et al. 2004), in order to be able to reconcile theory and ob-
servations. As a step in this direction, here we explore nu-
merically the influence of turbulence anisotropy on transport
regimes. Solar wind magnetic turbulence is known to be an-
isotropic (Dobrowolny et al. 1980; Matthaeus et al. 1996), but
the kind of anisotropy is not easily determined by single space-
craft observations. Turbulence models range from one-dimen-
sional, or slab (Jokipii 1966; Teufel & Schlickeiser 2002), with
the wavevectors aligned along the background magnetic field

, to two-dimensional (Bieber et al. 1996), with the wave-B0

vectors perpendicular to , to fully three-dimensional (Car-B0

bone et al. 1995; Matthaeus et al. 1996). Knowledge of the
spectral distribution of magnetic fluctuations in -space is fun-k

damental to foresee the effect of magnetic turbulence on par-
ticle transport; indeed, wave-particle interactions sensitively
depend on the wavevector distribution.

2. NUMERICAL STUDY

We set up a fully three-dimensional realization of magnetic
turbulence with wavevectors forming any angle with the back-
ground magnetic field and with a fine sampling ofˆB p B e0 0 z

the Fourier space in order to avoid discretization problems
(Pommois et al. 1998). The magnetic field is realized in a
parallelepipedal simulation box (see Pommois et al. 1998,
1999), , where is the sum of staticB(r) p B � dB(r) dB(r)0

magnetic perturbations

(j) (j)dB(r) p dB(k)e (k) expi(k · r � f ), (1)� k
k, j

where are random phases and are the two polari-(j) (j)f e (k)k

zation unit vectors. Here we consider parameters relevant to
the propagation of 1 MeV protons in the solar wind turbulence.
For such particles, the velocity is km s�1. Consid-v � 14,000
ering that the magnetic perturbations in the solar wind prop-
agate with the Alfve´n velocity km s�1, the assumptionV ∼ 40A

of static perturbations is well satisfied. Also, in the solar wind
rest frame, we can neglect the electric field. The Fourier spectral
shape is characterized by the turbulence correlation lengths ,lx

, and and is given byl ly z

C
dB(k) p , (2)2 2 2 2 2 2 a/4�1/2(k l � k l � k l )x x y y z z

where we take the same spectral amplitude for both polar-
izations, and is close to the spectral index observeda p 5/3
in the solar wind. Above,C is a normalization constant
that is related to the level of fluctuationsdB/B p0

. In this model the turbulence anisotropy can2 2 1/2[AdB (r)S/B ]0

be changed gradually from the isotropic case ( )l p l p lx y z

to either the quasi–two-dimensional case ( ) or thel p l K lx y z

quasi-slab case ( ), and nonaxisymmetric casesl p l k lx y z

( ) may be treated as well. The constant-amplitude sur-l ( lx y

faces in Fourier space are ellipsoids, and the wavevectors
are chosen as . The spectrumk p (2p/N ) (n /l , n /l , n /l )min x x y y z z

has cutoffs for both the short and the long wavelengths (band
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Fig. 1.—Anomalous transport exponents (top panels) and flatnesses (bottom panels) are plotted as a function of time for ,g F dB/B p 0.5 r/l p 3.2#i i 0

, and . Magnetic turbulence is axisymmetric, and the ratio of correlation lengths varies from (far left) to 3, 1, 0.33, and 0.1�3 �210 r/l p 1.28# 10 l /l p 10min x z

(far right). Results for thex-, y-, andz-directions are indicated by solid, dashed, and dotted lines, respectively.

spectrum) with . In this way, the2 2 2 2 2N ≤ n � n � n ≤ Nmin x y z max

correlation lengths , , and correspond to the largestl l lx y z

wavelengths (in the respective directions) in the numerical
model. For most of the runs presented here, , andN � 4min

. The simulation box sides are given byN p 16 L pmax i

( ), so that at least four correlation lengthsN l i p x, y, zmin i

have to be traveled before the same magnetic configuration
is found again. This effectively eliminates the periodicity
effects (Pommois et al. 1998). We note that the need to have
a fully three-dimensional spectrum leads to a shorter spectral
extension than that found in the solar wind; the lack of short
wavelengths may lead to an underestimate of wave-particle
interactions, and especially of pitch-angle scattering, which
depends on the gyroresonant interaction. To investigate the
effects of the spectral extension, a few runs withN pmax

and were also done.32 N p 48max

In the solar wind, a turbulence correlation lengthl is ob-
tained from data in the radial direction. We assume that the
radial correlation lengthl is related to the turbulence corre-
lation lengths of the numerical model by2 2 2l p l cos w �z

