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ABSTRACT
The astrophysically important 7Li(p, a)a reaction has been studied via the Trojan horse method in the

energy range E\ 10È400 keV. A new theoretical description, based on the distorted-wave Born approx-
imation approach, allows one to extract information on the bare astrophysical S-factor, withS

b
(E),

keV barns. The results are compared with direct experimental data leading to a model-S
b
(0)\ 55 ^ 3

independent value of the electron screening potential energy, eV, much higher than theU
e
\ 330 ^ 40

adiabatic limit eV.Uad \ 175
Subject heading : nuclear reactions, nucleosynthesis, abundances

1. INTRODUCTION

Nuclear reactions play a key role for the understanding of
the early universe and of the evolution of stars (Fowler
1984). For this reason the cross section of a givenp(E0)reaction at the relevant thermal energy (the GamowE0energy) must be known with a precision of 10% or better
(all energies are given in the center-of-mass system except
where quoted di†erently). In neutron-induced reactions, the
lack of a Coulomb barrier and the typical p(E)D 1/E1@2
energy dependence led to a precise knowledge of forp(E0)many cases. In comparison the Coulomb barrier of height

in charged-particleÈinduced reactions causes an expo-E
cnential decrease of p(E) at p(E)D exp ([2ng) (withE\ E

c
,

g the Sommerfeld parameter), leading to a low-energy limit
of direct p(E) measurements, which is typically much larger
than Thus, one has to extrapolate the p(E) data deter-E0.mined at higher energies down to with the help of theoryE0and other arguments. Of course, this extrapolation ““ into
the unknown ÏÏ may introduce a large uncertainty in p(E0).The extrapolation is carried out usually for the astro-
physical S(E) factor deÐned as

S(E) \ p(E)E exp (2ng) . (1)

In recent years the availability of high-current low-energy
accelerators, such as that at the underground Laboratori
Nazionali del Gran Sasso (called LUNA; e.g., Bonetti et al.
1999), together with improved target and detection tech-
niques have allowed us to perform p(E) measurements in
some cases down to or at least close to e.g., 3He(3He,E0 E0 :
2p)4He as low as E\ 16 keV, while keV.E0(Sun) \ 21
Then, of course, no p(E) extrapolation is needed anymore
for this reaction.
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However, the measurements at ultralow energies su†er
from the complication due to the e†ects of electron screen-
ing (Assenbaum, Langanke, & Rolfs 1987). This leads to an
exponential increase of p(E) [or equivalently of S(E)] with
decreasing energy relative to the case of bare nuclei. This
can be described by an enhancement factor

flab(E) \ p
s
(E)

p
b
(E)

\ exp
AngU

e
E
B

, (2)

where and refer to the cross sections of electron-p
s
(E) p

b
(E)

shielded and bare nuclei, respectively, and is the electronU
escreening potential energy. It should be pointed out that in

the astrophysical environment the cross section under
plasma conditions is related to the bare cross sectionppl(E)
by a similar enhancement factor

fpl(E) \ ppl(E)
p
b
(E)

\ exp
AngUpl

E
B

. (3)

This factor can be calculated if the plasma potential energy
is known, which depends on detailed properties of theUplplasma, such as the radius. Clearly, a goodDebye-Hu� ckel

understanding of is needed in order to calculateU
e

p
b
(E)

from the experimental data using equation (2). In turn,p
s
(E)

the understanding of may help to better understandU
e

Upl,needed to calculate ppl (E).
The quantity may also be calculated from an atomicU

emodel as the di†erence in electron binding energies between
the atoms of the entrance channel and of the composite
atom. This model corresponds to the adiabatic approx-
imation to the electronic screening potential whichUad,should be well fulÐlled at ultralow energies. The low-energy
data of several fusion reactions involving light nuclides have
indeed shown the exponential enhancement according to
equation (2) (Costantini et al. 2000 and references therein).
However, the deduced values were much higher in allU

ecases than the adiabatic limit (Fiorentini, Kavanagh, &
Rolfs 1995) : e.g., 3He(d, p)4He with eV andU

e
\ 218 ^ 18

eV (Formicola et al. 2001). The results are dis-Uad \ 120
turbing : if one does not understand the e†ects of electron
screening under laboratory conditions, one might also not
understand fully the e†ects under astrophysical conditions.

