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ABSTRACT
We debate how the scaling properties of the angular correlation function w(h) depend on luminosity

segregation. Under the approximation that there is no deviation from Euclidean geometry and no evolu-
tion, we Ðnd that the scaling with catalog depth is the same both for a luminosity (L ) independent(D

*
)

clustering length and for a generic dependence of on L . Recent angular data, however, extend to(r0) r0depths where the above approximation is unsuitable and the simple scaling should be modiÐed.wP D
*
~c

We Ðnd that such modiÐcations depend on the shape of the L Èdependence of and are indeed di†erentr0depending on whether luminosity segregation is or is not considered. In particular, we Ðnd that a lumi-
nosity segregation as observed at z\ 0 causes e†ects of the same order as varying the rate of clustering
evolution. For the sake of example, we apply our expressions to available angular galaxy data in the BÈ
and RÈbands and show that signiÐcant constraints on the evolution of clustering can already be found
with public data.
Subject headings : cosmology : theory È dark matter È large-scale structure of universe

1. INTRODUCTION

A great deal of e†ort has been devoted by Peebles and
collaborators to measuring galaxy clustering properties (see
Peebles 1980, and references therein). The observational
data available at the time amounted to angular catalogs of
di†erent depth (a precise deÐnition will be reported inD

*the next section). Using such data, they computed the two-
point angular function and found that it scaled with asD

*
~c,

predicted by the Limber equation (Limber 1953), if the
spatial two-point function reads This allowedm(r)\ (r0/r)c.them to conÐrm that the clustering length had general,r0sample-independent signiÐcance. In turn, this was an evi-
dence in favor of the gravitational instability picture.

In the following years, angular measurements and the
Limber equation played a key role as a test of cosmological
and structure formation models. Simultaneously, however,
the Automated Plate Measuring Facility (APM) survey
(Maddox et al. 1990a, 1990b) provided one of the Ðrst evi-
dences that a signiÐcant luminosity segregation exists. This
was conÐrmed by inspections based on large three-
dimensional catalogs (Dominguez-Tenreiro & Martinez
1989 ; Valotto & Lambas 1997 ; Willmer, da Costa, & Pel-
legrini 1998 ; Guzzo et al. 2000). How such dependence may
interfere with the scaling predicted by the Limber equation
is a problem that was essentially overlooked, trusting that
an average correlation length might be used, however,
without causing discernible errors. In this paper we examine
this problem in detail and Ðnd that, while the neglect of
luminosity segregation could not cause appreciable errors
in early estimates, currently available angular data should
be analyzed taking it into account. In particular, we show
that conclusions regarding clustering evolution obtained
neglecting luminosity segregation can be misleading.

It should also be stressed that, even in the era of large
three-dimensional surveys, the use of the Limber equation
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I-20133 Milano, Italy.

2 Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milano,
Italy.

3 Physics Department G. Occhialini, degli Studi di Milano-Università
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to study galaxy and galaxy cluster clustering properties
from angular catalogs is far from being obsolete. At any
time, two-dimensional samples will tend to be wider than
three-dimensional samples, the compilation of which
requires an extra e†ort dedicated to each object (e.g., a spec-
tral analysis). At large distances, spectroscopic redshifts are
good distance indicators, being mildly a†ected by peculiar-
motion distortions. Obtaining them, however, is a complex
task. The information obtainable from photometric red-
shifts, on the other hand, bears only a statistical meaning
and must be handled with caution. Comparing results
obtainable with or without them is, at least, an indirect way
to make sure that no systematic error is caused by their use.

In a previous paper (Gardini, Bonometto, & Macciò
1999) it was shown that, in the Euclidean regime and in the
absence of evolution, the scaling law of the angular function
valid for constant also holds if it is assumed thatr0 r0P D

L(where is the mean distance of objects whose luminosityD
Lexceeds L ). Here, Ðrst of all, we show that such a conclusion

can be extended to a generic dependence of on L , stillr0provided that there is no evolution and Euclidean geometry
is assumed. This point will be made in detail in ° 2.

Galaxy data, extending to a low (apparent) luminosity,
are now available. They include distant galaxy systems, the
analysis of which now requires us to abandon the above
limitation. In ° 3, we see that, if evolution and nonÈ
Euclidean geometry are now taken into account, deviations
from the scaling are indeed di†erent depending onwP D

*
~c

whether does or does not depend on L .r0In order to perform a quantitative evaluation of such
e†ects, in ° 4 we review data on luminosity segregation. A
tentative Ðt to data will be proposed, which will be used in
successive evaluations.

