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ABSTRACT
We develop a method for investigating waves and instabilities in astrophysical shear Ñows with

complex kinematics. Using new tools, we Ðnd an unexpected richness in the spectrum of compressible
Ñuctuations sustained by such a Ñow. The principal characteristic of the revealed exotic phenomena is
their asymptotic persistence in the absence of viscosity. ““ Echoing ÏÏ as well as strongly unstable (including
parametrically driven) solutions are identiÐed. Examples of astrophysical shear Ñows with nontrivial
velocity structure where these method and results can be applied are also discussed.
Subject headings : hydrodynamics È instabilities È waves

1. INTRODUCTION

Astrophysical shear Ñows are attractive objects for scien-
tiÐc investigation both for their physical content and for
their astrophysical signiÐcance. A shear Ñow is an inter-
esting example of a system in which the linear dynamics is
governed by a ““ nonnormal ÏÏ (nonÈself-adjoint) set of equa-
tions (Trefethen et al. 1993). This nonnormality has moti-
vated several recent studies of the initial-value problem in
di†erent kinds of parallel shear Ñows. A host of phenomena,
overlooked (in fact, inaccessible) in the standard normal
mode approach, have been identiÐed, including (1) the
ability of the shear-modiÐed waves to extract energy from
the mean shear Ñow (Chagelishvili, Rogava, & Segal 1994) ;
(2) the existence of shear-induced coupling and mutual
transformations of waves in Ñows sustaining n [ 1 modes of
wave motion (Chagelishvili, Rogava, & Tsiklauri 1996) ; (3)
the excitation of shear-driven beat waves (Rogava &
Mahajan 1997) ; (4) the appearance of nonperiodic, algebrai-
cally unstable modes of collective behaviorÈ““ shear
vortices ÏÏ (Rogava, Chagelishvili, & Mahajan 1998) ; and (5)
the occurrence of abrupt vortex-wave conversions in Ñows
with moderate and high shear rates (Chagelishvili et al.
1997).

In astrophysics, the importance of local, shear-induced
phenomena has been recognized for a long time. Some
obvious examples are the investigation of galactic density
waves (Toomre 1969 ; Goldreich & Tremaine 1978 ; Fan
& Lou 1997) using the Goldreich & Lynden-Bell (1965)
model of a shearing gas disk, and the study of nonaxisym-
metric, transiently growing, incompressible modes in
nonmagnetized accretion disks (Lominadze, Chagelishvili,
& Chanishvili 1988) and the strongly unstable non-
axisymmetric modes in weakly magnetized (high-b) accre-
tion disks (Balbus & Hawley 1992), and of similar unstable
spiral modes in strongly magnetized low-b disks (Tagger,
Pellat, & Coroniti 1992). It has been argued that the local
shear instability (Velikhov 1959 ; Chandrasekhar 1960)
identiÐed recently for weakly magnetized disks (Balbus &
Hawley 1991 ; Hawley & Balbus 1991) is one of the most
powerful processes feeding o† the di†erential shear. More

recently, it has been further argued that shear-induced wave
transformations may play an important role in the gener-
ation of pulsar radio emission (Mahajan, Machabeli, &
Rogava 1997), the generation of solar magnetohydro-
dynamic (MHD) waves, and the acceleration of the solar
wind (Poedts, Rogava, & Mahajan 1998).

One common feature of the existing astrophysical appli-
cations is that they assume rather simple, locally plane-
parallel (or reducible to plane-parallel) forms of the
background shear Ñow with linear velocity proÐles. Fortu-
nately, this approximation works for plane-parallel Ñows
with nonlinear velocity proÐles as well, because locally, on
length scales that are small compared to the outward
dimensions of the Ñow, any piecewise linear or smoothly
curvilinear proÐle can be considered as approximately
linear, i.e., with a constant shear rate. The latter assumption
is crucial for the validity of the often-used Kelvin method of
changing variables (Kelvin 1887).