A weak point in the laboratory approachÈand thus in
the deduced valueÈis the need for an assumption aboutU

e
1076
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the energy dependence of at ultralow energies. This isp
b
(E)

usually based on theoretical calculations or on the trend of
the data at higher energies, where the e†ects of electron
screening are negligible (e.g., On the otherE/U

e
º 100).

hand, a direct measurement of using bare nucleip
b
(E)

(e.g., a crossed beam setup) appears difficult if not impossi-
ble due to luminosity problems in combination with ultra-
low p(E) values. Thus, an alternative experimental method
for the determination of in charged-particleÈinducedp

b
(E)

reactions appears highly desirable. One such method is the
Trojan horse method (THM), which will be applied here to
the two-body reaction 7Li(p, a)a, which is a key reaction in
primordial nucleosynthesis (Pinsonneault et al. 1992). The
values for the astrophysical S-factor from the indirect
methods can be compared to direct measurements (Rolfs &
Kavanagh 1986 ; Engstler et al. 1992) of S

b
(0)B 58 keV

barns and eV eV).U
e
B 300 (Uad\ 175

2. THE TROJAN HORSE METHOD

The idea of the THM (Baur 1986) is to extract the cross
section of an astrophysically relevant two-body reaction

A] x ] C] c (4)

(here : 7Li] p ] a ] a) at low energies from a suitably
chosen three-body reaction

A] a ] C] c] b (5)

(here : 7Li] d ] a ] a ] n). This is done with the help of
direct nuclear reaction theory assuming that the Trojan
horse a is predominantly composed of the clusters x and b.
In the present application, this assumption is trivially ful-
Ðlled : a \ deuteron, x \ proton, b \ neutron. In the
three-body process the wave function of the Trojan horse
a \ b ] x has a momentum distribution of Ðnite width, i.e.,
the clusters b and x have a Fermi motion. In the THM one
attempts to choose the kinematic condition such that the
momentum transfer to b is small and, therefore, the nucleus
b can be considered as a spectator during the interaction.
This condition is called the quasi-free condition. It can be
fulÐlled, at least in a given region of the available three-
body phase space, by choosing suitable kinematic condi-
tions among the ejectiles (here : a-a coincidences at selected
detection angles) such that the momentum transfer to the
spectator (here : the undetected neutron) remains restricted
(here : MeV c~1). In this selected phase space*p

n
¹ 40

other reaction mechanisms, as e.g., sequential processes
with 5He or 8Be intermediate states, can be expected to be
suppressed to a negligible level.

For high energies in the entrance channel of reaction (eq.
[5]) (here : MeV), the three-body cross sectionE7Li\ 19È20
is not suppressed by the A] a Coulomb barrier (here :

MeV). However, ultralow e†ective energies in theE
c
\ 1.0

reaction (eq. [4]) can be reached due to the Fermi motion of
the particle x inside a. Thus, the two-body cross section will
not be suppressed by the A] x Coulomb barrierÈthe
essential trick of the THMÈin contrast to direct measure-
ments of the reaction (eq. [4]). In addition, due to the high
energy in the entrance channel of reaction (eq. [5]), the
e†ects of electron screening are negligible and, thus, one can
determine the bare cross section down to ultralowp

b
(E)

energies. This is another important feature of the THM.
In view of various approximations involved in the THM

one cannot precisely extract absolute values of the two-

body cross section. However, it is possible to obtain reliable
information on the energy dependence of Then thep

b
(E).

relative results of the THM can be normalized to thep
b
(E)

absolute values of the direct data at higherp
b
(E) 4p(E)

energies, where the e†ects of electron screening are negligi-
ble, i.e., at The agreement in the energy depen-E/U

e
º 100.

dence of both data sets at represents a sensitiveE/U
e
º 100

test of the THM and a necessary condition for the cred-
ibility of the deduced THM values atp

b
(E) E/U

e
\ 100.