Section 5 presents a comparison between observational
behavior and theoretical predictions. Data in the B band
and the R band will be considered. As we shall see, available
data are not yet so stringent as to fully constrain the rate of
clustering evolution. On the contrary, it will be evident that
working out clustering evolution without considering lumi-
nosity segregation is surely misleading. Section 6 will be
devoted to make this point in detail and to illustrating some
consequences of our results.
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2. SCALING LAW OF THE ANGULAR FUNCTION IN THE

EUCLIDEAN LIMIT

The aim of this section is to work out the scaling of the
angular two-point correlation function, dropping the
assumption that the correlation length is luminosityr0independent, neglecting, however, departures from Euclid-
ean geometry or galaxy evolution. We Ðrst reproduce the
procedure leading to the usual Limber equation, in a way
similar to Peebles (1980). The changes made here only aim
to allow an easier passage to the case of luminosity-
dependent correlations ; in particular, we systematically
refer to luminosities instead of magnitudes. We also use
symbols similar to Peebles, unless this causes confusion
when an extension to the case of luminosity segregation is
performed.

2.1. Spatial Correlations
Let then '(L ) be the galaxy luminosity function, such

that

n([ L )\
P
L

=
dL@ '(L@) (1)

is the cumulative galaxy number density and

D
L
\ n~1@3([L ) (2)

is the average separation of galaxies more luminous than L .
Equations (1) and (2) set a correspondence between L and

note, in particular, thatD
L
;

dL '(L )\ 3dD
L
/D

L
4 . (3)

Let us then assume that the spatial two-point function for
galaxies with luminosity greater than L reads

m
;L

(r)\ B(D
L
)r~c . (4)

The dependence on of the coefficient B allows us to takeD
Linto account the observed luminosity segregation. No L

dependence of c will be considered. The L dependence of the
cumulative is obtainable if the di†erential two-pointm

;Lfunction reads

m(L 1, L 2, r12)\ b(D
L1

)b(D
L2

)r12~c (5)

is the separation between the points considered, where(r12objects of luminosities and are set), andL 1 L 2
B1@2(D

L
)\ 3D

L
3
P
DL

=
dDD~4b(D) . (6)

This can be shown by taking into account equation (3) and
replacing and by and as integration vari-L 1 L 2 D

L1
D

L2
,

ables, in the relation

m
;L

(r12)\
1

n2([ L )
P
L

=
dL 1'(L 1)b(D

L1
)

P
L

=
dL 2 '(L 2)b(D

L2
)r12~c . (7)

This is equivalent to equation (49.3) in Peebles (1980), after
the right-hand side of his equation (51.1) has been replaced
in it, just using for m the expression given by our equation
(5).

Among possible laws, it is worth considering the power
law where is a constant. According tob(D)\ b

*
Db@2, b

*equation (6), in this case it is For galaxy clus-B(D
L
)P D

L
b .

ters, as discussed below, the case may beB(D
L
) \ (aD

L
)c

signiÐcant, and it is soon obtained by setting b \ c. The
case of an L -independent clustering length can also be
recovered by setting b \ 0.

2.2. Angular Correlations
Let be the luminosity of a galaxy at the turning pointL

*of the luminosity function ; for a Schechter parametrization,
h~2 (where h is the Hubble constant in unitsL

*
^ 1010 L

_of 100 km s~1 Mpc~1). Then let be the apparent lumi-l
mnosity limit deÐning an angular galaxy sample and let beD

*the distance at which a galaxy of luminosity has anL
*apparent luminosity Assuming an Euclidean geometryl

m
.

and neglecting the cosmic expansion, inD
*

\ (L
*
/4nl

m
)1@2 ;

more general cases, one must take into account the appro-
priate relation between Ñux and luminosity (see ° 3.1 below).

When is given by the above expression, the angularD
*number density of galaxies, scales as obviously,N(D

*
), D

*
3 ;

this is quite independent of the scaling of two-point func-
tions and is a well known volume e†ect, which does not
persist, e.g., if the galaxy distribution is a fractal (see, e.g.,
Murante et al. 1997 and references therein).

For a sample characterized by a depth the two-pointD
*
,

angular function can be obtained by integrating
over the radii and and the luminositiesm(L 1, L 2, r12) r1 r2and starting from and respec-L 1 L 2, L

*
(r1/D*

)2 L
*
(r2/D*

)2,
tively, so as to include those galaxies whose apparent lumi-
nosity exceeds l

m
,

w(Ë) \ 1
N2(D

*
)
P
0

=
dr1 r12

P
Lp(r1@Dp)2

=
dL 1 '(L 1)

]
P
0

=
dr2 r22

P
Lp(r2@Dp)2
=

dL 2'(L 2)m(L 1, L 2, r12) . (8)

This equation is equivalent to equation (51.2) in Peebles
(1980), where, however, the change of variables we make in
equation (12) has already been performed.