However, a majority of the astrophysical shear Ñows are
nonÈplane-parallel, and some are not parallel at all. The
Ñows in the solar atmosphere (Parker 1979), for instance,
fall into this category. In the photosphere, complicated
three-dimensional convective motions are superimposed on
the background e†ect of the solar di†erential rotation. The
slender magnetic Ðlaments rooted in the convective zone,
where their footpoints are continually massaged and
squeezed by the convective granules (Parker 1974), exhibit a
surging of the Ñuid up and down along their length. There is
ample observational evidence for complicated oscillatory,
transient, or sustained motions in the corona (especially
within plasma loops), and in the chromosphere and the
transition region, where the loops are rooted (Pneuman &
Orrall 1986). Spicules, the notable patterns of chromo-
spheric Ðne structure, beginning in the chromosphere and
threading through the transition region into the low
corona, exhibit an upward mass Ñux, measured by Doppler
shifts of spectral lines. These motions are matched in a geo-
metrically nontrivial fashion with the motions within hori-
zontally lying Ðbrils and with the network downÑow in the
transition region (Athay 1986). The presence of these com-
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plicated patterns of plasma motion, coupled with magnetic
Ðelds, should heavily inÑuence the generation and propaga-
tion of MHD waves in the solar atmosphere, processes that
could contribute to the coronal heating and the acceleration
of the solar wind.

Another class of astrophysical shear Ñows with complex
kinematics are the galactic and extragalactic jets (Love-
lace, Wang, & Sulkanen 1987 ; Hughes 1991 ; Burgarella,
Livio, & OÏDea 1993 ; Shibata 1996). The complex three-
dimensional topology of ordered magnetic Ðelds,
responsible for the collimation of the jets and/or the acceler-
ation of matter up to relativistic velocities (Lovelace, Berk,
& Contopoulos 1991), ensures the complex kinematic inho-
mogeneity of the background mean Ñow within the jets.
This complexity, again, should strongly a†ect the obser-
vational appearance of these objects.

The ubiquity of astrophysical shear Ñows with complex
(multidimensional) kinematics demands that appropriate
nonasymptotic methods be devised to examine the
responses of such Ñows to perturbations. Here we propose a
simple method that reduces the initial-value problem to a
set of manageable ordinary di†erential equations in time. A
similar method, designed for the incompressible Ñows with
spatially uniform shearing rates, has been used in hydro-
dynamics (Lagnado, Phan-Thien, & Leal 1984 ; Craik &
Criminale 1986). We will see that even a slightly complex
velocity inhomogeneity imparts an immense richness to the
temporal behavior of the perturbations.

In the next section, we consider the evolution of Ñuctua-
tions in a relatively simple, two-dimensional hydrodynamic
system. The motivation is to expose the salient features of
the new physics without being swamped by algebraic com-
plications. In the concluding part of the article we will chart
out the scope of this calculation, and discuss those astro-
physical situations for which our results may be relevant. It
is hoped that our methods and results will shed some light
on the observational puzzles associated with such systems.

2. MAIN CONSIDERATION

Our analysis deals with only small-scale perturbations,
those with characteristic length scales (i\ x, y, z) muchl

ismaller than the characteristic scales of the basic shearL
iÑow. For the spatial variation of a general meanl
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will then fully characterize the Ñow in the region. For Ñows
with homogeneous equilibrium density, the velocity Ðeld is
divergence-freeÈ$ Æ U \ 0Èwhich translates into the con-
straint that the shear matrix is traceless. The components
of the mean velocity can now be expressed as U
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It should be remembered that not all U(x, y, z)Ïs are pos-
sible ; the relevant Ñow must satisfy the stationary state
equations for a given physical system. In this paper we do
not restrict the range of possible mean velocity Ðelds, but
simply concentrate on developing an approach for studying
the initial value problem valid for arbitrary ambient shear
Ñows.

Our Ðrst task is to Ðnd a transformation that will annihi-
late the spatial dependence in the operator D. For any Ñuc-
tuation F(x, y, z ; t), the Ansatz

F(x, y, z ; t) 4 FŒ [k(t), t] exp (ir) , (2a)
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seems to do the job, provided that the wavevector k(t)
acquires the time dependence given by

L
t
k ]ST Æ k \ 0 , (3)

where ST is the transposed shear matrix (Craik & Crimi-
nale 1986). These equations, even in their most general
form, have analytic solutions that embrace all possible
kinds of background Ñows. For example, the plane Couette
Ñow, corresponding to and all other leadsa12 \A a
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cated kinematics, the temporal dependence of k(t) would be
more complex, encompassing both exponentially evolving
and periodic behavior.

The convective derivative now becomes an ordinary
derivative in time : The resulting non-DF\ exp (ir)d

t
FŒ .

autonomous ordinary di†erential equations (ODEs) can be
analyzed to ““ smoke out ÏÏ overlooked modes of collective
behavior excited by the nontrivial velocity Ðelds.

