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Predation may defeat spatial spread of infection
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A model of a phytoplankton–zooplankton prey-predator system with viral infection of phytoplankton is
investigated. Virus particles (V ) are taken into account by an explicit equation. Phytoplankton is split into a
susceptible (S) and an infected (I ) class. A lytic infection is considered, thus, infected phytoplankton cells
stop reproducing as soon as the infection starts and die at an increased mortality rate. Zooplankton (Z) is
grazing on both susceptible and infected phytoplankton following a Holling-type II functional response.
After the local dynamics of the V − S − I − Z system is analysed, numerical solutions of a stochastic
reaction–diffusion model of the four species are presented. These show a spatial competition between
zooplankton and viruses, although these two species are not explicitly coupled by the model equations.
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1. Introduction

The importance of viruses for marine and especially phytoplankton ecology has been
acknowledged in several recent publications [3–5,29,30,31,33]. Marine viral infections influ-
ence species diversity and gene transfer, furthermore, they are a major cause of phytoplankton
mortality – it was shown that they are responsible for the sudden disappearance of algal blooms.
By influencing the dynamics of phytoplankton which is the basis of all food webs in the sea,
marine viruses play an even more important role, it is believed now that they are a key factor in
global biogeochemical cycles.

Malchow et al. [17], Hilker and Malchow [8] and Hilker et al. [9] have analysed the influence
of lysogenic and lytic phytoplankton infections on the local and spatio-temporal dynamics of
a phytoplankton–zooplankton prey–predator system. Virus particles which cause the infectious
disease are not modelled by an explicit dynamic equation. The transmission of the infection has
been assumed as frequency-dependent [6,20,21].

Beretta and Kuang [1] have developed a dynamical model of virus particles that reproduce
through lysis of infected phytoplankton cells with mass-action type of transmission. However,
they consider neither space nor the effect of a predator grazing on phytoplankton.
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In this article, the approaches of Beretta and Kuang [1] are combined with the model in Malchow
et al. [17] and Hilker et al. [9] in order to obtain a spatial prey–predator model with infected prey
and explicit dynamics of viral particles. The Beretta–Kuang model is extended by a predator with
Holling-type II functional response [11], i.e., zooplankton grazing on both susceptible and infected
phytoplankton. The standard Holling-type II prey–predator model has been studied extensively,
cf. [14,24,26–28].

2. An extended Beretta–Kuang model

In 1998, Beretta and Kuang published a model of marine viral infections, which takes into account
viral particles V by an explicit equation. Phytoplankton hosts are split into a susceptible class S

and an infected class I :

dV

dτ
= −λSV − mV V + BmII, (1)

dS

dτ
= rSS

(
1 − S + I

K

)
− λSV, (2)

dI

dτ
= λSV − mII. (3)

In this article, the parameters of (1–3) are retained. The model [1] is first extended by an equation
describing the dynamics of the zooplankton Z grazing on phytoplankton with Holling-type II
functional response [11]:

dV

dτ
= −λSV − mV V + BmII, (4)

dS

dτ
= rSS

(
1 − S + I

K

)
− λSV − aS

S

H + S + I
Z, (5)

dI

dτ
= λSV − mII − aI

I

H + S + I
Z, (6)

dZ

dτ
= eSaSS + eI aI I

H + S + I
Z − mZZ. (7)

Susceptible phytoplankton reproduces logistically with growth rate rS and carrying capacity
K . Susceptible and infected phytoplankton both contribute to the competition term of the logistic
growth. Free virus particles are denoted V . They infect the susceptible phytoplankton by transfer-
ring the genetic material into phytoplankton cells. The infection dynamics follows a mass action
law with a transmission coefficient λ, i.e., virus particles which infect the susceptible phytoplank-
ton decrease at a rate of λSV , whereas susceptible phytoplankton passes over to the infected
state at the same rate. The lytic infection starts as soon as a single virus particle has transferred
its genetic material – the infected phytoplankton looses its capability of reproduction and dies
at an additional disease-induced mortality rate mI which is called as virulence. No quadratic
competition term appears for infected phytoplankton I – intraspecific competition is neglected as
the linear mortality mI caused by the infection is considered more important. At the moment of
lysis, reproduced virus particles are set free. This is taken into account by a replication factor B,
which ranges from 10 up to 100, i.e., on an average from 10 to 100 virus particles are reproduced
by each phytoplankton cell which dies of lysis [25]. Zooplankton which is named Z feeds on
both susceptible and infected phytoplankton with a Holling-type II functional response. A natural
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mortality is accounted for by the linear mortality rate −mZZ. The predator is not susceptible to
the infection, thus the equation for Z is not explicitly coupled with the equation for V . In order
to simplify the following calculations, the model (4–7) is transformed to a dimensionless form.
By assuming eZ := eS = eI and introducing the dimensionless variables

