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Abstract: We recover a recurrence relation for representing in an easy form the 
coefficients A

n,k
 of the Bell polynomials, which are known in literature as the partial Bell 

polynomials. Several applications in the framework of classical calculus are derived, 
avoiding the use of operational techniques. Furthermore, we generalize this result to 
the coefficients A[2]

n,k
 of the second-order Bell polynomials, i.e. of the Bell polynomials 

relevant to nth derivative of a composite function of the type f(g(h(t))). The second-
order Bell polynomials B[2]

n
 and the relevant Bell numbers b[2]

n
 are introduced. Further 

extension of the nth derivative of M-nested functions is also touched on.
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1. Introduction
The Bell polynomials are a mathematical tool for representing the nth derivative of a composite 
function.
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Being related to partitions, the Bell polynomials are used in combinatorial analysis (Riordan, 1958), 
and several applications appeared in different fields, such as: the Blissard problem; the representa-
tion of Lucas polynomials of the first and second kind (Bruschi & Ricci, 1980; Di Cave & Ricci, 1980); 
the representation formulas for Newton sum rules of polynomials zeros (Isoni, Natalini, & Ricci, 
2001a, 2001b); the recurrence relations for a class of Freud-type polynomials (Bernardini & Ricci, 
2002); the representation formulas for the symmetric functions of a countable set of numbers (gen-
eralizing the classical algebraic Newton–Girard formulas). As a consequence of this last application, 
in Cassisa and Ricci (2000) reduction formulas for the orthogonal invariants of a strictly positive 
compact operator (shortly PCO)—deriving in a simple way the so-called Robert formulas (Robert, 
1973)—have been derived.

Some generalized forms of Bell polynomials appeared in literature, see, e.g. Fujiwara (1990), Rai 
and Singh (1982). Further generalizations, including the multidimensional case, can be found in 
Bernardini, Natalini, and Ricci (2005), Natalini and Ricci (2003, 2004).

The aim of this article is to give a survey of known results about the classical Bell polynomials; to 
show some applications in connection with the multi-variable Hermite polynomials (see Srivastava, 
Özarslan, & Yılmaz, 2014); and lastly to extend the achieved formulas to the higher order Bell poly-
nomials and numbers.

According to this purpose, in the first part of this article, after recalling definitions and the main 
properties of Bell polynomials, we prove the classical recursion formula useful for computing the 
polynomial coefficients An,k, also known as the partial Bell polynomials. Consequently, many equa-
tions useful in classical calculus can be derived in a quite elementary form. An umbral approach to 
the same subject, including several extended applications can be also found in a recent paper 
(Babusci, Dattoli, Górska, & Penson, 2014).

In the second part, we recall the second-order Bell polynomials (see Natalini & Ricci, 2004), and 
introduce the recursion formula for their polynomial coefficients A[2]

n,k
, we derive the complete B[2]n  

and the second-order Bell numbers b[2]n . The extension to the general case of the (M − 1)-order Bell 
polynomials is also touched on.

2. Recalling the Bell polynomials
Consider Φ(t): = f (g(t)), i.e. the composition of functions x = g(t) and y = f (x), defined in suitable 
intervals of the real axis, and suppose that g(t) and f(x) are n times differentiable with respect to the 
relevant independent variables so that Φ(t) can be differentiated n times with respect to t, using the 
differentiation rule of composite functions.

We use the following notations:

Then, the n-th derivative can be represented by

where the Yn are, by definition, the Bell polynomials.

For example, one has:

Φj : = D
j

t
Φ(t), fh: = D

h
xf (x)|x=g(t), gk: = D

k
tg(t).

Φn = Yn(f1,g1;f2, g2;… ;fn, gn),
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Further examples can be found in Riordan (1958, p. 49).

The general form is as follows:

where the coefficient An,k, for all k = 1,… ,n, is a polynomial in g
1
, g

2
, … , gn, homogeneous of 

degree k and isobaric of weight n (i.e. it is a linear combination of monomials gk1
1
g
k
2

2
⋯ g

kn
n  whose 

weight is constantly given by k
1
+ 2k

2
+…+ nkn = n).

Since the coefficients An,k are independent of f, their construction can be performed by choosing

where a is an arbitrary constant.

Then, for example, we find:

•  for n = 1: e−agDte
ag = ag

1
, so that: A

1,1
= g

1
.

•  for n = 2: e−agD2t e
ag = ag

2
+ a2g2

1
, so that: A

2,1
= g

2
, A

2,2
= g2

1
, and so on.