Using instead of L and equation (5) forD
L

m(L 1, L 2, r12),equation (8) yields

w(Ë) \ 1
N2(D

*
)
P
0

=
dr1 r12

P
DLp(r1@Dp)2

=
dD1

3b(D1)
D14

]
P
0

=
dr2 r22

P
DLp(r2@Dp)2

=
dD2

3b(D2)
D24

r12~c . (9)

This can be simpliÐed using equation (6), obtaining

w(Ë) \ D
*
6~c

N2(D
*
)
P
0

=
dq1 q12D

Lpq21
~3 B1@2(D

Lpq21
)

]
P
0

=
dq2 q22 D

Lpq22
~3 B1@2(D

Lpq22
)q12~c (10)

(where and, when is a power law, itq
i
\ r

i
/D

*
) B(D

L
)

becomes

w(Ë) \ D
*
6~c

N2(D
*
)
A b

*
1 [ b/6

B2P
0

=
dq1 q12 D

Lpq21
b@2~3

]
P
0

=
dq2 q22D

Lpq21
b@2~3 q12~c . (11)

Owing to the scaling equations (10) and (11)NPD
*
3 ,

already show that provided that no furtherwP D
*
~c,

dependence on is conveyed by Note that no assump-D
*

D
L
.
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tion about the L dependence of is made in equationB(D
L
)

(10). Hence, the above scaling property is generic. It
depends only on the universality of the function notB(D

L
),

on its shape. Such scaling is true, in particular, when this
function is constant, but this is not required in order that
wP D

*
~c.

Let us then perform the change of variables q1] q2\ 2q,
yieldingr2[ r1\ u,

q12 ^ [q2Ë2] (u/D
*
)2]1@2 ; (12)

then equation (10) yields

w(Ë)\ A3 c
A r8 0
D

*

Bc
Ë1~c , (13)

where

A3 c r8 0c \ 2cc L
*
c@2 /

o
= dL L2~c@2D

L
~6B(D

L
)

(/
o
= dL L1@2D

L
~3)2 , (14)

with

cc \
P
~=

`=
dt (1] t2)~c@2 \!(1/2)!((c[ 1)/2)

!(c/2)
. (15)

Note that Peebles (1980) denotes by A the whole product
Equation (14), obtained by turning the integra-A3 c(r8 0/D*

)c.
tion over q into an integration on extendsL \ L

*
q2,

PeeblesÏ result to the case of luminosity segregation. In the
case (L -independent we can set andB(D

L
)4 r0c r0), r8 04 r0,equation (14) returns PeeblesÏ expression for A.

On the other hand, if we forcibly interpret angular data
as being due to a constant even though the physicalr0,correlation length is luminosity dependent, we obtain an
apparent clustering length expression

r0c \ /0= dL L2~c@2D
L
~6 B(D

L
)

/0= dL L2~c@2D
L
~6 . (16)

In the case of a power law, with b \ c, equation (16)
becomes

r0c \
A b

*
1 [ c/6

B2 /0= dL L2~c@2D
L
~6`c

/0= dL L2~c@2D
L
~6 , (17)

as was shown by Gardini et al. (1999).
The conclusions of this section can be summarized as

follows :

1. The presence of a scaling

NP D
*
3 , w(Ë)P D

*
~c (18)

of number density and a two-point angular function is not
sufficient to determine that a luminosity-independent corre-
lation length exists.

2. If, however, data are interpreted as originating in a
constant correlation length, the value given by equation (17)
can be worked out. A visual inspection of equation (17)
shows that the value of it provides, being a suitablyr0weighted value, will not di†er much from the averageD

Lseparation of galaxies in the sample.

All of the above assumptions hold in the Euclidean limit
and in the absence of evolution. Real sample data, however,
are noisy, and departures from Euclidean geometry, as well
as evolution, could hardly be detected in samples limited to
redshifts z[ 0.2È0.3.

3. RELATIVISTIC CORRECTIONS AND EVOLUTION

In this section we debate the e†ects of evolution and
relativistic corrections. Evolutionary e†ects will be con-
sidered within the Press & Schechter (1974) approach ; of
course, this can be much improved, but this simple model
already allows calculation of the impact of evolution on the
clustering scale length. Relativistic corrections depend on
the cosmological model. Here we consider two models only,
both spatially Ñat. In the Ðrst (SCDM), the matter density
parameter In the second (LCDM), and)

m
\ 1. )

m
\ 0.3

We need not make any assumption about)" \ 0.7. H0, )b
,

etc. ; however we take a being the cosmological scalea0\ 1,
factor, to simplify notation.

3.1. General Properties and Number Densities
The evolution of the luminosity function, in the Press &

Schechter approach, depends on the shape of the mass (M)
dependence of the rms Ñuctuation amplitude, on thep0(M),
assumed density contrast threshold, (D1.7 for sphericald

csymmetry), and on the assumed M dependence of the M/L
ratio. The chosen cosmological model determines the red-
shift dependence of the linear growth factor *4 *(z, )

m
),

and the luminosity function is therefore given by

'(L , z) \'
*

L
*

A L
L
*

Ba~2 1
*

exp
C
[
A L
L
*

B2a 1
*2
D

. (19)

Here we assume that

p0(M) \ (M3 /M)a , M
*

\ (2/d
c
)1@2aM3 ,

'
*

\ 2ao
m

JnM
*

,

while M/L is M- and z-independent, and is the lumi-L
*nosity of an object of mass For a \ 0.5, equation (19)M

*
.

becomes a usual Schechter function. From equation (19) it
is easy to evaluate the comoving number density of objects
with intrinsic luminosity greater than a given threshold L :

n([L , z) 4
P
L

=
dL '(L , Z)