v = V

K
, s = S

K
, i = I

K
, z = Z

eZK
, t = λKτ,

the transformed system reads

dv

dt
= −sv − μV v + BμI i =: fV , (8)

ds

dt
= ρSs[ 1 − (s + i) ] − sv − αS

s

1 + β(s + i)
z =: fS, (9)

di

dt
= sv − μI i − αI

i

1 + β(s + i)
z =: fI , (10)

dz

dt
= αSs + αI i

1 + β(s + i)
z − μZz =: fZ, (11)

with dimensionless parameters

μV := mV

λK
, μI := mI

λK
, ρS := rS

λK
, β := K

H
, αS = aS

eZ

λH
,

αI := aI

eZ

λH
, μZ := mZ

λK
.

In the following, α := αS = αI will be assumed in most cases.
Bhattacharyya and Bhattacharya [2] analyse a similar system, but with some important sim-

plifications: The loss of virus particles due to infection is neglected, but included in our model.
Furthermore, the model presented here is not restricted to the case when the zooplankton only feeds
on the infected phytoplankton. For infected insects modelled in Bhattacharyya and Bhattacharya
[2] this assumption might be justified. It is unlikely, though, that the differences in behaviour of
susceptible compared with infected phytoplankton is the main reason for a phytoplankton cell to
be fed by zooplankton. We assume that in the case of a coincidence of zooplankton and phyto-
plankton it depends more on chance than on the capability of the phytoplankton to escape if the
predator is successful in catching the prey. Therefore, contrary to Bhattacharyya and Bhattacharya
[2], the zooplankton grazes both on susceptible and infected phytoplankton without preference.
The last difference is the lack of an additional density-dependent mortality rate in the zooplankton
equation.

The second extension of the Beretta–Kuang model is the spatial spread of all populations,
which is modelled by diffusion and the third is the accounting for environmental variability
through multiplicative noise. Thus, we obtain the stochastic reaction–diffusion system

∂v

∂t
= fV (v, s, i) + d�v + vωξv(x, y, t), (12)

∂s

∂t
= fS(v, s, i, z) + d�s + sωξs(x, y, t), (13)

∂i

∂t
= fI (v, s, i, z) + d�i + iωξi(x, y, t), (14)

∂z

∂t
= fZ(s, i, z) + d�z + zωξz(x, y, t), (15)
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where � is the Laplacian in two (horizontal) spatial dimensions (x, y). The eddy diffusion
coefficient D is the same for all species, its non-dimensional form d is obtained by

d := D

λKL2
. (16)

The last terms at the right-hand sides stand for spatiotemporal white Gaussian noise with
density-dependent intensity [17,18].

3. Analysis of the deterministic local dynamics

At first, the system of the ordinary differential equations (ODE) (8–11) is studied in order to
understand the local dynamics. Stationary and oscillatory solutions are computed by a linear
stability analysis. For the latter, we define

K̃ := μZ

αS − βμZ

(17)

and

γ := ρS(1 − K̃) + μI . (18)

3.1. Trivial and semi-trivial equilibria

3.1.1. Extinction – E0 : (v∗, s∗, i∗, z∗) = (0, 0, 0, 0)

As in [1], E0 is an unstable saddle for all parametrizations.