It is easy to prove the following known result:

Proposition 2.1 The Bell polynomials satisfy the recurrence relation:

An explicit expression for the Bell polynomials is given by the Faà di Bruno formula:

where the sum runs over all partitions �(n) of the integer n, ri denotes the number of parts of size i, 
and r = r

1
+ r

2
+⋯ + rn denotes the number of parts of the considered partition.

A proof of the Faà di Bruno formula can be found in Riordan (1958). In Roman (1980), the proof is 
based on the umbral calculus (see Roman & Rota, 1978 and references therein).

It is worth noting that the formula (2.4) was previously stated by Arbogast in (1800). See also the 
historical article by Johnson (2002), where the formula is ascribed to Tiburce Abadie (1850), but the 
priority of L.F.A. Arbogast is indubitable.

The polynomial coefficients An,k coincide with the partial Bell polynomials Bn,k, however, we use in 
this article the same notation of our preceding papers (see e.g. Bernardini et al., 2005; Natalini & 
Ricci, 2004, 2006; Noschese & Ricci, 2003), since it is borrowed from the already mentioned classical 
book (Riordan, 1958).

(2.2)Yn(f1, g1;f2,g2;… ;fn,gn) =

n∑

k=1

An,k(g1, g2,… ,gn)fk,

f = eax,

(2.3)

⎧
⎪
⎨
⎪
⎩

Y
0
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1
;

Yn+1(f1, g1;… ;fn, gn;fn+1, gn+1) =
n∑
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�
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We recall, in the next section a classical recurrence relation for the An,k coefficients, i.e. for the 
partial Bell polynomials, and derive, in Sections 4 and 5, some applications of the complete Bell 
polynomials.

3. A recursion for the An,k coefficients

In this section, we recover a recurrence relation for the partial Bell polynomials, by proving the fol-
lowing theorem:

Theorem 3.1 We have, ∀n:

Furthermore, ∀ k = 1, 2,… ,n − 1, the An,k coefficients appearing in the Bell formula (2.2) can be com-
puted by the recurrence relation

Proof Equation (3.1) is a direct consequence of the Definition (2.2). In order to prove Equation (3.2), 
note that, taking into account the first relation in (3.1), we can write Equation (2.2) in the form:

and, recalling Equation (2.3)
1
, the second-hand side of (2.3)

2
 becomes:

so that, neglecting the first term in both the above sums, we find:

and inverting summations by the Dirichlet formula:

Therefore, changing � into k in the last formula, and equating the coefficients of fk+1, our result  
follows.

Remark 3.2 A recursion like this was already known, but derived using generating functions, and it 
is very convenient by the computational point of view, owing the high complexity of the Faà di Bruno 
formula, making use of partitions (see also Cvijović, 2011 for more recent results).

Note that the BellY polynomials, according to the recent Mathematica© notation, see https://refer-
ence.wolfram.com/language/ref/BellY.html, were considered in past literature only in our preceding 
works Bernardini et al. (2005), Natalini and Ricci (2004, 2006, 2015).

(3.1)An+1,1 = gn+1, An+1,n+1 = g
n+1
1
.

(3.2)An+1,k+1(g1, g2,… , gn+1) =

n−k∑

h=0

(
n

h

)
An−h,k(g1, g2,… , gn−h)gh+1.

Yn+1(f1, g1;f2, g2;… ;fn+1, gn+1) =

n∑

k=0

An+1,k+1(g1, g2,… , gn+1) fk+1

= gn+1 f1 +

n∑

k=1

An+1,k+1(g1, g2,… , gn+1) fk+1,

n∑

h=0

(
n

h

)
Yn−h(f2, g1;f3, g2;… ;fn−h+1, gn−h)gh+1 = f1 gn+1 +

n−1∑

h=0

Yn−h(f2, g1;f3, g2;… ;fn−h+1, gn−h)gh+1 ,

n∑

k=1

An+1,k+1(g1, g2,… , gn+1) fk+1 =

n−1∑

h=0

(
n

h

)(
n−h∑

�=1

An−h,� (g1, g2,… , gn−h)f�+1

)
gh+1 ,

n∑

k=1

An+1,k+1(g1, g2,… , gn+1) fk+1 =

n∑

�=1

(
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(
n

h
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)
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.
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Remark 3.3 Note that, by letting fk = 1, ∀k in Equation (2.2), i.e. considering the nth derivative at the 
origin of the composite function Φn(t): = e

g(t), the Bell polynomials usually introduced in literature 
Andrews (1998) appear:

so that the recursion (3.2) can be used to compute the Bn(g1, g2,… , gn).
Furthermore, since the nth Bell number bn is given by

the same recursion (3.2) can be used to compute the bn too. A table of the bn numbers up to the index 
1,000 can be found at the home page: http://www.dnull.com/bells/bell1000.html.