\'
*

*
P
L@L*

=
dj ja~2 exp

A
[ j2a

*2
B

. (20)

Using the incomplete Gamma function

!(x, y) 4
P
y

=
dt e~ttx~1 ,

and deÐning

P(L , *) 4
A L
L
*

B2a 1
*2 ,

equation (20) can be given the simpler form

n([L , z) \ '
*

2a
*~1@a!(a1, P(L , *)) , (21)

where which may be useful for computa-a1\ (a [ 1)/2a,
tional purposes. As in the Euclidean limit, let us Ðnally
deÐne a (z-dependent) mean galaxy separation

D
L
(z) \ n~1@3([L , z) . (22)

Relativistic geometry, on the other hand, enters the
problem when the apparent luminosity l of a source of
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intrinsic luminosity L is to be evaluated. Let be the red-z
rshift of a source of line-of-sight comoving distance r ; then

l\ 10~(2@5)k(zr)L
[4nr2(1] z

r
)2] , (23)

which is just the usual relation between apparent and abso-
lute magnitude (see, e.g., Peebles 1993) expressed in terms of
Ñux and luminosity. It may be useful to recall that, in a
spatially Ñat model, the relation between redshift and com-
oving distance r can be obtained by solving the equation
(see, e.g., Peebles 1993)

H0 r \
P
0

z c dz@
J)

m
(1] z@)3] (1[ )

m
)
,

while the k-correction is given by (see Oke & Sandage 1968)

k(z)\ [2.5 log
/0= dj F0(j/(1 ] z))S(j)
(1] z) /0= dj F0(j)S(j)

,

where is the spectral energy distribution of the sourceF0(j)
in its rest frame, and S(j) is the relevant Ðlter response
function.

According to equation (23), a source of line-of-sight com-
oving distance r will be in the sample if its luminosity L [

whereL
m
(r),

L
m
(r)\ L

*
A r
D

*

1 ] z
r

1 ] z
*

B2
10(2@5)*k(zr)~k(z*)+ (24)

and (note that the distance at which anz
*

\ z(D
*
) D

*
,

object of luminosity appears at the sample limiting lumi-L
*nosity, must now be obtained by taking into account the

non-Euclidean relation between Ñux and luminosity, eq.
[23]), and angular number density for such a sample will
read

N(D
*
)\
P
0

=
dr r2

P
Lm(r)

=
dL '(L , z

r
) . (25)

If we set

p(q)\
CL

m
(qD

*
)

L
*

D2a 1
*2(z

q
, )

m
)
, (26)

where the angular number density can be givenz
q
\ z(qD

*
),

the expression

N(D
*
)\D

*
3 '

*
2a

P
0

=
dq q2*~1@a!(a1, p(q)) , (27)

which, in the case of a SCDM model, for which the z-
dependence of * is simple, further simpliÐes into

N(D
*
)\D

*
3 '

*
2a

P
0

=
dq

q2!(a1, p(q))
(1[ eq)2@a (28)

where ande \D
*
/2r

H
(r
H

\ c/H0) 1 ] z
q
\ (1 [ eq)~2,

while equation (26) for p(q) explicitly becomes

p(q)\ q4a(1[ e)8a
(1[ eq)8a`410(2@5)*k(1@(1~eq)2)~k(1@(1~e)2)+ . (29)

3.2. L uminosity-Independent Correlations
In this subsection we formulate the scheme leading to

angular functions, in the standard case of L -independent r0,in a way suitable to performing an easy transition to the
case of nonconstant r0.As seen in ° 2, the angular two-point function for a
magnitude-limited sample can be obtained by integrating
the joint distribution in luminosity and position along the
lines of sight and over the luminosities of the two points.
Assuming, as in the previous section, that the joint distribu-
tion can be written as the product of the (z-dependent) lumi-
nosity functions and di†erential correlation function, we
have

w(Ë) \ 1
N2(D

*
)
P
0

=
dr1 r12

P
Lm(r1)

=
dL 1'(L 1, z1)

]
P
0

=
dr2 r22

P
Lm(r2)

=
dL 2 '(L 2, z2)

] m(L 1, L 2 ; z1, z2 ; r12) . (30)

Here plays the same role asm(L 1, L 2 ; z1, z2 ; r12)in equation (5), except for the dependence onm(L 1, L 2, r12)redshift, which needs to be enclosed. The above expression
simpliÐes, however, if we assume, as is usually done, that
correlations vanish over scales implying a nonnegligible
redshift variation. If superclustering is to be taken into
account, this assumption may have to be suitably improved.
Here we also introduce the usual parametrization per-
formed in order to analyze clustering evolution (Groth &
Peebles 1977), by assuming an L -independent comoving
scale and writingr0

m(L 1, L 2 ; z1, z2 ; r12) \
A r0
r12

Bc
(1] z

r6 12
)~(3`v~c) , (31)

where In the absence of z-dependence,r6 12 \ (r1] r2)/2. r0is the usual correlation length ; note that it is assumed that
the slope c is z-independent, so that correlation evolution is
fully parametrized by the exponent v. For v\ 0, clustering
is Ðxed in proper coordinates ; for v\ c[ 3 we have Ðxed
clustering in comoving coordinates, while v\ c[ 1 corre-
sponds to a linear growth of clustering.