3.1.2. Disease-free equilibrium, extinction of z − Es : (0, 1, 0, 0)

For this stationary solution with extinction of both infection and predator, we have the stability
condition

B < 1 + μV . (19)

as in [1]. This is proved by expanding the last row of the Jacobian, which leads to the additional
constraint

μZ >
αS

1 + β
or, equivalently K̃ �∈ [0, 1]. (20)

3.1.3. Disease-free equilibrium – Es,z : (0, s∗, 0, z∗(s∗))

The system reduces to the well-known standard Holling-type II prey–predator model, cf. the
references given in Section 1 The equilibrium is parametrized by

s∗ = μZ

αS − βμZ

= K̃, z∗ = ρS

αS

(1 − s∗)(1 + βs∗) = ρS

αS

(1 − K̃)(1 + βK̃) (21)

The latter is feasible if it holds

μZ <
αS

1 + β
or K̃ ∈ [0, 1] . (22)

This shows that Es and Es,z are mutually exclusive (cf. (20)).
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Assuming αS = αI =: α, we calculate the Jacobian

J(0,s∗,0,z∗)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s∗ − μV 0 BμI 0

−s∗
ρS(1 − 2s∗)

− α
z∗

(1 + βs∗)2

−ρSs
∗ + αβ

s∗

(1 + βs∗)2
z∗ −α

s∗

1 + βs∗

s∗ 0 −μI − α
z∗

1 + βs∗ 0

0 α
z∗

(1 + βs∗)2
α

z∗

(1 + βs∗)2
−μZ + α

s∗

1 + βs∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix can be considerably simplified by substituting α(s∗/1 + βs∗) = μZ (cf. Equation
(11)) and α(z∗/1 + βs∗) = ρS(1 − s∗) (cf. Equation (9)) as well as by using the definitions of K̃

(cf. Equation (17)) and γ (cf. Equation (18)).

J(0,s∗,0,z∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−K̃ − μV 0 BμI 0

−K̃ −ρSK̃

(
1 − β

1 − K̃

1 + βK̃

)
−ρSK̃

(
1 − β

1 − K̃

1 + βK̃

)
−μZ

K̃ 0 −γ 0

0 ρS

1 − K̃

1 + βK̃
ρS

1 − K̃

1 + βK̃
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial of J(0,s∗,0,z∗) is a product of two quadratic polynomials:

p(x) =
[
x2 + x(K̃ + γ + μV ) + (γ K̃ + γμV − K̃BμI )

]

×
[
x2 + ρSK̃

(
1 − β

1 − K̃

1 + βK̃

)
x + μZρS

1 − K̃

1 + βK̃

]
. (23)

We define,

p1(x) := x2 + x(K̃ + γ + μV ) + (γ K̃ + γμV − K̃BμI ), (24)

p2(x) := x2 + ρSK̃

(
1 − β

1 − K̃

1 + βK̃

)
x + μZρS

1 − K̃

1 + βK̃
. (25)

The equilibrium Es,z is stable if all zeroes of p1 and p2 are negative. First, we investigate the
zeroes of p1(x).

As K̃ + γ + μV is always positive, this leads to

γ K̃ + γμV − K̃BμI > 0

or

B < γ
K̃ + μV

μI K̃

= 1 + μV

γ

μI K̃
+ ρS(1 − K̃)

μI

. (26)

after substitution for γ . By analysing p2, we get a second stablity condition for μZ: In p2, the
term μZρS(1 − K̃/1 + βK̃) is always positive.
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Thus, we get negative zeroes if

1 − β
1 − K̃

1 + βK̃
> 0

or by substituting for K̃:

μZ >
α

β

β − 1

β + 1
. (27)

This is the stability condition of the prey–predator model with Holling-type II functional
response. If Equation (27) is not fulfilled a Hopf bifurcation occurs as in the prey–predator
model without infection.

3.1.4. Extinction of predator z − Ev,s,i : (v∗(s∗), s∗, i∗(s∗), 0)

The parametrization of this equilibrium is

v∗ = ρSμI

1 − s∗

μI + ρSs∗ , s∗ = μV

B − 1
, i∗ = s∗

μI

v∗ = ρSs
∗ 1 − s∗

μI + ρSs∗ . (28)

This equilibrium is feasible if

B > 1 + μV , (29)

which means that this equilibrium appears when Es is unstable.
By expanding the last row of the Jacobian, we get the constraint (in addition to the one computed

by Beretta and Kuang [1], see below)

μZ >
αSs

∗ + αI i
∗

1 + β(s∗ + i∗)
. (30)

Assuming α := αS = αI , we calculate

s∗ + i∗ = s∗(μI + ρS)

μI + ρSs∗

= μI + ρS

μI/s∗ + ρS

= μV

μI + ρS

(B − 1)μI + ρSμV

and by substituting into Equation (30) we get – again under the assumption that αS = αI =: α:

μZ > α
ρS + μI

ρS + (B − 1)/μV μI + (ρS + μI )β
.