The scope of this method is best demonstrated by
examining the compressible Ñuctuation dynamics of a two-
dimensional hydrodynamic system with a homogeneous
mean density. For the ambient Ñow velocity U(x, y)4
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governing the evolution of small-scale perturbations in this
Ñow. Applying the Ansatz (eq. [2]), we convert the system to
the set of Ðrst-order ODEs :
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where we have used the dimensionless notation q4 c
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and C are constants, we can derive from equations (5) and
(6) the following explicit second-order ODE (where "24
R1R2] e2) :
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A
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which determines the time behavior of the perturbations.
The constant of integration, C, appearing in the inhomo-

geneous term, can be interpreted as the source of vortical
Ñuctuations (Chagelishvili, Rogava, & Segal 1994). The
entire time dependence of both coefficients in equation (7)
comes through the time dependence of K. There are three
distinct classes of solutions :

1. "2\ 0 : In this simple case, K2\K2(0) ] dqK2(0)q
This form of K pertains to the extensively] (R1[ R2)*q2.

studied case of the plane Couette Ñow.
2. "2[ 0 : Here K2\ d ]A cosh where(2"q] t0),and A and are determined byd 4[(R1[ R2)*/2"2, t0initial values of the wavenumbers. This case allows for a

simple asymptotic analysis. For "q] O, K2B ae2"q, and
equation (7) can be approximated by a Bessel equation,
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leading to an exponential growth for the physical density
perturbation :
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The numerical solution displayed in Figure 1, in which we
have plotted as a function of time, clearly conÐrms the.
predictions of equation (9). It must be stressed, however,
that for this class of Ñows (K2] e2jq), the viscous damping
will tend to kick in in due time and will eventually damp the
mode. This is indeed found to be the case when viscosity is
incorporated into the original setup.

3. [ u24 "2\ 0 : The solution for K2 is now periodic :
with B and depending,K2\ d ]B cos (2uq] /0), /0again, on the initial values of the wavenumbers. Equation

(7) acquires the from of an inhomogeneous Hill equation,

FIG. 1.ÈDensity perturbation for e \ 0, C\ 0, ((0)\ 10~2, and.(q)\K(q)((q), R1\ 0.1, R2\ 0.05, K
y
(0)\ 0.1, dq((0)\ 0
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and its numerical analysis reveals the following three sub-
classes of solutions :

A. V ortical solutions interacting with the acoustic wave.
These solutions are expected whenever C is large and the
frequency is small. These are new,u4 [[(R1R2 ] e2)]1@2
very peculiar versions of the Kelvin modes (Kelvin 1887),
with the di†erence that the new vortex (Fig. 2) is not a
transient ; it does have a transient growth, but it repeats
with the periodicity 2u. The vortex forms at a given time,
gives up its energy back to the Ñow and the acoustic oscil-
lations, and echoes back after a time T \ n/u. We call
this picturesque phenomenon asymptotic persistence, and
we believe it is a hallmark of shear Ñows with complex
kinematics.

B. Unstable Acoustic W aves : It is well known that equa-
tions with periodic coefficients allow unstable solutions in
certain ranges of parameters. Note that for *\ 0, equation
(7) becomes a Mathieu equation, the solutions of which are
very well known. It is reasonable to expect that even for

the solutions will retain the peculiarities of the*D 0,
Mathieu solution, e.g., the regions of instability. Numerical
solutions show that equation (7) has a number of unstable
regions in the parameter space deÐned by [u, R2, Ky

(0)].
One such parametrically unstable solution is displayed in
Figure 3, where the initial perturbation with ((0)\ 10~4

exhibits powerful exponential growth by[K
y
(0)\ 8]

several orders of magnitude.

C. Stable Acoustic W aves : the basic solutions of equa-
tion (7) are some combination of the vortical and acoustic
types of perturbation. For a variety of initial conditions,
acoustic type will dominate the vortical type. In this case,
the frequency as well as the amplitude of the mode changes
periodically. A pair of typical plots is shown in Figures 4a
and 4b. These Ðgures are drawn for the same set of param-
eters as Figure 3, but with the di†erence that forK

y
(0)\ 10

Figure 4a, and for Figure 4b. Comparison ofK
y
(0)\ 6

these solutions with the unstable one shows that the acous-
tic waves become unstable for relatively narrow and
restricted ranges of the system parameters. This feature
clearly reÑects the parametric nature of the solution dis-
played in Figure 3.