By replacing equation (31) in equation (30) and using the
deÐnition of (eq. [22]), we obtainD

L
(z)

w(Ë) \ r0c
N2(D

*
)
P
0

=
dr1 r12 D

L(r1)~3 (z1)

]
P
0

=
dr2 r22D

L(r1)~3 (z2)r12~c(1] z
r6 12

)~(3`v~c) . (32)

Changing integration variables as in the Euclidean case, so
that we Ðnd thatr12 \ [q2(Ë12D

*
)2] u2]1@2,

w(Ë) \ Ac(D*
)
A r0
D

*

Bc
Ë1~c , (33)

all complications being hidden in the expression of

Ac(D*
) \ cc

]
/0= dq q5~c(1] z

q
)~(3`v~c)[*~1@a!(a1, p(q))]2

[/0= dq q2*~1@a!(a1, p(q))]2 , (34)

where and p(q) are deÐned in equations (15) and (26),ccrespectively. In contrast to the Euclidean case, the coeffi-
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cient here depends on the sample depth such depen-Ac D
*

;
dence becomes gradually stronger for deeper samples. Let
us also note that equation (34) can be signiÐcantly simpli-
Ðed for SCDM and then reads

Ac(D*
)\ cc

/0= dq q5~c(1] z
q
)f!2(a1, p(q))

[/0= dq q2(1] z
q
)1@a!(a1, p(q))]2 , (35)

where f\ 2/a ] c[ 3 [ v.

3.3. L uminosity-Dependent Correlations
As we did in the Euclidean case, we now consider the

possibility that correlations depend on luminosity ; let us
then write the cumulative spatial correlation function as

m(r12,[ L , z)\ B(D
L
, z

r6 12
)

r12c
(1] z

r6 12
)~(3`v8~c) , (36)

outlining also the dependence on z. Again, we assume that
correlations vanish on scales far shorter than the sampleÏs
depth, Let us consider, in particular, the case in whichD

*
.

B(D
L
, z)\ [r

a
] aD

L
(z)]c

(here a is a proportionality constant), which we call ““ LP ÏÏ
(see below). If and a \ 0.4, LP reduces to the Bahcallr

a
\ 0

& West (1992) conjecture (BW). As in the Euclidean case,
the integral law (eq. [36]) can be derived by a di†erential
expression

m(r12, L 1, L 2, z
r6 12

)\ b(D
L1

, z
r6 12

)b(D
L2

, z
r6 12

)
r12c

] (1] z
r6 12

)~(3`v8~c) , (37)

where B and b are related by

B1@2(D
L
, z)\ 3D

L
3(z)
P
DL(z)

=
dD

b(D, z)
D4 . (38)

By substituting equation (36) into equation (30) and using
equation (38), we work out

w(Ë)\ 1
N2

P
0

=
dr1 r12

[B(D
L(r1), z

r1
)]1@2

D
L(r1)3

]
P
0

=
dr2 r22

[B(D
L(r2), z

r2
)]1@2

D
L(r2)3

] r12~c(1] z
r6 12

)~(3`v8~c) . (39)

Performing the same change of variables as in ° 3.2, we
can write the angular correlation function as

w(Ë)\ A3 c(D*
)
A r8 0
D

*

Bc
Ë1~c , (40)

provided that we deÐne

A3 c(D*
)r8 0c \

cc
/0= dq q5~c(1] z

q
)~(3`v8~c)B(D

L
, z

q
)D

L
~6(z

q
)

[/0= dq q2D
L
~3(z

q
)]2 , (41)

where is given by equation (15). Again, the coefficientcc depends on but in a di†erent way fromA3 c(D*
)r8 0c D

*
, Ac(D*

)
deÐned in equation (34). Therefore, in principle, by studying
the scaling of the angular function with the sampleÏs depth,
it should be possible to determine the relationship between
correlations and luminosity. In the case of a SCMD model

with LP correlations, equation (41) becomes

A3 c(D*
)r8 0c \

cc
/0= dq q5~c(1] z

q
)~(3`v8~c)[r

a
] aD

L
(z

q
)]cD

L
~6

(/0= dq q2D
L
~3)2 . (42)

The apparent correlation length found by interpreting a
luminosity-dependent correlation as being due to a
luminosity-independent is given byr0

r0c \ /0= dq q5~c(1] z
q
)~(3`v8~c)B(D

L
, z

q
)D

L
~6

/0= dq q5~c(1] z
q
)~(3`v~c)D

L
~6 . (43)

For luminosity-independent a possible redshift depen-r0,dence of clustering can be interpreted as yielding r0c P
(1] z)c~(3`v). Equation (43) makes it clear that, in general,
the apparent has a di†erent z dependence. On the otherr0hand, if data are forcibly interpreted to work out an r0value through equation (43), this has misleading e†ects on
the study of clustering evolution. In particular, the evolu-
tionary exponent v worked out if data are treated in such a
way does not yield the rate of evolution of the actual clus-
tering.