By solving for B, we compute the constraint:

B > 1 + μV

γ

μI K̃
. (31)

Beretta and Kuang [1] have shown that for small values of s∗ a Hopf bifurcation occurs. This can
also be stated by means of B: As B increases above a certain threshold (which can be computed
explicitly but leads to a very lengthy expression), the stationary solution passes over to a limit cycle.
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3.2. Non-trivial equilibrium (Ev,s,i,z)

Also, the non-trivial stationary solution can be computed explicitly. However, there are strong
indications that coexistence of viruses, susceptible and infected prey and the predator is only
possible when the populations oscillate. A reason for this phenomenon can be found by looking
at feasibility conditions for the non-trivial stationary solution.

Again, we assume αS = αI = α in this section. Using the definitions of K̃ (cf. Equation (17))
and γ (cf. Equation (18)) from above a carrying capacity K̃ of the phytoplankton population can
be computed from Equation (11):

s∗ + i∗ = μZ

α − βμZ

= K̃. (32)

By replacing s∗ + i∗ by K̃ , adding Equations (9) and (10) and solving fS + fI = 0 for z∗, we
obtain

z∗(s∗, i∗) = 1

μZ

[
ρSs

∗(1 − K̃) − μI i
∗
]

= 1

μZ

[
(γ − μI )K̃ − i∗γ

]
. (33)

In Equation (33), s∗ was replaced by s∗ = K̃ − i∗.
With Equation (33) and Equation (9), we calculate

i∗ = K̃

γ
v∗. (34)

By solving fV = 0 (cf. (8)) for i∗ we receive,

i∗ = μV + K̃

BμI + v∗ v∗, (35)

so that finally v∗ can be computed:

v∗ = γ

(
1 + μV

K̃

)
− BμI . (36)

Now, we can state the complete non-trivial stationary solution:

v∗ = γ

(
1 + μV

K̃

)
− B μI , (37)

s∗ = K̃ − i∗ = −μV + B μI K̃

γ
, (38)

i∗ = K̃ + μV − B μI K̃

γ
, (39)

z∗ = −γ
μV

μZ

+ (B − 1) μI K̃

μZ

. (40)

This solution is feasible, if v∗, s∗, i∗ and z∗ are positive. Thus, feasibility conditions can
be computed. Solving v∗ > 0 (or i∗ > 0) for B gives Equation (26), whereas z∗ > 0 leads to
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Equation (31). s∗ > 0 gives a weaker condition than using z∗ > 0 so that the range of feasibility
is given by

1 + μV

γ

μI K̃
< B < 1 + μV

γ

μI K̃
+ ρS(1 − K̃)

μI

. (41)

Note that this is exactly the range where both Es,z and Ev,s,i are stable. This may be a reason
for the observation which can be made by numerical simulations that the coexistence solution is
never attained (cf. Section 3.3).

3.3. Summary of the stability analysis and numerical stability results

In the preceding sections, it has been demonstrated that there are two independent stability con-
ditions for all semi-trivial stationary solutions: One depends on B, the replication factor of the
viruses, and the other one on μZ , the dimensionless mortality of the predator. Thus, stability ranges
can be represented by surfaces in the μZ − B plane and the results of the stability analysis can
be summarized in the parameter diagram shown in Figure 1. Furthermore, all results are shown
in Table 1.

The equilibria which are stable according to the linear stability analysis are represented by
different grey values. The analytical results are sufficient to predict the system behaviour in the
right part of the parameter diagram. However, for values of μZ below the Hopf bifurcation point
of Es,z the situation is not as clear: Numerical simulations show that the coexistence limit cycle
as well as quasiperiodic and chaotic solutions exist in this area.