(Zimbardo et al. 2004), where is along the spiral2 2l sin w ly z

and is in the plane formed by the average magnetic field andly

the solar wind speed. In the simulation, test particles are in-
jected in the above magnetic configuration, and the trajectories
are integrated with a high-precision fifth-order Runge-Kutta
scheme with an adaptive step. Time is measured in units of
the inverse of the proton gyrofrequency, . As typ-Q p eB /mci 0

ical values, we can assume nT and AU. ForB p 10 l ∼ 0.030

1 MeV protons, this corresponds to . In order�3r/l � 3.2# 10
to determine quantitatively the transport properties, we compute
the variances , where , as a function of2 (0)ADx S Dx p x � xi i i i

time t. Then we make a fit of with the anomalous trans-2ADx Si

port law and determine and whent is large2 giADx S p 2k t g ki i i i

enough. The results presented here were obtained witht p
; in physical units, this corresponds to more than 106 �110 Qi

days for nT. Here the exponent characterizes theB p 10 g0 i

transport law: in the diffusive regime (Gaussian randomg p 1i

walk); in the case of a subdiffusive regime; andg ! 1 1 !i

in the case of superdiffusive regime (Le´vy random walk)g ! 2i

(Klafter et al. 1987; Bouchaud & Georges 1990; Zaslavsky et
al. 1993). In the case of Le´vy random walk and of subdiffusion,
the probability distribution function of particle positions can

have long non-Gaussian tails. The importance of these tails can
be measured by the flatnesses , whose Gaus-4 2 2F p ADx S/ADx Si i i

sian value is 3.
Figure 1 shows the anomalous diffusion exponents , ob-gi

tained by a running fit of the anomalous transport law, and the
flatnesses as a function of time, for and�3F r/l p 3.2# 10i

for , which is typical of the solar wind magneticdB/B p 0.50

turbulence. The anisotropy is changed gradually from the quasi-
slab case ( ) to the isotropic ( ) andl p l p 10l l p l p lx y z x y z

then to the quasi–two-dimensional case ( ). It canl p l p 0.1lx y z

be seen that anomalous transport regimes, , are obtainedg ( 1i

for the cases going from quasi-slab to isotropic; in particular,
we find subdiffusion for transport perpendicular to ,B0

, and superdiffusion for transport parallel to ,g , g ! 1 Bx y 0

. The non-Gaussian nature of these transport regimes isg 1 1z

confirmed by the plots of the flatnesses, which show values
much larger than 3 when transport is anomalous. On the other
hand, for quasi–two-dimensional anisotropy, normal diffusion,

, and Gaussian statistics, , are obtained. Therefore,g � 1 F � 3i i

the results reported in Figure 1 show that the possibility of
having anomalous, non-Gaussian transport sensitively depends
on the turbulence anisotropy. We also performed simulations
in the nonaxisymmetric case, , and the results arel 1 l � lx y z

shown in Figure 2. By assuming the same fluctuation level
( ) and the same as for Figure 1, we can seedB/B p 0.5 r/l0

that non-Gaussian regimes, i.e., superdiffusion along andB0

subdiffusion perpendicular to , are obtained as well. FromB0

both Figures 1 and 2 we can see that anomalous transport is
obtained when (quasi-slab spectra), while normal dif-l � 3lx z

fusion in all directions is recovered for (quasi–two-l � 0.3lx z

dimensional spectra).
Considering one of the cases for which parallel superdif-

fusion is found, , , and , reportedl /l p 3 l /l p 1 dB/B p 0.5x z y z 0

in the right panels of Figure 2, we performed other runs by
increasing the particle Larmor radius and varying the spectral
extension. The left panels of Figure 3 report the simulation
results for (corresponding to a proton en-�2r/l p 1.02# 10
ergy of 10 MeV). It can be seen that is close to 1 for all ofgi

the x-, y-, z-directions. Also, the flatnesses reach, in the long
time limit, the Gaussian value . In a similar way, nearlyF p 3i

normal diffusion is obtained for the other two anisotropies in
Figure 2 when the Larmor radius is increased tor/l p
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Fig. 2.—Same as Fig. 1, but for nonaxisymmetric anisotropy (as indicated
in the panels).