It is worth to recall that the number bn is the number of partitions of a set of size n, (a partition of 
a set S is a set of nonempty, pairwise disjoint subsets of S whose union is S).

3.1. The A
10,k coefficients

As an example, we write down the values A
10,k, (k = 1, 2,… , 10), obtained recursively, using a 

Mathematica© program:

Remark 3.4 By adding a few instructions to the above-mentioned program, it is possible to com-
pute recursively the Bell polynomials

and the Bell numbers

both up to the desired index, recovering the results already known in literature.
For example, by summing up all the numerical coefficients of the above An,k, (k = 1, 2,… ,n), we 

write down explicitly the Bell numbers bn, (n = 1, 2,… , 10),

Bn(g1, g2,… , gn): = Yn(1,g1;1, g2;… ;1, gn) =

n∑

k=1

An,k(g1, g2,… , gn),

bn = Bn(1, 1,… , 1): = Yn(1, 1;1, 1;… ;1, 1) =

n∑

k=1

An,k(1, 1,… , 1),

A
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1
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2

A
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= g10
1

Bn(g1, g2,… , gn) =

n∑

k=1

An,k(g1, g2,… , gn),

bn = Bn(1, 1,… , 1) =

n∑

k=1

An,k(1, 1,… , 1),

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975.

http://www.dnull.com/bells/bell1000.html
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Of course, this can be done for every choice of the integer n, and we find the results under the # 
A000110 in the Encyclopedia of Integer Sequences (Sloane & Plouffe, 1995).

Theorem 3.1 allows to obtain in a friendly form the nth differentiation formula for the composite 
function f (x�), (� ∈ R), since assuming:

We write Equation (2.2) in the form:

where the coefficients An,k can be computed recursively using Theorem 3.1.

Equation (3.3) includes obviously the particular cases

4. The particular case of integer powers
In the following, we examine the particular case when � = m, an integer number, recovering the 
classical formulas derived in Babusci et al. (2014), using operational techniques. Here, we use only 
the above-mentioned properties of Bell polynomials.

4.1. The case � = 2

Putting Φ(t): = f (g(t)) = f (t2), i.e. g(t) = t2, we have:

Using the Faà di Bruno formula (2.4), we find

and letting r
2
= k, r

1
= n − 2k ≥ 0, (so that 0 ≤ k ≤

[
n∕2

]
),   r = r

1
+ r

2
= n − k, (here and in the 

following the square brackets denote the integer part),

In particular, if f (t2) = eat
2

,

where H(2)

n (x, y) is the nth Hermite–Kampé de Fériet polynomial in two variables (see Srivastava  
et al., 2014).

As a consequence of Equation (4.2), putting f (t2) = g(t2)h(t2), and recalling the ordinary Leibniz rule:

the generalized Leibniz rule introduced in Babusci et al. (2014) follows:

g
1
= �x�−1, g

2
= �(� − 1)x�−2, … ;gh =

Γ(� + 1)

Γ(� − h + 1)
x�−h;…

(3.3)Dnx(f (x
�)) =

n∑

k=1

An,k

(
�x�−1, �(� − 1)x�−2,… ,

Γ(� + 1)

Γ(� − n + 1)
x�−n

)
fk,

Dnxf (x
m), (m ∈ �); Dnxf (

√
x); Dnxf (1∕x); etc.

g
1
= 2t, g

2
= 2, and gk = 0, ∀k ≥ 3.

(4.1)Dnt (f (t
2)) =

∑

�(n)

n!

r
1
!r
2
!
fr

(
g
1
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)r
1
(
g
2
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)r
2

= n!
∑
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(2t)r1

r
1
!r
2
!
fr ,

(4.2)Dnt (f (t
2)) = n!

[n∕2]∑

k=0

(2t)n−2k

(n − 2k)! k!
Dn−k
t2
f (t2).

(4.3)Dnt

(
eat

2
)
= n!

[n∕2]∑

k=0

(2at)n−2kak

(n − 2k)! k!
eat

2

= H(2)

n (2at,a) eat
2

,

Dn−k
t2

(
g(t2)h(t2)

)
=

n−k∑

j=0

(
n − k

j

)
D
n−k−j

t2
g(t2)D

j

t2
h(t2),
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4.2. The case � = 3

Putting Φ(t): = f (g(t)) = f (t3), i.e. g(t) = t3, we have:

Using the Faà di Bruno formula (2.4), we find

and letting r
3
= k, r

2
= h, (so that n − 3k ≥ 0 and therefore k ≤ [n∕3]),   r

1
= n − 3k − 2h ≥ 0, (so 

that 0 ≤ k ≤
[
(n − 3k)∕2

]
),   r = r

1
+ r

2
+ r

3
= n − 2k − h,

In particular, if f (t3) = eat
3

,

where H(3)

n (x, y, z) is the nth Hermite-Kampé de Fériet polynomial in three variables (see Srivastava 
et al., 2014).