A look on Table 1 shows that the feasibility range of the non-trivial stationary solution Ev,s,i,z

coincides with the region where both Es,z and Ev,s,i are stable (cf. Equations (26), (31) and (41),
respectively). Extensive numerical experiments varying initial conditions showed that Ev,s,i,z was

Figure 1. Depending on the replication factor B and the mortality rate μZ of the zooplankton the stability ranges of
the stationary solutions are shown for the parameter values: ρS = 1, μV = 0.4, μI = 1, α = αS = αI = 5, β = 5. This
parametrization rather than the one given in Equation (42) was chosen to give an illustrative view of all facets of the system
behaviour. For the parametrization proposed by Beretta and Kuang [1] the bistability area shrinks so much that it is not
visible in the diagram. The mentioned region labelled ‘bistable’admits either Es,z or Ev,s,i to be reached depending on the
initial conditions. On the other hand, in exactly this region the feasibility conditions of the non-trivial stationary solution
Ev,s,i,z are met. However, extensive numerical experiments show that the coexistence state Ev,s,i,z is never reached. In the
left part of the diagram, not only limit cycles of the subsystems s and z (extinction of the infection) or v, s and i (extinction
of the predator) exist, but between the labels ‘v − s − i limit cycle’ and ‘s − z limit cycle’ there is also a region where a
coexistence limit cycle appears.
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Table 1. Summary of the analytical results of the stability analysis.

Feasibility conditions Stability constraints

B μZ B μZ

Es — B < 1 + μV K̃ �∈ [0, 1]
Es,z — K̃ ∈ [0, 1] B < 1 + μV (γ /μI K̃) + (ρS(1 − K̃)/μI )

μZ > (α/β)(β − 1/β + 1) (Hopf bif.)

Ev,s,i B > 1 + μV — B > 1 + μV (γ /μI K̃)

B high (Hopf bif.)

Ev,s,i,z 1 + μV (γ /μI K̃) < B < 1 unknown
+μV (γ /μI K̃) + (ρS(1 − K̃)/μI )

Figure 2. The parameter diagram for the parametrization given in Equation (42) shows for selected simulations with
varying μZ and B which type of solution is attained. Reaching the s − z limit cycle is displayed by bright squares, circles
stand for v − s − i − z oscillations, crosses (‘x’) represent oscillations of v, s and i, whereas asterisks (‘∗’) indicate that
the dynamics are more complex (multiply periodic, quasiperiodic, chaotic). The parametrizations of the two simulations
in Section 4 are labelled.

never reached, though, in this range; merely either Ev,s,i or Es,z were attained depending on the
initial conditions.

However, as mentioned above, numerical simulations show that coexistence is nevertheless
possible: If μZ is below the threshold for the Hopf bifurcation of Es,z, oscillatory, quasiperiodic
and chaotic coexistence solutions can be observed (Figure 2).

One example of a quasiperiodic solution is shown in Figure 3, a projection of the attractor to
v − s − z space is given in Figure 4.

4. Deterministic and stochastic spatial dynamics

After the investigation of the local dynamics the ODE Model, CF. Equations (4–7), is extended
by admitting diffusive motion of all species, cf. from Equation (12–15). The parameter values
proposed by Beretta and Kuang [1] were used for ρS , μV and μI . αS , αI , β, and the diffusion
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Figure 3. Quasiperiodic coexistence oscillations: Short time scale oscillations interfere with long time scale oscillations.
Parametrization: ρS = 1.0, μV = 1.1, μI = 1.07, μZ = 0.6, αS = αI = 5.0, β = 5.0 and B = 7.09.

Figure 4. A projection of the quasiperiodic attractor to v − s − z space. Parametrization: ρS = 1.0, μV = 1.1,
μI = 1.07, μZ = 0.6, αS = αI = 5.0 β = 5.0 and B = 7.09. Time interval: t ∈ [8634.5, 10000].

coefficient d are chosen according to [16]:

ρS = 10, μV = 14.925, μI = 24.628, αS = 5, αI = 5, β = 5, d = 0.05. (42)

The value of d has been chosen according to Okubo’s diffusion diagrams (cf. [22]) in order to
model processes on a kilometre scale. Numerical solutions were produced using finite differences
for diffusion with an Euler scheme for reaction terms [32] and an Euler-Maruyama scheme [19]
for the stochastic terms (cf. [12] and [7]). A series of figures is presented which summarizes
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selected results of simulations. First, a ‘weak’ infection, which is characterized by a low level
of the virus multiplication factor B, is presented. This type of a weak infection can go extinct
due to an invasion of a predator, whereas a ‘strong’ infection with a higher value of B leads
to the destruction of coherent structures and the emergence of a pattern which reminds of local
infection herds.