Fig. 3.—Same as Fig. 1, but for nonaxisymmetric anisotropy given by
and and for different spectral extensions.Left panels:l /l p 3 l /l p 1x z y z

and . Middle panels:�2 �2r/l p 1.02# 10 r/l p 3.96# 10 r/l p 3.2#min

and . Right panels: and�3 �2 �310 r/l p 2.56# 10 r/l p 3.2# 10min

.�2r/l p 3.84# 10min
(not shown). This means that by increasing the�21.02# 10

Larmor radius,r is closer to the shortest wavelength (forlmin

instance, for the run of the left panels of Figure 3,r/l pmin

, while for Figures 1 and 2,�23.96# 10 r/l p 1.28#min

), and wave-particle interactions are stronger. We per-�210
formed two runs with a longer spectrum, by keepingN pmin

and by setting and , respectively. These4 N p 32 N p 48max max

runs require very large numerical resources (P. Pommois et al.
2006, in preparation). Note that for ,N p 48 r/l pmax min

, which is almost the same as for the left panels�23.84# 10
of Figure 3. The main result of these runs, shown in the middle
and right panels of Figure 3, is that we still obtain superdif-
fusion alongz, with , 1.2, for , 48, respec-g p 1.3 N p 32z max

tively. This shows that superdiffusion is found with a longer
spectrum, too, and that a small decrease in is obtained whengz

decreases and becomes closer tor.lmin

3. DISCUSSION

Considering the effects of the turbulence anisotropy for a
fixed spectral extension, we have that when , par-l /l p 1–10x z

allel transport is superdiffusive (see Figs. 1 and 2). In these
cases the particles, during gyromotion, are subjected to only
weak variations of the magnetic field, so that pitch-angle dif-
fusion is very slow (in other words, the magnetic moment is
nearly conserved). Conversely, when , the trans-l /l p 0.1–0.3x z

verse variation of the magnetic field is stronger, and the pitch-
angle diffusion is faster, leading to a Gaussian diffusion process
with and . Clearly, pitch-angle diffusion can oc-g p 1 F p 3z z

cur also because of magnetic field variations along , due toB0

the combined effect of parallel motion and gyromotion. Still,
the present results show that pitch-angle diffusion due tol !x

is more effective than that due to , as clearly shown byl l 1 lz x z

Figure 1. On the other hand, an increase in the Larmor radius
allows particles to be subjected to stronger variations along
their orbits, so that pitch-angle diffusion is increased. In the
left panels of Figure 3 we have (large�2r/l p 3.96# 10min

r, short spectrum), while for the right panels we have
because of the longer spectrum. These�2r/l p 3.84# 10min

two ratios are very similar, yet in the former case normal dif-
fusion is obtained, while in the latter case parallel superdif-
fusion is obtained. Now, in the case of a limited spectral ex-
tension, the amplitude of the single turbulence modes, including
those close to resonance with the Larmor radius, is larger than
it would be in the solar wind. With a longer spectrum, the

turbulence energy is distributed on a larger volume in -space,k
and the amplitude of the modes close to resonance is decreased.
Since it is not presently possible to simulate a three-dimensional
spectrum with an extension comparable to that of the solar
wind, the possibility remains that we are underestimating pitch-
angle diffusion because . For instance, increasing ther/l ! 1min

spectral extension goes from 1.4 to 1.3 and to 1.2, so thatgz

could be obtained with a realistic spectral extension.g p 1z

Still, the longer the spectrum, the smaller the amplitude of
modes close to resonance, so that the actual value of in thegz

solar wind remains open to further investigation. Therefore,
we consider that parallel superdiffusion could be found for
particles with small to moderate energies, which would resonate
with small-amplitude modes of the spectrum.

If confirmed, the superdiffusive parallel propagation implies
that there exist regimes where wave-particle interactions are
present, but not so strong as to correspond to Gaussian statistics
(Pommois et al. 2005); rather, the changes of parallel velocity
correspond to a so-called Le´vy random walk, in which the
lengths of elementary displacements (scatter-free paths) have
a power-law probability distribution (Klafter et al. 1987; Bou-
chaud & Georges 1990). An important, characterizing feature
of Lévy statistics is that the second-order moment of the prob-
ability distribution of free path lengths is diverging. This means
that the parallel mean free path can be, formally, infinite.lk

This possibility can help us to understand why different values
of can be inferred from the observations. In the case oflk

parallel superdiffusion, the data have to be fitted with a trans-
port law like , with , so that two parameters2 gzADz S p 2k t g 1 1z z

have to be determined. Otherwise, the experimental determi-
nation of is very sensitive to the particular data set. Welk

point out that recent studies of the magnetic flux tube structure
in the solar wind indicate that an anisotropy withl /l �x z

can be appropriate for solar wind turbulence (Zimbardo3–10
et al. 2004), so that parallel superdiffusion could be the natural
way of propagation of 1 MeV particles. Also, observations of
SEPs that suggest scatter-free propagation may correspond to
superdiffusion.