As a consequence of Equation (4.2), putting f (t3) = g(t2)h(t3), and recalling the ordinary Leibniz 
rule:

the generalized Leibniz rule introduced in Babusci et al. (2014) follows:

4.3. The case � = m (m ∈ N)
The results of the preceding subsections can be extended to the general case, even if the relevant 
formulas are quite cumbersome.

Let Φ(t): = f (g(t)) = f (tm), i.e. g(t) = tm, we have:

The Faà di Bruno formula gives

Putting:

Dnt

(
g(t2)h(t2)

)
= n!

[n∕2]∑

k=0

(2t)n−2k

(n − 2k)! k!

n−k∑

j=0

(
n − k

j

)
D
n−k−j

t2
g(t2)D

j

t2
h(t2).

g
1
= 3t2, g

2
= 6t, g

3
= 6, and gk = 0, ∀k ≥ 4.

(4.4)Dnt (f (t
3)) = n!

∑

�(n)

(3t2)r1 (3t)r2

r
1
!r
2
!r
3
!
fr ,

(4.5)Dnt (f (t
3)) = n!

[n∕3]∑

k=0

[(n−3k)∕2]∑

h=0

(3t2)n−3k−2h(3t)h

(n − 3k − 2h)!h!k!
Dn−2k−h
t3

f (t3).

(4.6)
Dnt

(
eat

3
)
= n!

[n∕3]∑

k=0

[(n−3k)∕2]∑

h=0

(3at2)n−3k−2h(3at)hak

(n − 3k − 2h)!h!k!
eat

3

= H(3)

n (3at2, 3at, a) eat
3

,

Dn−k
t3

(
g(t3)h(t3)

)
=

n−k∑

j=0

(
n − k

j

)
D
n−k−j

t3
g(t3)D

j

t3
h(t3),

Dnt

(
g(t3)h(t3)

)
= n!

[n∕3]∑

k=0

[(n−3k)∕2]∑

h=0

(3t2)n−3k−2h(3t)h

(n − 3k − 2h)!h!k!

n−k∑

j=0

(
n − k

j

)
D
n−k−j

t3
g(t3)D

j

t3
h(t3).

g
1
= mtm−1, g

2
= m(m − 1)tm−2,… , gm−1

= m!t, gm = m!, and gk = 0, ∀k ≥ m + 1.

Dnt (f (t
m)) = n!

∑

�(n)

(mtm−1∕1!)r1 (m(m − 1)tm−2∕2!)r2 ⋯ (m!t∕(m − 1)!)rm−1

r
1
!r
2
!⋯ rm!

fr .
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and for shortness:

we find the equation:

where r = n − (m − 1)km −⋯ − 2k
3
− k

2
.

In particular, if f (tm) = eat
m

,

where H(m)

n (x
1
, x

2
,… , xm) is the nth Hermite-Kampé de Fériet polynomial in m variables.

Further results and interesting applications to several properties of special functions can be found 
in the already mentioned article (Babusci et al., 2014).

5. Miscellaneous results
Some particular cases of the above equations are derived in this section.

Considering the generalized Leibniz rules in Section 4, and assuming g(t2) ≡ h(t2), find:

In particular:

In particular:

rm = km , so that n −mkm ≥ 0 ⇒ 0 ≤ km ≤ [n∕m],

rm−1
= km−1

so that n − (m − 1)km−1
−mkm ≥ 0 ⇒ 0 ≤ km−1

≤ [(n −mkm)∕(m − 1)],

………………………

r
2
= k

2
, so that n − 2k

2
− 3k

3
−⋯ −mkm ≥ 0 ⇒ 0 ≤ k

2
≤ [(n − 3k

3
−⋯ −mkm)∕2)],

n = r
1
+ 2k

2
+⋯ +mkm ⇒ r

1
= n −mkm −⋯ − 2k

2
,

𝓁
2
=
1

2
(n − 3k

3
−⋯ −mkm),… ,𝓁m−1

=
1

m − 1
(n −mkm)

D
n

t
(f (tm)) =n!

[n∕m]∑

k
m
=0

[𝓁
m−1

]∑

k
m−1

=0

⋯

[𝓁
2
]∑

k
2
=0

×
(mtm−1)n−mkm−⋯−2k

2 (m(m − 1)tm−2∕2!)k2 ⋯ (mt)km−1

(n −mk
m
−⋯ − 2k

2
)!k

2
!… k

m−1
!k
m
!