The three-body cross section of the reaction (eq. [5]) can
be formulated in the distorted-wave Born approximation
(DWBA) in postrepresentation (for details, see Typel &
Wolter 2000) :

d3p
dE

C
d)

C
d)

c
\ KF o Tfi o 2 , (6)

with a kinematic factor

KF\ k
Aa

m
c

(2n)5+7
p
C
p
c
3

p
Aa

CAp
Bb

k
Bb

[ p
Cc

m
c

B
Æ p

c
p
c

D~1
,

in the usual notation for (relative) momenta and (reduced)
masses and where B denotes the C] c system. The T -
matrix element

Tfi\ Ss
Bb
(~)(

Cc
(~)/

b
o V

xb
o s

Aa
(`)/

A
/
a
T (7)

contains distorted waves and wave functionss
Bb
(~) s

Aa
(`), /

a
,

and of the Trojan horse a, and the nuclei A and b, the/
A
, /

btwo-body scattering wave function and the inter-(
Cc
(~),

action between the transferred particle x and the specta-V
xbtor b. In a so-called surface approximation (Baur 1986) the

wave function is replaced by its asymptotic form which(
Cc
(~)

contains the (on-shell) S-matrix elements of theS
l
(Cc] Ax)

(inverse) two-body reaction in the various partial waves,
which are related in the standard way to the cross section of
the two-body reaction (eq. [4]).

In a plane wave (instead of distorted wave) approx-
imation the relation of the three-body cross section to the
two-body cross section can be written more explicitly :

d3p
dE

C
d)

C
d)

c
\ KF oW (Q

Bb
) o 2 16n2

k
Ax

Q
Aa

v
Cc

v
Ax

dpTHM
d)

Ax
(8)

with momenta

+Q
Aa

\ p
Aa

[ m
A

m
A

] m
x

p
Bb

, (9)

+Q
Bb

\ p
Bb

[ m
b

m
b
] m

x
p
Aa

, (10)

and the momentum distribution of the product ofW (Q
Bb

)
the interaction potential and the wave function of a, V

xb
/

a
.

The two-body THM cross section in equation (8) is given as

dpTHM
d)

Ax
(Cc] Ax) \ 1

k
Cc
2 o;

l
(2l ] 1)

]P
l
(QŒ

Aa
Æ kü

Cc
)[S

l
J
l
(`)[ d(Ax)(Cc)Jl

(~)] o2 . (11)

It is similar in form to a usual two-body cross section except
for the functions which are given explicitly in SpitaleriJ

l
(B),

et al. (2001). These can be well approximated at low relative
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energies by

J
l
(B)\ D

l
k
Ax

Q
Aa

R2eYipl
][G

l
(k

Ax
R)^ iF

l
(k

Ax
R)] , (12)

where is a proportionality constant, and are theD
l

F
l

G
lregular and irregular Coulomb wave functions, is thep
lCoulomb phase shift in partial wave l, and R is a cuto†

radius originating from the plane-wave and surface approx-
imations. In the present case we have used for R the sum of
the nuclear radii, assuming for each nucleus r \ r0A1@3,
with fm. The argument of the Legendre polynomialr0\ 1.4

is the cosine of the center-of-mass scattering angle for theP
ltwo-body reaction. The expression (eq. [8]) is similar to the

result of the plane wave impulse approximation (PWIA),
which was applied in earlier applications of the THM to the
7Li(p, a)a and 6Li(d, a)a reactions (Cherubini et al. 1996 ;
Calvi et al. 1997 ; Spitaleri et al. 1999 ; Aliotta et al. 2000). In
PWIA the momentum distribution of the Trojan horse a
and the o†-shell two-body cross section appear as factors,
but the o†-shell cross section can only be related to the
on-shell cross section of the two-body reaction by a heuris-
tic approximation for the Coulomb penetrability e†ect. In
our present DWBA approach for the two-body process,
Coulomb e†ects are fully included, despite the use of a plane
wave approximation in the three-body T -matrix element
and the relation between on-shell and o†-shell cross sec-
tions is evident.