4. LUMINOSITY SEGREGATION IN THREE-DIMENSIONAL

SAMPLES

According to Peebles (1980), the scaling relation given in
equation (18) played an important role in testing that the
angular correlations of galaxies in the catalogs do reÑect the
presence of a uniform spatial galaxy clustering, rather than
something else, e.g., systematic errors due to patchy obscur-
ation in the Milky Way. Hauser & Peebles (1973), in their
seminal work on cluster clustering, made use of the scaling
relation given in equation (18) as a test for the cluster corre-
lation length, h~1 Mpc, they obtained for Abellr

c
D 30

clusters. The results found here are not in contradiction
with such statements, although di†erent spatial clustering
laws, with L -dependent clustering lengths, can give rise to
the same scaling properties. The actual luminosity depen-
dence of the clustering length can then be found by either
using three-dimensional samples or, if we keep to two-
dimensional samples, studying the deviations from the
Euclidean behavior in deep catalogs.

The former task can be rather easily achieved using exist-
ing data on galaxy and cluster two-point functions. In
Figure 1 we show a compilation of several analyses of three-
dimensional samples. For galaxies, the Perseus-Pisces
Survey (PPS), Southern Sky Redshift Survey 2 (SSRS2), and
ESO Slice Project (ESP) surveys were considered (see, Gio-
vanelli & Haynes 1991 ; da Costa et al. 1994 ; Willmer et al.
1998 ; Guzzo et al. 2000, and references therein). Luminosity
segregation has already been studied in these samples,
Ðnding the dependence of the clustering length on the
minimum intrinsic luminosity of Ðxed subsamples. FromL

mand sample data, we can easily turn this into a depen-L
mdence on the mean separation In this way we obtainD

L
. r0versus which we plot in Figure 1.D

L
,

Plotting versus is usual for cluster data, and helpsr0 D
Lto overcome di†erent deÐnitions used for di†erent samples.

In Figure 1, estimates for Abell clusters (Abell 1958 ;r0Abell, Corwin, & Olowin 1989) of various richness and for
clusters worked out from the APM survey (Maddox et al.
1990a, 1990b) are plotted. The latter values were obtained
by Dalton et al. (1992) and Croft et al. (1997), but were later
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FIG. 1.ÈCorrelation length, as a function of the mean separation, See the original works for details. In particular, the Abell data are from Peacockr0, D
L
.

& West (1992) and Postman, Huchra, & Geller (1992), while the APM points are from Dalton et al. (1992), Nichol et al. (1992), and Croft et al. (1997). The
dashed line represents the LP expression this is not a best Ðt, but is plotted here to give a qualitative example of the impact of luminosityr0\ 0.4D

L
] 2.2 ;

segregation on galaxy scale.

criticized by Lee & Park (1999), who, from the same obser-
vational material, obtained signiÐcantly greater values of r0.In Figure 1 we report the Dalton et al. (1992), Nichol et al.
(1992), and Croft et al. (1997) results, as well as the Lee &
Park (1999) results.

For the sake of completeness, we also report estimatesr0for loose groups (Trasarti-Battistoni, Invernizzi, & Bono-
metto 1997 ; Maia, & Lambas 2000). Also forMercha� n,
completeness sake, we point out a study of luminosity segre-
gation in the galaxies of the Las Campanas Redshift Survey
(LCRS; see Shectman et al. 1996) by Valotto & Lambas
(1997). Although not directly comparable with the data we
report here, their results suggest an increase of clustering
strength with source luminosity.

Szalay & Schramm (1985) proposed a single law,

r0\ aD
L

, (44)

to Ðt both cluster and galaxy data. When more detailed
cluster clustering data became available, Bahcall & West
(1992) used such an expression for clusters only.

After reevaluating the clustering lengths for APM cluster
subsamples, Lee & Park (1999) suggested correcting the
BW conjecture by adding a constant term

r0\ aD
L
] r

a
; (45)

this certainly improves the Ðt with the data they had been
using. In Figure 1 we plot an LP expression with a \ 0.4
and h~1 Mpc, which meets both galaxy and clusterr

a
\ 2.2

error bars in a reasonable way. We wish to stress that this is
not a best Ðt, which would hardly make sense in the pres-
ence of data obtained in such nonuniform ways. Rather,
what we want to stress is that the luminosity segregation for
galaxies, although not so strong as for clusters, is still sig-
niÐcant and may need to be taken into account when
angular samples are used. As a matter of fact, the LP law
seems to be close to the data, except for the SSRS2 point at
11.2 h~1 Mpc, which would indicate an even stronger L
dependency.

We make use of the LP conjecture as an alternative
hypothesis, in respect to L -independent to test the devi-r0,ations from the scaling law (eq. [18]).

5. COMPARISON WITH DATA

When deep data samples are considered, substantial devi-
ations from the scaling law (eq. [18]) may be expected. For
the sake of example, in this section we consider recent
observational results in the B and R-bands (Brunner,
Szalay, & Connolly 2000 and Villumsen, Freudling, & da
Costa 1997, respectively ; see also references therein) in light
of the results of ° 3.