In all these cases, the Ñuctuations do not go away ; they
are not transient, but amplify and/or persist. This is of
course true for the linear stage of their evolution in an
inviscid (zero viscosity) Ñuid. The e†ects of viscosity can be
readily incorporated into this model problem, and its
details will be reported later. Note that the strongest e†ect
of viscosity is on perturbations whose K increases with
time. These short-scale perturbations will readily damp due
to viscosity, converting perturbation energy into heat. It is
quite remarkable that, through the agency of the multidi-
mensional shear, the linear theory is able to mimic the most
essential element of the fully developed Ñuid turbulence ; the

FIG. 2.ÈAsymptotic persistence of ““ echoing ÏÏ Kelvin vortices for density perturbation when e \ 0, C\ 1,.(q) R1\ 0.1, R2\[0.01, K
y
(0)\ 1,

((0)\ 3.87] 10~2, and dq((0)\ 8.66] 10~3.
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FIG. 3.ÈParametrically unstable acoustic wave solution plotted for when e \ 0, C\ 1, ((0)\ 10~4, and.(q) R1\ 2.0, R2\[2 ] 10~2, K
y
(0)\ 8,

dq((0)\ 0.

transfer of energy from long- to short-wavelength pertur-
bations that Ðnd themselves, eventually, in the dissipation
range.

One must also couple the current theory with nonlinear
processes that lead to a fragmentation of the perturbation
scale and their angular redistribution in k-space. The com-
bination of viscous and nonlinear e†ects will decide the
eventual fate of the perturbations. There exists the possi-
bility that the picture developed in this paper could sub-
stantially add to our understanding of the transition to
turbulence in these kinds of Ñows. This fascinating problem
will be the next element in the further development of this
approach.

3. DISCUSSION

It seems reasonable to extrapolate that the phenomenon
of asymptotic persistence of Ñuctuations is quite general ; it
should manifest itself in most astrophysical systems (neutral
Ñuids as well as plasmas) with kinematically nontrivial
sheared background mean Ñows. A comprehensive review
of all plausible astrophysical applications is beyond the
scope of this paper. Instead, we concentrate on a subclass of
the Ñows in which the asymptotically persistent shear-
driven phenomena are likely to occur.

1. The very Ðrst example comes from the solar atmo-
sphere. As noted earlier, there is plenty of direct and indirect
observational evidence for complicated oscillatory, tran-
sient, or sustained motions in the solar photosphere,

chromosphere, transition region, and corona (Pneuman &
Orrall 1986 ; Athay 1986 ; Thomas 1996). These obser-
vations suggest that in solar MHD Ñows (1) the magnetic
Ðelds are widespread, playing a crucial role in the physics of
the solar atmosphere ; and (2) the plasma motions are of
large amplitudes ; they are coupled with the magnetic Ðeld,
and they also tend to inÑuence the overall solar activity.

However, the exact sequence of physical processes that
leads to the ultimate coronal heating and acceleration of the
solar wind is still unclear. Propagating MHD waves,
network magnetic Ðelds, and direct plasma outÑows are
likely physical factors that should contribute to the trans-
mission of the mechanical energy to the chromosphere and
corona. Clearly, di†erent patterns of the solar plasma MHD
Ñows (e.g., photospheric siphon Ñows [Thomas 1996],
chromospheric spicules and Ðbrils [Athay 1986], coronal
loops, etc.) comprise good examples of astrophysical shear
Ñows with immanently complex kinematics.

In our attempts to make simple, solvable models, we can
sometimes oversimplify the problem. For example, the
siphon Ñows in the solar magnetic Ñux tubes and sunspots,
which o†er the most likely explanation of the Evershed
e†ect in sunspots, are usually considered to be one-
dimensional, locally parallel, and uniform across the cross
section of the tube. However, we do know that even in the
simplest prototype of the siphon Ñow (the hydrodynamical
Hagen-Poiseuille Ñow) the velocity is not uniform across the
cross section of the pipe. Moreover, realizing that the foot-
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FIG. 4.ÈStable acoustic wave solutions presented by graphs, for the same sample of system parameters as in Fig. 3, except that here (a).(q) K
y
(0)\ 10

and (b) K
y
(0)\ 6.

points are most probably twisted and squeezed by the con-
vective granules (Parker 1974), it is reasonable to admit that
the solar siphon Ñows (as well as real Ñows within spicules
and Ðbrils) would be kinematically complex.