4.1. ‘Weak’ infections go extinct

First a weak infection with μZ = 0.65 and B = 49, the other parameters chosen according to
Equation (42), is considered. The results are shown in Figure 5.

Although the ODE model (12–15) reaches the coexistence limit cycle at arbitrary initial condi-
tions the spatial model shows a different behaviour: In the first few timesteps, viruses and infected
phytoplankton expand very quickly from the lower left patch (cf. Figure 5, t = 5 and t = 15) –
note that the first two pictures are only 10 timesteps apart ! These waves consisting of viruses and
both susceptibles and infected interfere and soon form a homogeneous distribution. Nevertheless,
a small area in the centre occupied by phytoplankton and zooplankton cannot be intruded. This
small patch expands very slowly, displacing the homogeneous distribution of v, s and i (t = 570)
until nearly the whole space is disease-free. This leads to the paradoxical interpretation that the
predator protects its prey from being infected.

The mathematical basis of this phenomenon can be found by a closer look at the local stability
analysis. Apart from the v − s − i − z limit cycle, also a limit cycle of the s − z subsystem can be
attained – if the initial values v0 and i0 of viruses and infected are set to zero (cf. Section 3.3). The
spatial simulation shows that, in the model with diffusion, an s − z patch is able to expand and
displace the infection. This is accompanied by ‘dynamic stabilization’, cf. [15], of the stationary
solution Ev,s,i : Ev,s,i is unstable for the chosen parametrization (cf. Figure 2), nevertheless, a
homogeneous predator-free distribution coinciding with the corresponding values of the stationary
point Ev,s,i remains stable for a certain time until it is displaced by the expanding patch of
susceptibles and zooplankton.

Figure 5. For μZ = 0.65 and B = 49 the infection is displaced by the expanding zooplankton patch. For the other
parameters cf. (42). Infected are displayed in upper, zooplankton in lower row. Initial conditions: One lower left patch
with viruses, susceptibles and zooplankton, as well as one upper right patch with only susceptibles and zooplankton.
Neumann boundary conditions. No noise.
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Figure 6. The same parametrization as in Figure 5. Stochastic environmental variability is accounted for by multiplica-
tive noise with the intensity ω = 0.1. Infected are displayed in upper, zooplankton in lower row. Initial conditions: one
lower left patch with viruses, susceptibles and zooplankton, as well as one upper right patch with only susceptibles and
zooplankton. Neumann boundary conditions.

Heuristically, this might be interpreted as similar phenomena, which have been studied in
conjunction with front solutions: Owen and Lewis [23], Lewis and van den Driessche [13] and
Hilker et al. [10] studied under which circumstances the direction of wave fronts of a population
could be reversed. However, in our case, the situation is a bit more complicated: A stationary
distribution of the v − s − i subsystem is not invaded by a front, but by spiral waves of the s − z

subsystem.
If multiplicative noise is added, a stabilizing effect can be observed (cf. Figure 6): The expansion

of the s − z patch does not necessarily lead to the extinction of the infection. It has a certain
non-vanishing survival probability. Furthermore, and as to be expected, the noise enhances the
spatial spread of all species. Another effect of the noise is that the unrealistic regularity is blurred
depending on the intensity ω of the added noise.

4.2. ‘Strong’ infection

Choosing μZ = 0.5 and B = 75 (for other parameters cf. Equation (42)) leads to a completely
different situation: For a higher value of the replication factor B, the infection can establish in
space (cf. Figure 7). Also, the position of this simulation in the parameter diagram, cf. Figure 2,
is displayed.