FIG. 1.ÈCoincidence events between the two a particles in the THM
reaction d(7Li, aa)n at MeV for detectors atE7Li \ 20 h

lab
\ 45¡ ^ 0¡.75

and [45¡^ as a function of relative energy between the two a0¡.75, E12particles. The solid histogram shows the results restricted by the condition
of a low spectator momentum MeV c~1) and represents predomi-(p

n
¹ 40

nantly the case of the quasi-free process. Without this restriction, the
energy region of the quasi-free process overlaps with the energy region of
the sequential decay via the 16.6 and 16.9 MeV compound states in 8Be
(dashed histogram).

In our application of the THM the 7Li(p, a)a reaction is
dominated at energies E¹ 1 MeV by the contribution from
the l \ 1 partial wave in the entrance channel. Neglecting
the contributions from other partial waves we can write

d3p
dEa1 d)a1 d)a2

\ KF oW (Q(a1 a2)n) o2

]
C1
T1

va1 a2
vLi~p

dp1
d)Li~p

(a1] a2] 7Li] p) (13)

with a constant and the P-wave Coulomb penetrabilityC1 Introducing the astro-T1\ [G12(kLi~p
R) ] F12(kLi~p

R)]~1.
physical S-factor

S(ELi~p
) \ ELi~p

p(ELi~p
) exp (2ngLi~p

)

for the 7Li(p, a) a reaction, we obtain the form

d3p
dEa1 d)a1 d)a2

\ KF oW [Q(a1 a2)n] o 2

]
kLi~p

kLi~p
ka1 a2 ka1 a2

C3 1 exp ([2ngLi~p
)

ELi~p
T1(kLi~p

R)

] S(ELi~p
)P12(QŒ Li~d

Æ kü a1 a2) , (14)

which is the desired relation between the three-body cross
section and the S-factor. The angular distribution of the
7Li(p, a)a reaction is contained in the Legendre polynomials

We see that at low energies the suppress-P1(QŒ Li~d
Æ kü a1 a2).ion of the cross section by is cancelled byexp ([2ngLi~p

)
the Coulomb penetrability factor The momen-T1(kLi~p

R).
tum distribution of the oW o 2 is related to the Fourier trans-
form of the ground state wave function of the deuteron'

aby

W [Q(a1 a2)n]\
A
E

d
[ +2Q(a1a2)n2

2k
p~n

B
'

a
[Q(a1 a2)n] ,

where is the binding energy of the deu-E
d
\ [2.2 MeV

teron. We assume a wave function for the deuteronHulthe� n

FIG. 2.ÈBare astrophysical factor of 7Li(p, a)a deduced from theS
b
(E)

THM and normalized to the direct data (Rolfs & Kavanagh 1986 ; Engstler
et al. 1992) at E\ 200È400 keV. The solid curve represents a prediction
(Aliotta et al. 2000).
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FIG. 3.ÈBare factor of 7Li(p, a)a from the THM is compared withS
b
(E)

the screened factor from direct data (Engstler et al. 1992), where theS
s
(E)

dashed curve represents a polynomial Ðtted to the data, and the solidS
b
(E)

curve includes the e†ects of electron screening with eV.U
e
\ 330

ground state

'
a
(r
p~n

)\
S ab(a ] b)

2n(a [ b)2
1

r
p~n

(e~arp~n [ e~brp~n) ,

with parameters a \ 0.2317 fm~1 and b \ 1.202 fm~1
(Zadro et al. 1989) and Ðnd for the momentum wave func-
tion the result

'
a
[Q(a1 a2)n]\ 1

n
Sab(a ] b)

(a [ b)2

]
C 1
a2] Q(a1a2)n2 [ 1

b2] Q(a1a2)n2
D

. (15)

The parametrization leads to a full width at half-maximum
of 57.4 MeV for This has also been used in earliero'

a
o2.

applications of the THM (Cherubini et al. 1996 ; Spitaleri et
al. 1999, 2000 ; Aliotta et al. 2000).