D
r

t
m f (t

m),

(4.7)
Dnt

(
eat

m
)
= H(m)

n

((
m

1

)
atm−1,

(
m

2

)
atm−2,… ,

(
m

m − 1

)
at, a

)
eat

m

,

Dnt

(
h2(t2)

)
= n!

[n∕2]∑

k=0

(2t)n−2k

(n − 2k)!k!

n−k∑

j=0

(
n − k

j

)
Dn−k
t2
h(t2),

Dnt

(
e2t

2
)
= n!

[n∕2]∑

k=0

(2t)n−2k

(n − 2k)!k!

n−k∑

j=0

(
n − k

j

)
e2t

2

.

Dnt

(
h2(t3)

)
= n!

[n∕3]∑

k=0

[(n−3k)∕2]∑

h=0

(3t2)n−3k−2h(3t)h

(n − 3k − 2h)!h!k!

n−k∑

j=0

(
n − k

j

)
Dn−k
t3
h(t3),

Dnt

(
e2t

3
)
= n!

[n∕3]∑

k=0

[(n−3k)∕2]∑

h=0

(3t2)n−3k−2h(3t)h

(n − 3k − 2h)!h!k!

n−k∑

j=0

(
n − k

j

)
e2t

3

.
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Introducing the polynomial coefficient, by putting

where 0 ≤ j
�
≤ m, (� = 1, 2,… ,n) and j

1
+ j

2
+⋯ + jn = m, we find the following extensions of 

the above formulas:

In particular:

It is easy to generalize the last equations to the general case when t is raised to the power � = m, 
but the relevant equations are still more complicate, so that we leave them to the reader.

6. The case of second-order Bell polynomials
We consider now the case of the second-order Bell polynomials, introduced in Natalini and Ricci 
(2004): Y [2]

n (f
1
,g

1
,h

1
;f
2
,g

2
,h

2
;… ;fn,gn,hn), generated by the nth derivative of the composite func-

tion Φ(t): = f (g(h(t))), whose definition is as follows.

Consider the functions x = h(t), z = g(x), and y = f (z), defined in suitable intervals of the real 
axis, and suppose that h(t), g(x), and f(z) are n times differentiable with respect to the relevant inde-
pendent variables, so that the composite function Φ(t): = f (g(h(t))) can be differentiated n times 
with respect to t, using the differentiation rule of composite functions.

We use, as before, the following notations:

Then the n-th derivative can be represented by

where the Y [2]

n  are, by definition, the second-order Bell polynomials.

For example, one has:

As in the case of the ordinary Bell, we can write, in general:

where the partial second-order Bell polynomials A[2]

n,k
 are introduced.

(
m

j
1
, j
2
,… , j

n

)
: =

m!

j
1
!j
2
!… j

n
!
,

Dnt

(
hr(t2)

)
= n!

[n∕2]∑

k=0

(2t)n−2k

(n − 2k)!k!

∑

j
1
,j
2
,…,jr

(
n − k

j
1
, j
2
,… , jr

)
Dn−k
t2
h(t2),

Dnt

(
ert

2
)
= n!

[n∕2]∑

k=0

(2t)n−2k

(n − 2k)!k!

∑

j
1
,j
2
,…,jr

(
n − k

j
1
, j
2
,… , jr

)
ert

2

.

Φj : = D
j

t
Φ(t), fh: = D

h
yf (y)|y=g(x), gk: = D

k
xg(x)|x=h(t), hr : = D

r
th(t).

Φn = Y
[2]

n (f
1
,g

1
,h

1
;f
2
,g

2
,h

2
;… ;fn, gn,hn),

Y [2]

1
(f
1
, g

1
,h

1
) = f

1
g
1
h
1
;

Y [2]

2
(f
1
, g

1
,h

1
;f
2
, g

2
,h

2
) = f

1
g
1
h
2
+ f

1
g
2
h2
1
+ f

2
g2
1
h2
1
;

Y [2]

3
(f
1
, g

1
,h

1
;f
2
, g

2
,h

2
;f
3
,g

3
,h

3
) = f

1
g
1
h
3
+ f

1
g
3
h3
1

+ 3f
1
g
2
h
1
h
2
+ 3f

2
g2
1
h
1
h
2
+ 3f

2
g
1
g
2
h3
1
+ f

3
g3
1
h3
1
.

(6.1)Y [2]

n (f
1
, g

1
,h

1
;… ;fn, gn,hn) =

n∑

k=1

A[2]

n,k
(g
1
,h

1
;… ;gn,hn)fk
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The connections with the ordinary Bell polynomials are expressed below.