In the mechanism of diffusive shock acceleration, particles
are accelerated by repeated crossings of the shock caused by
diffusion due to turbulence. The acceleration efficiency depends
in a critical way on the value of (Duffy et al. 1995; Ellisonlk
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et al. 1999). In the case of parallel superdiffusion, the accel-
eration rate will be decreased since the crossing of the shock
is less frequent, especially at low energies where superdiffusion
is more likely to happen. A diverging does not mean thatlk

particles are not crossing the shock again but that the accel-
eration rate has to be computed using totally new statistical
tools, like the return probability for a Le´vy random walk, rather
than . On the other hand, in the case of perpendicular shocks,lk

the return of particles to the shock depends on perpendicular
transport, and it is intriguing to notice that the perpendicular
subdiffusion reported here may lead to an increased acceler-
ation rate.

For perpendicular transport, we obtain subdiffusion for
(or larger) and normal diffusion forl /l p 3–10 l /l px z x z

. Recent direct numerical simulations of particle transport0.1–1
in magnetic turbulence have shown that subdiffusive regimes
can be found (Qin et al. 2002a) for perpendicular transport in
the case of nearly purely one-dimensional (slab) turbulence.
This process, called compound diffusion, is due to particles
tracing backward the (magnetostatic) field lines. Qin et al.
(2002b) were able to show that normal diffusion is recovered
when a prevalence of fluctuations depending on thex- andy-
coordinates (two-dimensional spectrum) is introduced. Here we
can see that a moderately one-dimensional, or quasi-slab, tur-
bulence also leads to subdiffusion, and we also obtain a quan-
titative assessment of the degree of anisotropy, , neededl /l � 3x z

to obtain compound subdiffusion. The concept of compound
diffusion can be generalized by considering that, for the mag-
netic field lines, anomalous (superdiffusive or subdiffusive)
transport transverse to was obtained in cases of low sto-B0

chasticity (Zimbardo & Veltri 1995; Pommois et al. 1998; Zim-
bardo et al. 2000). For small , perpendicular transport ofr/l
particles could be looked at as the combined effect of transport
along and transverse field line transport. If weassume forB0

particle parallel displacement that ,2 1/2 g 1/2zz p [A(Dz) S] p (2k t )z

and for field line perpendicular transport that ,2 axA(Dx) S p 2D zm

we obtain a “generalized” expression of compound diffusion,

2 g a /2 a g /2z x x zA(Dx) S p 2D (2k t ) ∝ t , (3)m z

where we denote by the anomalous transport exponent forax

magnetic field lines. A variety of values of cang p a g /2x x z

be obtained from equation (3) in the case of anomalous trans-
port of either field lines and/or particles alongz. However,
inspection of the numerical results shows that equation (3) does
not always apply, especially for . This fact can be ex-l /l ! 1x z

plained by the exponential separation of field lines (Rechester
& Rosenbluth 1978; Ruffolo et al. 2004; Zimbardo 2005) and
by finite Larmor radius effects.

The perpendicular subdiffusion agrees with the finding of
intermittent particle flux related to impulsive SEP events re-
ported by theAdvanced Composition Explorer (ACE; Mazur
et al. 2000), since in such case particles remain confined in the
coherent flux tubes present in the solar wind (Ruffolo et al.
2003; Zimbardo et al. 2004). On the other hand, the fast per-
pendicular propagation of SEPs in the heliosphere indicates
that an efficient, possibly superdiffusive, perpendicular trans-
port of particles is needed. Perpendicular superdiffusion, thanks
to the nonlinear dependence of the mean square deviation on
time, could explain both the small transport reported byACE
for short times and the fast propagation required byUlysses
measurements for later times (Zhang et al. 2003; McKibben
2005). A numerical exploration of the parameter space is under
way in order clarify this issue.
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