In both bands, we compare data on the amplitude of the
angular two-point function, with theoreti-A

w
\ w(Ë)/Ë1~c,

cal predictions obtained assuming that either (1) h~1r0\ 4
Mpc is luminosity independent, or (2) is given by the LPr0expression discussed in ° 4. In both cases, we take c\ 1.7
and a \ 0.5 ; k-corrections are calculated through analytical
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expressions that provide a good Ðt of Coleman, Wu, &
Weedman (1980) data and also maintain a regular behavior
at redshifts greater than those spanned by the data ; Ðnally,
we adopt the nonevolving morphological type mix given in
Brunner, Connolly, & Szalay (1999).

Our main aim here amounts to exploring the impact of
luminosity segregation on the scaling of and moreA

w
,

sophisticated assumptions would not a†ect our conclusions.
If full quantitative conclusions regarding clustering evolu-
tion are sought, a more advanced discussion on the evolu-
tion of the morphological mix is certainly required.
However, the main uncertainty may come from k-
corrections. Here data extend up to redshift z^ 1.5 and
z^ 2 in the B and R bands, respectively. Clustered galaxies,
instead, have redshifts up to z^ 1.2 and z^ 3 in the two
bands, respectively. Hence, while k-corrections are reason-
ably safe in the B band, they involve nonnegligible extrapo-
lations in R.

In Figure 2 the amplitude of the angular function versus
limiting B magnitude is shown; data obtained by Brunner
et al. (2000) are given, together with previous results, in both
panels. The superimposed curves in Figures 2a and 2b are
obtained for SCDM and LCDM, respectively. They show
the expected behavior of w(Ë) for three di†erent v values,
corresponding to three di†erent clustering evolution rates.
For each v value we have two curves : the upper one refers
to case 1, while the lower one relates to case 2. As a general
feature, we note that cases 1 and 2 also have di†erent
slopes ; present data, however, are certainly insufficient to
distinguish between slopes. Remember that any di†erence
between the two sets of curves disappears in the absence of
deviations from the Euclidean geometry and/or evolution of
galaxy numbers.

Figure 2a shows that the curve taking luminosity segre-
gation into account is in good agreement with data for

SCDM, for all v values, while L -independent correlations
tend to favor a linear growth of clustering (v\ 0.7). In prin-
ciple, agreement could be recovered taking either r0> 4
h~1 Mpc or c\ 1.62 ; however, pairs compatible withr0-cz\ 0 clustering data do not permit such a Ðt. In an LCDM
model, L -independent correlations are in a better agree-
ment with data ; here too, higher v values provide the best
Ðts. From Figure 2b it is also evident that in an LCDM
model, the LP expression lies below the data ; however,
increasing c to 1.75 presents a picture similar to the SCDM
case.

In Figure 3, we plot data taken from Villumsen et al.
(1997) for the R band and curves representing the expected
behavior of the angular amplitude. Data can be divided in
three sets : (1) for R magnitudes up to D23, we have ground-
based data from various authors ; (2) for R magnitudes
between D23 and D25.5 there are four estimates obtained
by Brainerd, Smail, & Mould (1995), which seem to indicate
a rapid decrease of and (3) above R magnitude ^26A

w
;

there are data obtained from the Hubble Deep FieldÈNorth
(HDF-N; Clements & Couch 1996).

If luminosity segregation is not taken into account, all
error bars lie well below SCDM estimates, even for the most
favorable case of v\ 0.7 (Fig. 3, upper dashed line), which
means a linear increase of clustering. The disagreement is
dramatic for data set 2, where estimates exceed data by
more than 10 p, but disagreements also exceed 3 p for some
points of the HDF-N. In an LCDM model, on the other
hand, even when luminosity segregation is not considered,
the disagreement between data and estimates is signiÐcantly
reduced. Once again, the best estimates are obtained for
v\ 0.7, and the main disagreement concerns data set 2.
Although statistical estimators can hardly be used in such
cases, when error bars from di†erent authors are compared,
the feeling one has, looking at the upper curves of Figure 3b,

FIG. 2.ÈLogarithmic amplitude of the angular two-point function, as a function of the limiting B magnitude. The superimposed curvesA
w

4 w(Ë)/Ë1~c,
show the predicted behavior for for di†erent values of the evolutionary parameter v and di†erent regimes of luminosity segregation, assuming either (a) aA

wSCDM or (b) LCDM cosmological model. In particular, for a given v value, the upper curve corresponds to()
m

\ 1.0, )" \ 0) ()
m

\ 0.3, )" \ 0.7)
L -independent correlations, while the lower curve assumes the LP expression r0\ 0.4D

L
] 2.2.
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FIG. 3.ÈSame as Fig. 2, but for R-band data. See Villumsen et al. (1997) and references therein for details on observations and data reduction. The
disagreement between predictions and data is mainly due the uncertainties on k-corrections, which become signiÐcative for deep samples, such as the one
considered here. However, we applied the same k-correction model to both luminosity-independent and luminosity-dependent correlation estimates ;
therefore, the relative separation between the two sets of curves is largely una†ected and shows the e†ects of luminosity segregation on a galaxy scale.

is that the agreement is good only with the data set 1 ; not
only the data from set 2, but also HDF-N data systemati-
cally lie below estimates, even for v\ 0.7.