Theorem 6.1 For every integer n, the polynomials Y [2]

n  are expressed in terms of the ordinary Bell ones, 
by means of the following equation

Proof Proceeding by induction we have that Equation (6.2) is true for n = 1, since

We assume now Equation (6.2) is true. Then,

See Natalini and Ricci (2004) for the proof of next results.

Theorem 6.2 The second-order Bell polynomials satisfy the recursion:

Theorem 6.3 The generalized Faà di Bruno formula holds:

According to the above results, we find:

Theorem 6.4 We have, ∀n

Furthermore, ∀ k = 1, 2,… ,n − 1, the second-order partial Bell polynomials A[2]

n,k
 satisfy the 

recursion:

Proof According to Equation (6.1), and using Theorem 6.1, we can write

so that

(6.2)
Y [2]

n (f
1
, g

1
,h

1
;… ;fn, gn,hn)

= Yn
(
f
1
, Y

1
(g
1
,h

1
);f
2
, Y

2
(g
1
,h

1
;g
2
,h

2
);… ;fn, Yn(g1,h1;g2,h2;… ;gn,hn)

)
.

Y [2]

1
(f
1
, g

1
,h

1
) = f

1
g
1
h
1
= f

1
Y
1
(g
1
,h

1
) = Y

1

(
f
1
, Y

1
(g
1
,h

1
)
)
.

Y [2]

n+1
(f
1
, g

1
,h

1
;… ;fn+1, gn+1,hn+1) = Dt Y

[2]

n (f
1
, g

1
,h

1
;… ;fn, gn,hn)

= Dt Yn
(
f
1
, Y

1
(g
1
,h

1
);… ;fn, Yn(g1,h1;g2,h2;… ;gn,hn)

)

= Yn+1
(
f
1
, Y

1
(g
1
,h

1
);… ;fn+1, Yn+1(g1,h1;g2,h2;… ;gn+1,hn+1)

)

(6.3)

Y [2]

0
= f

1
;

Y [2]

n+1
(f
1
, g

1
,h

1
;… ;fn+1, gn+1,hn+1) =

n∑

k=0

(
n

k

)

× Y [2]

n−k

(
f
2
, g

1
,h

1
;f
3
, g

2
,h

2
;… ;fn−k+1, gn−k,hn−k

)
Yk+1(g1,h1;… ;gk+1,hk+1).

(6.4)

Y [2]

n (f
1
, g

1
,h

1
;… ;fn, gn,hn)

=
∑

�(n)

n!

r
1
!r
2
!… rn!

fr

[
Y
1
(g
1
,h

1
)

1!

]r
1
[
Y
2
(g
1
,h

1
;g
2
,h

2
)

2!

]r
2

⋯

[
Yn(g1,h1;… ;gn,hn)

n!

]rn
.

A[2]

n+1,1
= Yn+1(g1,h1;… ;gn+1,hn+1), A[2]

n+1,n+1
= Yn+1

1
(g
1
,h

1
) = gn+1

1
hn+1
1
.

(6.5)

A[2]

n+1,k+1
(g
1
,h

1
;… ;gn+1,hn+1)

=

n−k∑

j=0

(
n

j

)
A[2]

n−j,k
(g
1
,h

1
;… ;gn−j ,hn−j) ⋅ Yj+1(g1,h1;… ;gj+1,hj+1)

Y [2]

n (f
1
, g

1
,h

1
;… ;fn, gn,hn) =

n∑

k=1

A[2]

n,k
(g
1
,h

1
;… ;gn,hn)fk

= Yn
(
f
1
, Y

1
(g
1
,h

1
);… ;fn, Yn(g1,h1;… ;gn,hn)

)

=

n∑

k=1

An,k
(
Y
1
(g
1
,h

1
);… ;Yn(g1,h1;… ;gn,hn)

)
fk,
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Using the recursion (3.2) of Theorem 3.1, we find:

so that we have proved our result.

Therefore, the complete second-order Bell polynomials B[2]n  are defined by the equation:

and the second-order Bell numbers by

6.1. The B[2]n  polynomials and b[2]n  numbers
The second-order Bell polynomials B[2]n (g

1
,h

1
;… ;gn,hn) for (n = 1, 2,… , 5), computed by a 

Mathematica© program, are given by:

Furthermore, we write down explicitly the b[2]n , (n = 1, 2,… , 10),

and we remark that the sequence b[2]
1
, b[2]

2
, b[2]

3
,… appears in the Encyclopedia of Integer Sequences 

(Sloane & Plouffe, 1995) with # A000258, arising from a different problem of combinatorial 
analysis.