FIG. 4.ÈBare factor data ( Ðlled circles) for the reaction 6Li(d, a)aS
b
(E)

from the THM (Spitaleri et al. 2001) and screened factor data (openS
s
(E)

diamonds) from direct experiments (Engstler et al. 1992). The dashed curve
is a polynomial Ðtted to and the solid curve includes the e†ects ofS

b
(E)

electron screening with eV.U
e
\ 340

3. EXPERIMENTS

For the THM application to d(7Li, aa)n one needs to
measure the angles and energies of both a particles, which
determineÈtogether with the 7Li projectile energyÈall
kinematic quantities, such as the relative energy E12between the two a particles. In the postcollision description,
the center-of-mass interaction energy E between the 7Li and
p nuclei is then given by where Q\ 17.35E\ E12[ Q,
MeV is the Q value of the 7Li(p, a)a reaction.

New data were obtained at the Laboratori Nazionali del
Sud, Catania, using 7Li beams with energies of E7Li \ 19.0,
19.5, and 20.0 MeV (with a typical current of 10 pnA)
provided by the 15 MV tandem accelerator. The targets
consisted of deuterated polyethylene Ðlms (typical
thickness \ 250 kg cm~2). The reaction products were
observed using a set of six position sensitive silicon detec-
tors (PSDs) placed on each side of the beam axis with a
distance of 40 and 75 cm from the target. The PSDs were
placed at mean laboratory angles ( ^2¡), ]34¡hlab \]45¡
(^5¡), 23¡ (^5¡), [45¡ (^2¡), [55¡ (^5¡) and [65¡ (^5¡),
where the number in parentheses indicates the angular
range covered. The angular resolution was typically for0¡.1
each PSD, which is needed for an improved analysis of the
THM. Coincidence events were recorded between all pairs
of detectors placed on opposite sides of the beam axis.

In an earlier experiment (Calvi et al. 1997) at E7Li\ 20
MeV ionization chambers were placed as transparent detec-
tors in front of the PSDs at andhlab \ ]45¡(^2¡)
[45¡(^2¡). However, due to the high Q-value of the 7Li(p,
a)a reaction, the condition of a-a coincidences alone already
provided sufficiently clean spectra, even without particle
identiÐcation. Thus, all subsequent experiments used only
PSDs, which allowed in turn for an improved energy
resolution.

The new and earlier data were analyzed using the same
procedure with the above improved DWBA method in rela-
ting the three-body cross section into the relevant 7Li(p, a)a
cross section. A previous analysis of the earlier data (Aliotta
et al. 2000) used the simpler PWIA formalism.

4. DATA ANALYSIS

A crucial aspect of the data analysis is to assure the domi-
nant contribution of the quasi-free process in the three-
body reaction. Thus, one must select from the overall a-a
coincidence events those corresponding to the quasi-free
condition. This selection was performed (Spitaleri et al.
1999) by the requirement of low momenta of the spectator
neutron in the laboratory system, MeV c~1, whichp

n
¹ 40

ampliÐes the presence of the quasi-free process and in turn
suppresses the contributions of other mechanisms, such as
sequential processes leading to the same Ðnal state in the
three-body reaction. In this respect, the angle settings of the
PSDs were chosen such that the energy region of the quasi-
free process was sufficiently separated from peaks involving
e.g., the excitation of the 16.6 and 16.9 MeV states in the
intermediate nucleus 8Be. These states are located below the
7Li(p, a)a threshold and thus cannot be excited in the quasi-
free process. However, they can originate from a standard
sequential reaction with a three-body Ðnal channel and can
generate an undesirable background for the quasi-free
process. With the restriction of the spectator momentum to
low values, the contribution of these states is strongly
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TABLE 1

FIT PARAMETERS OF THE POLYNOMIAL EXPRESSION APPLIED TO THE THM DATAaS(E)\ S(0)] S1] E] S2] E2

CALVI ET AL. 1997b PRESENT WORKc

S(E) PARAMETERS E7Li\ 20 MeV E7Li \ 19 MeV E7Li\ 19.5 MeVc E7Li \ 20 MeVc MEAN VALUE

S(0) (keV barns) . . . . . . . 53 ^ 13 57 ^ 8 55 ^ 6 55^ 3 55 ^ 3
S1 (barns) . . . . . . . . . . . . . . 210 214 214 209 210
S2 (keV~1 barns) . . . . . . [386 [422 [356 [304 [310

a E in units of MeV.
b Coincidences between one detector pair.
c Weighted average of coincidences between nine detector pairs.