The situation is di†erent when luminosity segregation is
taken into account. For SCDM, the behavior of estimates is
just slightly worse than what we have for LCDM, if lumi-
nosity segregation is neglected. The best theoretical esti-
mates are instead obtained for LCDM, taking into account
luminosity segregation. Once again, v\ 0.7 seems favored.
For the data set 1, estimates miss two points with very
narrow error bars. The four points of data set 2, on the
other hand, are approached at the 2È3 p level (except one),
and the HDF-N error bars are satisfactorily met. Alto-
gether, it may be legitimate to conclude that, taking into
account luminosity segregation, LCDM meets data for
0 [ v[ 0.7.

Values v[ 0.7, bearing no physical interpretation, were
not addressed in the above analysis. This restriction has no
consequence in the case of luminosity segregation, where a
behavior approaching data is obtainable with v\ 0.7. With
no luminosity segregation, instead, such a behavior would
be obtainable only pushing v to really unphysical values
D2È3.

Recall, however, that all the above analyses are still par-
tially preliminary. What they surely show is the impact of
luminosity segregation on estimates. However, variousA

wpoints should still be deepened to gain full reliability. For
instance, a more precise evaluation of the e†ects of our
approximations on k-correction for high-z objects should
be performed. A further improvement can be obtained if
photometric redshifts are available. They would provide us
with data on the dependence of the galaxy number density
on z, which could be compared with the Press & Schechter
estimates used here.

In a previous analysis of the evolution of the angular

function, performed also using photometric redshifts, Con-
nolly, Szalay, & Brunner (1998) found that in order to keep

and c at around their canonical values, for a SCDMr0model, v^ 2.1^ 0.5 is needed. They also found that, in
order to avoid such unphysical v, had to be substantiallyr0lowered. Their best-Ðt value is A direct compari-r0^ 2.4.
son between such results and our own is perhaps premature.
Taking luminosity segregation into account has di†erent
e†ects than drastically lowering It seems, however, thatr0.their results should be reconsidered, taking luminosity seg-
regation into account. This might allow for a reconciliation
between our predictions and the observations, at least
within the frame of an LCDM cosmology.

6. CONCLUSIONS

In this work we have shown the e†ects of luminosity
segregation on the scaling properties of the two-point
angular function. In the Euclidean limit and in the absence
of source evolution, fairly unexpectedly, no e†ect arises. On
the contrary, the scaling expected for the angular functions
with or without luminosity segregation di†er signiÐcantly
when samples extend to magnitudes In such cases,Z24È25.
samples contain galaxies with where geometricalzZ 0.5,
e†ects, and possibly evolution, are not negligible. Accord-
ingly, quantitative conclusions also depend on the cosmo-
logical model.

However, quite independently of the model, it is clear
that taking luminosity segregation into account causes sig-
niÐcant shifts in the expected angular amplitude ; these are
comparable to the shifts due to variations of the parameter
v, which sets the rate of clustering evolution. Therefore,
neglecting luminosity segregation surely yields misleading
estimates of v.
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In this paper we have also tentatively analyzed recent
clustering data in the B and R bands. Within the limits
allowed by public materials, we can safely make a few
points.

In the B band, for both SCDM and LCDM, recent data
seem incompatible with stable clustering (in comoving
coordinates), if an L -independent is assumed. Forr0SCDM, even more stringent conclusions can be drawn, and
an L -independent seems incompatible with data for anyr0reasonable clustering evolution law.

In the R band, further difficulties arise from the scarcity
of data on k-corrections for galaxies beyond zD 1È1.5. This
problem arises, however, only because deeper data are
available in the R band, where, because of the ease of
obtaining deep R observations, there are considerably more
clustering data. Hence, far from worsening, clustering data
here are richer. Our analysis of Villumsen et al. (1997)
results, in particular, strengthens the above conclusions
from the B band. That standard values of and c werer0

hardly compatible with HDF-N data had already been out-
lined by Connolly et al. (1998). After exploring various
hypotheses, they essentially concluded that the very para-
metrization of clustering was unsuitable and had to be
modiÐed. Although this may be true, here we note that,
once luminosity segregation is taken into account, values of
vD 0.7 (linear increase of the clustering rate) may become
consistent with data for LCDM. On the other hand, SCDM
is only in moderate disagreement with HDF-N data, but
disagrees substantially with previous results of ground-
based observations (Brainerd et al. 1995).

Let us Ðnally remark that all our Ðts tend to show a
better agreement between theory and data for models with
a cosmological constant. This adds to other, more stringent,
evidences in favor of this class of cosmological models.

Thanks are due to Sebastiano Ghigna for useful dis-
cussions.
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