7. The general case of M − 1-order Bell polynomials
Using the same methods, the above results can be generalized to the case of the Bell polynomials of 
higher order.

Consider Φ(t): = f
(1)
(f

(2)
(⋯ (f

(M)(t)))), i.e. the composition of functions 
xM−1 = f(M)(t),… , x

1
= f

(2)
(x
2
), y = f

(1)
(x
1
), defined in suitable intervals of the real axis, and sup-

pose that the functions f
(M),… , f

(2)
, f

(1)
 are n times differentiable with respect to the relevant inde-

pendent variables so that Φ(t) can be differentiated n times with respect to t, using the differentiation 
rule of composite functions. By definition we put xM: = t, so that y = Φ(t).

A[2]

n,k
(g
1
,h

1
;… ;gn,hn) = An,k

(
Y
1
(g
1
,h

1
);… ;Yn(g1,h1;… ;gn,hn)

)
.

An+1,k+1
(
Y
1
(g
1
,h

1
),… , Yn+1(g1,h1;… ;gn+1,hn+1)

)

=

n−k∑

j=0

An−j,k

(
Y
1
(g
1
,h

1
);… ;Yn−j(g1,h1;… ;gn−j ,hn−j)

)
⋅ Yj+1(g1,h1;… ;gj+1,hj+1),

B[2]n (g
1
,h

1
;… ;gn,hn) = Y

[2]

n (1,g
1
,h

1
;… ;1, gn,hn) =

n∑

k=1

A[2]

n,k
(g
1
,h

1
;… ;gn,hn),

b[2]n = Y [2]

n (1, 1, 1;… ;1, 1, 1) =

n∑

k=1

A[2]

n,k
(1, 1;… ;1, 1).

B[2]
1

= g
1
h
1

B[2]
2

= g2
1
h2
1
+ g

2
h2
1
+ g

1
h
2

B[2]
3

= g3
1
h3
1
+ 3g

1
g
2
h3
1
+ g

3
h3
1
+ 3g2

1
h
1
h
2
+ 3g

2
h
1
h
2
+ g

1
h
3

B[2]
4

= g4
1
h4
1
+ 6g2

1
g
2
h4
1
+ 3g2

2
h4
1
+ 4g

1
g
3
h4
1
+ g

4
h4
1
+ 6g3

1
h2
1
h
2
+ 18g

1
g
2
h2
1
h
2

+ 6g
3
h2
1
h
2
+ 3g2

1
h2
2
+ 3g

2
h2
2
+ 4g2

1
h
1
h
3
+ 4g

2
h
1
h
3
+ g

1
h
4

B[2]
5

= g5
1
h5
1
+ 10g3

1
g
2
h5
1
+ 15g

1
g2
2
h5
1
+ 10g2

1
g
3
h5
1
+ 10g

2
g
3
h5
1
+ 5g

1
g
4
h5
1
+ g

5
h5
1

+ 10g4
1
h3
1
h
2
+ 60g2

1
g
2
h3
1
h
2
+ 30g2

2
h3
1
h
2
+ 40g

1
g
3
h3
1
h
2
+ 10g

4
h3
1
h
2
+ 15g3

1
h
1
h2
2

+ 45g
1
g
2
h
1
h2
2
+ 15g

3
h
1
h2
2
+ 10g3

1
h2
1
h
3
+ 30g

1
g
2
h2
1
h
3
+ 10g

3
h2
1
h
3
+ 10g2

1
h
2
h
3

+ 10g
2
h
2
h
3
+ 5g2

1
h
1
h
4
+ 5g

2
h
1
h
4
+ g

1
h
5
.

1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, 16733779
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We use the following notations:

Then, the nth derivative can be represented by

where the Y [M−1]
n  are, by definition, the Bell polynomials of order M − 1.

The theorems of Section 6 can be generalized as follows:

Theorem 7.1 For every integer n, the polynomials Y [M−1]
n  are expressed in terms of the Bell polynomials 

of lower order, by means of the following equation:

The proof can be achieved by induction, as it was done in the previous Theorem 6.1.

Theorem 7.2 The following recurrence relation for the Bell polynomials Y [M−1]
n  holds true:

Theorem 7.3 The generalized Faà di Bruno formula holds true:

Using the same technique of Theorem 6.4, we find

Theorem 7.4 We have, ∀n

Φh: = D
h
tΦ(t),

f
(1),h: = D

h
x
1

f
(1)
|x

1
=f

(2)
(⋯(f

(M)(t)))
,

f
(2),k: = D

k
x
2

f
(2)
|x

2
=f

(3)
(⋯(f

(M)(t)))
,

……………

f
(M),j : = D

j
xM
f
(M)|xM=t.