reduced. This is demonstrated in Figure 1, where coin-
cidence a-a spectra as functions of the relative energy are
shown with and without the restriction to low neutron
momenta. Even with this condition counts due to sequential
processes are clearly present in the low energy part of the
spectrum. However, such events were not taken into
account by the THM analysis that was performed only
on events corresponding to positive interaction energy

MeV).(E12 º 17.35

5. DETERMINATION OF FOR 7Li(p, a)ap
b
(E)

The observed energy dependence of the three-body di†er-
ential cross section with the condition MeV c~1,p

n
¹ 40

determined at each 7Li energy and each detection pair, was
converted into the two-body cross section equiva-p

b
(E)Èor

lently the improved DWBA proceduresS
b
(E)Èusing

described in ° 2, equation (14). The deduced valuesS
b
(E)

(weighted average of all results), normalized to the direct
data in the energy range E\ 200È400 keV, are shown in
Figure 2. The Ðgure also shows a theoretical curve, which
was obtained by Aliotta et al. (2000) from a Ðt with a super-
position of direct and resonance contributions to the direct
experimental data for Eº 100 keV. It is in excellent agree-
ment with the data. (For a comparison of the THM and the
direct data in the energy range E\ 1È7 MeV, see Zadro et
al. 1989.) The apparent discrepancy between the predictions
and the previous THM data at ultralow energies reported
by Aliotta et al. (2000) is due mainly to the approximate
parametrization of the penetration factor adopted there.T1Using the polynomial expression

S(E)\ S(0)] S1] E] S2] E2
to Ðt the individual data sets at di†erent energies,S

b
(E) E7Liresults were obtained (Table 1) consistent within statistical

error. Thus, the application of the THM leads to stable and
reliable information on with keVS

b
(E) S

b
(0)\ 55 ^ 3

barns, where the quoted error is only the statistical one. The
present data set also su†er from a systematic error of
D10% arising from the normalization procedure of the

indirect data to the direct ones. The uncertainty on the
energy is mainly due to the relative energy resolution of the
experiment, which is not constant but depends on kine-
matics. Typical values are as small as 20 keV, thanks to the
well known ““magnifying glass ÏÏ e†ect (Baur, Bertulani, &
Rebel 1986). Previous work (Engstler et al. 1992) estimated

keV barns and the same value was suggested by aS
b
(0)B 58

recent R-matrix Ðt (Barker 2000).
From a comparison of the energy dependence fromS

b
(E)

the application of the THM with the direct data (Fig.S
s
(E)

3) one can deduce a model-independent value of the screen-
ing potential energy, eV (Fig. 3, solid curve).U

e
\ 330 ^ 40

This is signiÐcantly higher than the adiabatic limit Uad \
175 eV. A similar result for the electron screening potential
has been obtained recently for the 6Li(d, a)a reaction using
the THM (see Fig. 4) : eV (Spitaleri et al.U

e
\ 340 ^ 50

2001). The results conÐrm a signiÐcant discrepancy between
the screening potentials and which is presently notU

e
Uad,understood. On the other hand it is in agreement with the

hypothesis (Engstler et al. 1992) of an isotopic independence
of the values.U

e

6. CONCLUSIONS

Improvements in experiment and theory have provided
an increased credibility of the THM in the determination of
the bare astrophysical factor for charged-particleÈS

b
(E)

induced reactions down to ultralow energies. They lead
to keV barns consistent with Ðts to directS

b
(0)\ 55 ^ 3

measurements and the NACRE compilation (Angulo et al.
1999) and, thus, to essentially unchanged astrophysical
conclusions.

In order to elucidate further the applicability and useful-
ness of the THM, an experiment is in progress to study
7Li(p, a)a with the THM reaction 7Li(3He, aa)d. Similarly,
the 3He(d, p)4He reaction (° 1) will be investigated via the
THM reaction 6Li(3He, ap)4He.

The authors thank F. Barker for the fruitful comments on
the manuscript.
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