We must remark that studies of even the simplest plane-
parallel shear Ñow nonmodal e†ects in solar plasma Ñows
are in their infancy (Zaqarashvili 1997 ; Poedts, Rogava, &
Mahajan 1998). Going a step further, we can admit that
magnetic Ðelds, coupled with kinematically complex Ñuid
motions within di†erent layers of the solar atmosphere and
within di†erent elements of the solar atmospheric Ðne struc-
ture, may naturally exhibit asymptotically persistent shear-
induced phenomena, similar to the ones that are identiÐed
in the present paper. These processes may strongly inÑuence
the propagation and the morphology of MHD waves trav-
eling throughout the solar atmosphere. This important
study needs to be undertaken.

2. Accretion-ejection Ñows are yet another large class of
astrophysical Ñows with nontrivially sheared velocity Ðelds.
It is meaningful to consider accretion disks and jets in the
same framework, since existing observations suggest that
the formation of galactic and extragalactic jets is intimately
related to the existence of gaseous accretion disks around
central objects (Camenzind 1996). A delineation of the disk-
outÑow transition is a problem whose solution will neces-
sarily involve Ñows with complicated kinematics.

Jets, or narrow high-velocity plasma streams, are a
common occurrence in our own Galaxy. Just in the regions
near the Earth, there are several young stellar objects
(YSOs) accreting nearby material and emanating jets of
neutral or ionized atomic matter. Distant galaxies exhibit
extragalactic jets consisting of magnetized, relativistic Ñows
of electron-proton and electron-positron plasmas. Recent
extensive observations by the Hubble Space T elescope
(HST ) helped to give us a close look at the region near a
jetÏs origin, where the accreting mode of motion changes
into the outÑow mode of motion. For a better interpreta-
tion of the observations, a study of the properties of jet-
forming Ñows, characterized by rather nontrivial geometry
and Ñuid (plasma) dynamics, is likely to be essential.

Kinematic complexity seems to be a general character-
istic of astrophysical jet Ñows. It is true for YSOs, the newly
formed stars still embedded in their parent molecular cloud.
These objects are a common site for jet formation, and the
accretion of the molecular material is a probable energy
source for this process (Ray 1996). The HST observations
provide detailed diagnostics of the physical conditions
within the jets and in their surroundings. In Herbig-Haro 30
(HH 30), for instance (Burrows et al. 1996), HST images
show an accretion disk surrounding the newly forming star
and a narrow jet. This conÐrms the basic picture of an
accretion-driven jet. For molecular outÑows from protos-
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tars, observations imply (Henriksen 1996) that the outÑows
extend down to the stellar scale, and the transition between
the outÑow region and the star is expected to play a crucial
role in the collimation of these outÑows. The same is true
for jets associated with di†erent types of symbiotic stars
(with R Aquarii as a prominent example). They involve
magnetized accretion disks, which produce highly colli-
mated bipolar winds and jets. There is some observational
evidence (Kafatos 1996) that the jet in R Aqr is expanding in
a helical-like structure. The jets in all these Galactic objects
comprise rotating, velocity-sorted sheared outÑows with
presumably highly nontrivial Ñow geometry.

Extragalactic jets are in many ways similar to the stellar
jets, but have speeds approaching the speed of light, are
much larger in terms of their length scales, and are greatly
scaled up in terms of energy (Biretta 1996 ; Ferrari et al.
1996). Interesting morphological features of the extra-
galactic radio jets, showing a remarkable periodicity in
some examples, are likely to be the signatures of waves and
instabilities within them and should be closely related to the
kinematic portrait of the involved Ñows. The role of velocity
shearÈinduced e†ects should be signiÐcant in this context.
The discovery of a gas disk orbiting the nucleus in M87
tends to conÐrm the role of disk-jet transition region
(another example of a kinematically complex shear Ñow) for
the production and e†ective collimation of the jet.

Thus, we can conclude that there is an abundance of
astrophysical shear Ñows that may sustain (and be a†ected

by) the modes of collective behavior identiÐed in the present
study. These linear modes, driven by a multidimensional
velocity shear, are new and quite exotic in that they are
endowed with many fascinating features of nonlinear
physics (frequency and wavenumber changing with time
and amplitude). Renewed investigations of the astrophysical
Ñows in terms of these modes could, indeed, provide some of
the missing elements in our understanding of the observed
phenomena.

In addition, since the shear Ñows are being recognized as
major determinants of the fate of the fusion plasmas, we
believe that the shear-generated and maintained Ñuctuation
spectrum could also become a crucial new element in
understanding the anomalous transport in magnetic-
conÐnement experiments.
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