Φn = Y
[M−1]
n (f

(1),1
,… , f

(M),1;f(1),2,… , f
(M),2;… ;f

(1),n,… , f
(M),n),

(7.1)

Y [M−1]
n

(
f
(1),1

,… , f
(M),1;… ;f

(1),n,… , f
(M),n

)

= Yn

(
f
(1),1

, Y [M−2]

1
(f

(2),1
,… , f

(M),1);f(1),2, Y
[M−2]

2
(f

(2),1
,… , f

(M),1;f(2),2,… , f
(M),2);

… ;f
(1),n, Y

[M−2]
n (f

(2),1
,… , f

(M),1;… ;f
(2),n,… , f

(M),n)
)
.

(7.2)

Y
[M−1]

0
= f

(1),1
;

Y
[M−1]

n+1

(
f
(1),1

,… , f
(M),1

;… ;f
(1),n+1

,… , f
(M),n+1

)

=

n∑

k=0

(
n

k

)
Y
[M−1]

n−k

(
f
(1),2

, f
(2),1

,… , f
(M),1

;f
(1),3

, f
(2),2

,… , f
(M),2

;

… ;f
(1),n−k+1

, f
(2),n−k

,… , f
(M),n−k

)

× Y [M−2]

k+1

(
f
(2),1

,… , f
(M),1

;… ;f
(2),k+1

,… , f
(M),k+1

)
.

(7.3)

Y [M−1]
n

(
f
(1),1

,… , f
(M),1;… ;f

(1),n,… , f
(M),n

)

=
∑

�(n)

n!

r
1
!r
2
!… rn!

f
(1),r

[
Y [M−2]

1

(
f
(2),1

,… , f
(M),1

)

1!

]r
1

×

[
Y [M−2]

2

(
f
(2),1

,… , f
(M),1;f(2),2,… , f

(M),2

)

2!

]r
2

⋯ ×

[
Y [M−2]
n

(
f
(2),1

,… , f
(M),1;… ;f

(2),n,… , f
(M),n

)

n!

]rn
.

A
[M−1]

n+1,1
= Y [M−2]

n+1

(
f
(2),1

,… , f
(M),1

;… ;f
(2),n+1

,… , f
(M),n+1

)
,

A
[M−1]

n+1,n+1
=
(
Y
[M−2]

1

(
f
(2),1

,… , f
(M),1

))n+1
.
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Furthermore, ∀ k = 1, 2,… ,n − 1, the (M − 1)thorder partial Bell polynomials A[M−1]

n,k
 satisfy the 

recursion:

Proof As a consequence of the equations

we find the relations between the polynomial coefficients:

so that, recalling Equation (3.2) in Theorem 3.1, our result follows.

The results contained in this section can be used in order to introduce the higher order Bell poly-
nomials and the relevant higher order Bell numbers. Tables of these mathematical objects will be 
included in a separate article.

(7.4)

A[M−1]

n+1,k+1

(
f
(2),1
,… , f

(M),1;… ;f
(2),n+1,… , f

(M),n+1

)

=

n−k∑

j=0

(
n

j

)
A[M−1]

n−j,k

(
f
(2),1
,… , f

(M),1;… ;f
(2),n−j ,… , f

(M),n−j

)

× Y [M−2]

j+1

(
f
(2),1
,… , f

(M),1;… ;f
(2),j+1,… , f

(M),j+1

)
.

Y [M−1]
n

(
f
(1),1

,… , f
(M),1;… ;f

(1),n,… , f
(M),n

)

=

n∑

k=1

A[M−1]

n,k

(
f
(2),1

,… , f
(M),1;… ;f

(2),n,… , f
(M),n

)
f
(1),k

= Yn

(
f
(1),1

, Y [M−2]

1
(f

(2),1
,… , f

(M),1);…

… ;f
(1),n, Y

[M−2]
n (f

(2),1
,… , f

(M),1;… ;f
(2),n,… , f

(M),n)
)

=

n∑

k=1

An,k

(
Y [M−2]

1
(f

(2),1
,… , f

(M),1);…

… ;Y [M−2]
n (f

(2),1
,… , f

(M),1;… ;f
(2),n,… , f

(M),n)
)
f
(1),k,

A[M−1]

n,k

(
f
(2),1

,… , f
(M),1;… ;f

(2),n,… , f
(M),n

)

= An,k

(
Y [M−2]

1
(f

(2),1
,… , f

(M),1);… ;Y [M−2]
n (f

(2),1
,… , f

(M),1;… ;f
(2),n,… , f

(M),n)
)
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