In contrast to Figure 5, the zooplankton and susceptible phytoplankton are not able to form a
virus-free area in the centre – virus particles ‘invade’ the area occupied by a small ‘zooplank-
ton island’ (t = 35). This is again – as in the preceding subsection – accompanied by dynamic
stabilization of Ev,s,i . Subsequently, the coherent structures dissolve, which is already visible
at t = 200 in the plot for infected phytoplankton. At t = 1000, viruses and phytoplankton have
produced an irregular pattern that reminds of local outbreaks. The small patches of local outbreaks
are distributed over the whole area and vanish a short time after they occur. Zooplankton, however,
still maintains a more or less coherent structure.

In this parametrization, the general features of the deterministic simulation are preserved after
adding multiplicative noise. Therefore, figures are omitted.
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Figure 7. For μZ = 0.5 and B = 75 the infection can establish in space. The complex pattern of i and z is characterised
by local outbreaks of the disease. For other parameters cf. (42). Infected are displayed in upper, zooplankton in lower row.
Initial conditions: One lower left patch with viruses, susceptibles and zooplankton, as well as one upper right patch with
only susceptibles and zooplankton. Neumann boundary conditions.

5. Conclusions

In this article, a model of a prey–predator system with infected prey was studied. The complete
analysis of the semitrivial stationary solutions of the local model revealed a complex interplay of
the different subsystems – extinction of predator (Es,z), extinction of infection (Ev,s,i), extinction
of both predator and infection (ES) – which could be well understood by representation in a
parameter diagram depending on the mortality rate μZ of zooplankton and the replication factor
B of viruses. As low levels of μZ can be interpreted as a greater strength of the predator, whereas
high levels of B represent stronger infections, the system can thus be investigated under a given
pressure of predation and infection. It was shown that there are parametrizations for which the
system is bistable. In this range of parameters, either the v − s − i subsystem (extinction of
the predator) or the s − z subsystem (extinction of the predator) are attained depending on the
initial values. This range of parameters coincides with the feasibility range of the non-trivial
stationary solution. However, the numerical analysis showed that only oscillatory solutions admit
coexistence of viruses, susceptible and infected prey and the predator. Also, quasiperiodic and
chaotic solutions exist for a certain range of parameters.

The numerical solution of the deterministic reaction–diffusion model with the parametriza-
tion of Section 4.1 shows a difference from the local model. For this parametrization, numerical
solutions of the ODE system suggest that only the v − s − i − z limit cycle can be attained inde-
pendent of the initial values, but adding diffusion seems to destabilize the coexistence state. The
s − z subsystem is able to invade the whole space and displace the infection. The phenomenon of
‘dynamic stabilization’, which has been studied by Malchow and Petrovskii [15] can be observed
for the v − s − i subsystem: Although the stationary v − s − i state is unstable it is ‘stabilised’
in the spatial model, i.e., in a certain spatial area a ‘plateau’ of a homogeneous v − s − i dis-
tribution is formed. In the long range, however, this state is displaced by the disease-free s − z

subsystem. In the given biological context, this can be interpreted as a biological invasion of an
infected prey population by a predator. If the ‘healing’ effect of this invasion is realistic remains
to be determined. However, predators are often considered to be responsible for infections going



Journal of Biological Dynamics 53

extinct – usually assuming that it is easier for a predator to catch an infected than a susceptible
individual. This decreases the reproduction rate of viruses so that the spread of the infection might
be slowed down or even stopped. The result presented in this article shows that under certain cir-
cumstances a preference of predators for infected prey might not be necessary for the exctinction
of an infection by predation. Adding multiplicative noise has a stabilizing effect – the complete
extinction of the infection is prevented, if the noise level is above a certain threshold.

The other parametrization of the spatial model which is presented in Section 4.2 shows a
different type of behaviour: Coherent structures dissolve and are replaced by local outbreaks of
the disease. This behaviour of the model is characteristic for strong infections: an outbreak kills
nearly all phytoplanktons in a certain region of space. Thus, the system collapses in a bounded
area, but remains sensitive: as soon as the susceptible population has recovered the infection starts
again. Therefore, the coherent structures dissolve and pass over to the local outbreak pattern.
Adding multiplicative noise does not result in major changes of the model behaviour for this
parametrization, but blurs artificial patterns of the deterministic simulation, which result in more
realistic structures.

Future work shall include the replication of viruses in host cells.
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